Stability and instability of asymptotic profiles of solutions for fast diffusion equations

Goro AKAGI (Kobe University)

Joint work with Ryuji Kajikiya (Saga University)

Second Italian-Japanese Workshop on Geometric Properties of Parabolic and Elliptic PDE's June 20–24, 2011

1. Introduction

Aim of this talk

We deal with the Cauchy-Dirichlet for the fast diffusion equation,

(1)
$$\partial_t \left(|u|^{m-2} u \right) = \Delta u \quad \text{in } \Omega imes (0,\infty),$$

(2)
$$u=0$$
 on $\partial\Omega imes(0,\infty),$

(3)
$$u(\cdot,0) = u_0$$
 in Ω ,

where m > 2 and Ω is a bounded domain of \mathbb{R}^N with smooth boundary $\partial \Omega$.

Aim of this talk

We deal with the Cauchy-Dirichlet for the fast diffusion equation,

(1)
$$\partial_t \left(|u|^{m-2} u \right) = \Delta u \quad \text{in } \Omega imes (0,\infty),$$

(2)
$$u=0$$
 on $\partial\Omega imes(0,\infty),$

(3)
$$u(\cdot,0) = u_0$$
 in Ω ,

where m > 2 and Ω is a bounded domain of \mathbb{R}^N with smooth boundary $\partial \Omega$. Put $w = |u|^{m-2}u$ to reformulate (1) as

$$\partial_t w = \Deltaig(|w|^{m'-2}wig), \quad 1 < m' = m/(m-1) < 2.$$

Background: singular diffusion of plasma (m = 3 by Okuda-Dawson '73).

Aim of this talk

We deal with the Cauchy-Dirichlet for the fast diffusion equation,

(1)
$$\partial_t \left(|u|^{m-2} u
ight) = \Delta u \quad ext{in} \ \Omega imes (0,\infty),$$

(2)
$$u=0$$
 on $\partial\Omega imes(0,\infty),$

(3)
$$u(\cdot,0) = u_0$$
 in Ω ,

where m > 2 and Ω is a bounded domain of \mathbb{R}^N with smooth boundary $\partial \Omega$. Put $w = |u|^{m-2}u$ to reformulate (1) as

$$\partial_t w = \Deltaig(|w|^{m'-2}wig), \quad 1 < m' = m/(m-1) < 2.$$

Background: singular diffusion of plasma (m = 3 by Okuda-Dawson '73).

• Aim of this talk

Our aim of this talk is to discuss asymptotic profiles of solutions as well as the stability and instability of profiles.

Assumptions

Throughout this talk, we assume that

$$m < 2^* := rac{2N}{(N-2)_+}$$
 and $u_0 \in H^1_0(\Omega).$

Definition of solutions

Definition (Weak solutions) -

A function $u : \Omega \times (0, \infty) \to \mathbb{R}$ is said to be a (weak) solution of (1)–(3), if the following conditions are all satisfied:

- $u\in C([0,\infty);H^1_0(\Omega))$ and $|u|^{m-2}u\in C^1([0,\infty);H^{-1}(\Omega))$,
- For all $t\in (0,\infty)$ and $\psi\in C_0^\infty(\Omega)$,

$$\left\langle rac{d}{dt} \left(|u|^{m-2} u
ight) (t), \psi
ight
angle_{H_0^1} + \int_\Omega
abla u(x,t) \cdot
abla \psi(x) dx = 0,$$

•
$$u(\cdot,t) \to u_0$$
 strongly in $H^1_0(\Omega)$ as $t \to +0$.

For any $u_0 \in H_0^1(\Omega)$, the problem (1)–(3) admits a unique solution.

Extinction of solutions in finite time

Berryman-Holland ('80) proved

$$egin{aligned} &orall u_0 \in H^1_0(\Omega), \quad \exists t_* = t_*(u_0) > 0 \quad ext{s.t.} \ &\| u(\cdot,t) \|_{1,2} \propto (t_*-t)_+^{1/(m-2)}. \end{aligned}$$

Namely, every solution u = u(x,t) vanishes at $t_* = t_*(u_0)$ at the rate $(t_*-t)^{1/(m-2)}$.

Here, $t_* = t_*(u_0)$ is called the <u>extinction time</u> (of solutions) for u_0 .

$$egin{array}{rll} t_*:&H^1_0(\Omega)& o&[0,\infty)\ &&u_0&\mapsto&t_*(u_0) \end{array}$$

Asymptotic profiles of vanishing solutions

One can define the asymptotic profile $\phi = \phi(x)$ of u = u(x,t) by

$$\phi(x) := \lim_{t \nearrow t_*} (t_* - t)^{-1/(m-2)} u(x, t) \quad \text{in } H^1_0(\Omega).$$

Asymptotic profiles of vanishing solutions

One can define the asymptotic profile $\phi = \phi(x)$ of u = u(x,t) by

$$\phi(x) := \lim_{t \nearrow t_*} (t_* - t)^{-1/(m-2)} u(x, t) \quad \text{ in } H^1_0(\Omega).$$

In order to characterize ϕ , we apply the following transformation:

(4)
$$v(x,s) := (t_* - t)^{-1/(m-2)} u(x,t)$$
 and $s := \log(t_*/(t_* - t)).$
$$\frac{t \mid 0 \nearrow t_*}{s \mid 0 \nearrow \infty}$$

Then the asymptotic profile $\phi = \phi(x)$ of u = u(x,t) is reformulated as

$$\phi(x):=\lim_{s
earrow\infty} v(x,s) \quad \text{ in } H^1_0(\Omega).$$

Asymptotic profiles of vanishing solutions (contd.)

The Cauchy-Dirichlet problem (1)–(3) for u = u(x,t) is rewritten by

(5)
$$\partial_s \left(|v|^{m-2}v \right) = \Delta v + \lambda_m |v|^{m-2}v$$
 in $\Omega \times (0, \infty)$,
(6) $v = 0$ on $\partial \Omega \times (0, \infty)$,

(7) $v(\cdot,0) = v_0$ in Ω ,

where $v_0 = t_*(u_0)^{-1/(m-2)}u_0$ and $\lambda_m = \frac{m-1}{m-2} > 0$.

Asymptotic profiles of vanishing solutions (contd.)

The Cauchy-Dirichlet problem (1)–(3) for u = u(x,t) is rewritten by

(5)
$$\partial_s \left(|v|^{m-2}v \right) = \Delta v + \lambda_m |v|^{m-2}v \quad \text{in } \Omega \times (0,\infty),$$

(6)
$$v=0$$
 on $\partial\Omega imes(0,\infty),$

(7)
$$v(\cdot,0) = v_0$$
 in Ω ,

where $v_0=t_*(u_0)^{-1/(m-2)}u_0$ and $\lambda_m=rac{m-1}{m-2}>0.$

- Theorem 1 (Asymptotic profiles) -

(8)

For any sequence $s_n \to \infty$, there exist a subsequence (n') of (n) and $\phi \in H_0^1(\Omega) \setminus \{0\}$ such that $v(s_{n'}) \to \phi$ strongly in $H_0^1(\Omega)$. Moreover, ϕ is a nontrivial stationary solution of (5)–(7), that is,

$$-\Delta \phi = \lambda_m |\phi|^{m-2} \phi$$
 in $\Omega, ~~\phi = 0$ on $\partial \Omega$

See also [Berryman-Holland '80], [Kwong '88], [Savaré-Vespri '94].

Asymptotic profiles of vanishing solutions (contd.)

Moreover,

- $U(x,t) = (1-t)_+^{1/(m-2)} \phi(x)$ solves (1)–(3) with $U(0) = \phi(x)$.
- $t_*(\phi) = 1$ and the profile of U(x,t) is $\phi(x)$.

Then we notice that

 $\{\text{Asymptotic profiles of } u(x,t)\} = \{\text{Nontrivial solutions } \phi(x)\} =: \mathcal{S}$

Stability/instability of asymptotic profiles

Problem Let ϕ be an asymptotic profile and set

$$u_0=\phi+p$$
 with a perturbation $p\in H^1_0(\Omega).$

If $u_0 \in H_0^1(\Omega)$ is sufficiently close to ϕ (i.e., p is small), does the asymptotic profile of u = u(x, t) also coincide with ϕ ? or not?

Stability/instability of asymptotic profiles

Transformation and the set of initial data

Let us recall the transformation,

 $v(x,s) = (t_* - t)^{-1/(m-2)} u(x,t)$ and $s = \log(t_*/(t_* - t)) \ge 0.$

In particular, $v_0 = t_*(u_0)^{-1/(m-2)}u_0$.

Transformation and the set of initial data

Let us recall the transformation,

 $v(x,s) = (t_* - t)^{-1/(m-2)} u(x,t)$ and $s = \log(t_*/(t_* - t)) \ge 0.$

In particular, $v_0 = t_*(u_0)^{-1/(m-2)}u_0$. Hence

$$u_0\in H^1_0(\Omega)\setminus\{0\}\quad\Leftrightarrow\quad v_0\in\mathcal{X},$$

where

$$\mathcal{X} := \left\{ t_*(u_0)^{-1/(m-2)} u_0; \; u_0 \in H^1_0(\Omega) \setminus \{0\}
ight\}.$$

Transformation and the set of initial data

Let us recall the transformation,

 $v(x,s) = (t_* - t)^{-1/(m-2)} u(x,t)$ and $s = \log(t_*/(t_* - t)) \ge 0.$

In particular, $v_0 = t_*(u_0)^{-1/(m-2)}u_0$. Hence

$$u_0\in H^1_0(\Omega)\setminus\{0\}\quad\Leftrightarrow\quad v_0\in\mathcal{X},$$

where

$$\mathcal{X} := \left\{ t_*(u_0)^{-1/(m-2)} u_0; \; u_0 \in H^1_0(\Omega) \setminus \{0\}
ight\}.$$

Then we note that

(i) $v_0 \in \mathcal{X} \Rightarrow v(s) \in \mathcal{X} \quad \forall s \geq 0.$

(ii) $\mathcal{X} = \{v_0 \in H_0^1(\Omega); t_*(v_0) = 1\}$, which is homeomorphic to a unit sphere in $H_0^1(\Omega)$.

(iii) $\mathcal{S} \subset \mathcal{X}$ by $t_*(\phi) = 1$ for $\phi \in \mathcal{S}$.

Stability/instability of asymptotic profiles

Definition of the stability/instability of profiles

Definition 2 (Stability and instability of profiles) — Let φ ∈ H¹₀(Ω) be an asymptotic profile of vanishing solutions.
(i) φ is said to be stable, if for any ε > 0 there exists δ = δ(ε) > 0 such that any solution v of (5)–(7) satisfies

 $v(0)\in \mathcal{X}\cap B(\phi;\delta) \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \sup_{s\in [0,\infty)} \|v(s)-\phi\|_{1,2}<arepsilon.$

- (ii) ϕ is said to be <u>unstable</u>, if ϕ is not stable.
- (iii) ϕ is said to be asymptotically stable, if ϕ is stable, and moreover, there exists $\delta_0 > 0$ such that any solution v of (5)–(7) satisfies

$$v(0)\in \mathcal{X}\cap B(\phi;\delta_0) \quad \Rightarrow \quad \lim_{s
earrow\infty} \|v(s)-\phi\|_{1,2}=0.$$

2. Stability Analysis

Gradient system on the surface \mathcal{X}

Problem (5)-(7) can be written as a (generalized) gradient system,

$$rac{d}{ds}ert vert^{m-2}v(s)=-
abla J(v(s)), \hspace{0.3cm}s>0, \hspace{0.3cm}v(0)=v_0\in \mathcal{X},$$

where abla J stands for the gradient of the functional

$$J(w) = rac{1}{2} \|w\|_{1,2}^2 - rac{\lambda_m}{m} \|w\|_m^m.$$

Hence $s \mapsto J(v(s))$ is non-increasing. Moreover,

 ϕ is an asymptotic profile $\,\,\,\Leftrightarrow\,\,
abla J(\phi)=0, \ \phi
eq 0.$

Gradient system on the surface \mathcal{X}

Problem (5)-(7) can be written as a (generalized) gradient system,

$$rac{d}{ds}ert vert^{m-2}v(s)=-
abla J(v(s)), \hspace{0.3cm}s>0, \hspace{0.3cm}v(0)=v_0\in \mathcal{X},$$

where abla J stands for the gradient of the functional

$$J(w) = rac{1}{2} \|w\|_{1,2}^2 - rac{\lambda_m}{m} \|w\|_m^m.$$

Hence $s \mapsto J(v(s))$ is non-increasing. Moreover,

 ϕ is an asymptotic profile $\,\,\,\Leftrightarrow\,\,
abla J(\phi)=0, \ \phi
eq 0.$

Therefore one can reveal the stability/instability of profiles by investigating the geometry of the functional J over $\mathcal{X} = \{w \in H_0^1(\Omega); t_*(w) = 1\}$.

Gradient system on the surface \mathcal{X}

Problem (5)–(7) can be written as a (generalized) gradient system,

$$rac{d}{ds}ert vert^{m-2}v(s)=-
abla J(v(s)), \hspace{0.3cm}s>0, \hspace{0.3cm}v(0)=v_0\in \mathcal{X},$$

where abla J stands for the gradient of the functional

$$J(w) = rac{1}{2} \|w\|_{1,2}^2 - rac{\lambda_m}{m} \|w\|_m^m.$$

Hence $s \mapsto J(v(s))$ is non-increasing. Moreover,

 ϕ is an asymptotic profile $\,\,\,\Leftrightarrow\,\,
abla J(\phi)=0, \ \phi
eq 0.$

Therefore one can reveal the stability/instability of profiles by investigating the geometry of the functional J over $\mathcal{X} = \{w \in H_0^1(\Omega); t_*(w) = 1\}$.

Cf. Since m > 2, J forms a mountain pass structure in $H_0^1(\Omega)$. Hence 0 is stable and nontrivial critical points are unstable in $H_0^1(\Omega)$.

Main result 1 (stability)

Let d_1 be the least energy of J over nontrivial solutions, i.e.,

$$d_1 := \inf_{v \in \mathcal{S}} J(v), \quad \mathcal{S} := \{ \text{ nontrivial solutions of (8)} \}.$$

A least energy solution ϕ_1 of (8) means $\phi_1 \in S$ satisfying $J(\phi_1) = d_1$. Every least energy solution of (8) is sign-definite.

- Theorem 3 (Stability of profiles) -
- Let ϕ be a least energy solution of (8). Then
- (i) ϕ is a stable profile, if ϕ is isolated in $H_0^1(\Omega)$ from the other least energy solutions.
- (ii) ϕ is an asymptotically stable profile, if ϕ is isolated in $H_0^1(\Omega)$ from the other sign-definite solutions.

Main result 2 (instability)

Theorem 4 (Instability of profiles) -

Let ϕ be a sign-changing solution of (8). Then

(i) ϕ is not an asymptotically stable profile.

(ii) ϕ is an unstable profile, if ϕ is isolated in $H_0^1(\Omega)$ from the set $\{\psi \in S; J(\psi) < J(\phi)\}.$

Main result 2 (instability)

```
Theorem 4 (Instability of profiles)
Let φ be a sign-changing solution of (8). Then
(i) φ is not an asymptotically stable profile.
(ii) φ is an unstable profile, if φ is isolated in H<sup>1</sup><sub>0</sub>(Ω) from the set {ψ ∈ S; J(ψ) < J(φ)}.</li>
```

Roughly speaking,

- least energy solutions of (8) are asymptotically stable profiles;
- sign-changing solutions of (8) are unstable profiles

under appropriate isolations of profiles.

Let us see several situations that such isolations of profiles hold...

Corollary of the main result 1 (stability)

We first note that sign-definite solutions are isolated in $H_0^1(\Omega)$ from sign-changing solutions. Moreover, least energy solutions are also isolated from sign-definite ones in the following cases:

Corollary 5 (Examples of asymptotically stable profiles) —— Least energy solutions are asymptotically stable profiles in the following cases:

- Ω is a ball and $2 < m < 2^*$ (Gidas-Ni-Nirenberg '79).
- $\Omega \subset \mathbb{R}^2$ is bounded and convex and $2 < m < 2^*$ (Lin '94).
- $\Omega \subset \mathbb{R}^N$ is bounded and $2 < m < 2 + \delta$ (Dancer '03).
- $\Omega \subset \mathbb{R}^N$ is symmetric w.r.t. hyperplanes $[x_i = 0]$ and convex in x_i for $i = 1, 2, \ldots, N$ and $2^* \delta < m < 2^*$ (Grossi '00).

Corollary of the main result 2 (instability)

Corollary 6 (Instability of sign-changing least energy profiles)
'Sign-changing least energy solutions' are unstable.

• (8) always admits a 'sign-changing least energy solution' ϕ_2 , provided that $m < 2^*$.

$$\phi_2 \in SC$$
 satisfying $J(\phi_2) = d_2$, where
 $d_2 := \inf \{J(\psi); \ \psi \in SC\}, \ SC = \{\text{sign-changing sol. of (8)}\}.$

• Each sign-changing least energy solution ϕ_2 is isolated in $H_0^1(\Omega)$ from $\{\psi \in S; \ J(\psi) < d_2\}.$

One-dimensional case

In case N = 1 and $\Omega = (0, 1)$, the Dirichlet problem (8) is written by

(9)
$$-\phi'' = \lambda_m |\phi|^{m-2} \phi$$
 in $(0,1), \phi(0) = \phi(1) = 0.$

Then one can obtain all nontrivial solutions $\{\pm \phi_n\}_{n \in \mathbb{N}}$.

 $J(\pm \phi_1) < J(\pm \phi_2) < \cdots < J(\pm \phi_n) \to \infty \quad \Rightarrow \quad \phi_n \text{ is isolated } !$

– Corollary 7 (Stability and instability of profiles in N=1) —

- Sign-definite profiles $\pm \phi_1$ are asymptotically stable.
- All the other profiles $\pm \phi_n$ $(n \neq 1)$ are unstable.

– Theorem 3 (Stability of profiles) -

Let ϕ be a least energy solution of (8). Then

- (i) ϕ is a stable profile, if ϕ is isolated in $H_0^1(\Omega)$ from the other least energy solutions.
- (ii) ϕ is a asymptotically stable profile, if ϕ is isolated in $H_0^1(\Omega)$ from the other sign-definite solutions.

From the continuous dependence of solutions on initial data, we have

 $egin{aligned} & ext{Proposition 8 (Continuity of } t_*(\cdot)) & ext{-} \ & ext{Assume } m < 2^*. \ & u_{0,n}
ightarrow u_0 & ext{weakly in } H^1_0(\Omega) & \Rightarrow & t_*(u_{0,n})
ightarrow t_*(u_0). \end{aligned}$

From the continuous dependence of solutions on initial data, we have

$$\begin{array}{c} \begin{array}{c} \mbox{Proposition 8 (Continuity of } t_*(\cdot)) \end{array} \\ \mbox{Assume } m < 2^*. \\ u_{0,n} \rightarrow u_0 \quad \mbox{weakly in } H^1_0(\Omega) \quad \Rightarrow \quad t_*(u_{0,n}) \rightarrow t_*(u_0). \end{array} \end{array}$$

Let us recall that $\mathcal{X} = \{ w \in H^1_0(\Omega); t_*(w) = 1 \}.$

 $\left(\begin{array}{c} \text{Lemma 9 (Closedness of } \mathcal{X}) \\ u_n \in \mathcal{X} \quad \text{and} \quad u_n \to u \ \text{weakly in } H^1_0(\Omega) \quad \Rightarrow \quad u \in \mathcal{X}. \end{array} \right)$

 \checkmark Lemma 10 (Variational feature of \mathcal{X}) Let $d_1 = \inf_{\mathcal{S}} J$. Then $\mathcal{X} \subset [d_1 \leq J] := \{v_0 \in H_0^1(\Omega); \ d_1 \leq J(v_0)\}.$ Moreover, if $v_0 \in \mathcal{X}$ and $J(v_0) = d_1$, then $\nabla J(v_0) = 0$.

Lemma 10 (Variational feature of \mathcal{X}) Let $d_1 = \inf_{\mathcal{S}} J$. Then $\mathcal{X} \subset [d_1 \leq J] := \left\{ v_0 \in H_0^1(\Omega); \ d_1 \leq J(v_0) \right\}.$ Moreover, if $v_0 \in \mathcal{X}$ and $J(v_0) = d_1$, then $\nabla J(v_0) = 0$.

(Proof) Let $v_0 \in \mathcal{X}$. Then

$$v(s_n) \to \phi$$
 strongly in $H_0^1(\Omega)$ and $\phi \in \mathcal{S}$.

Since $s\mapsto J(v(s))$ is non-increasing, $J(v_0)\geq J(v(s))\geq J(\phi)\geq d_1.$ Hence $d_1\leq J(v_0).$

If $v_0 \in \mathcal{X}$ and $J(v_0) = d_1$, then $J(v_0) = \min_{\mathcal{X}} J$. Hence $v(s) \equiv v_0$.

Let $\mathcal{LES} := \{ \text{least energy solutions of } (8) \}$. By assumption,

$$\exists r>0 \quad ext{ s.t. } B(\phi;r)\cap \mathcal{LES}=\{\phi\}.$$

Claim 1: For any $arepsilon\in(0,r)$

 $c:=\inf\{J(v);\;v\in\mathcal{X},\;\|v-\phi\|_{1,2}=arepsilon\}>d_1.$
Let $\mathcal{LES} := \{ \text{least energy solutions of } (8) \}$. By assumption,

 $\exists r>0 \quad ext{s.t.} \;\; B(\phi;r)\cap \mathcal{LES}=\{\phi\}.$

Claim 1: For any $arepsilon\in(0,r)$

 $c:=\inf\{J(v);\;v\in\mathcal{X},\;\|v-\phi\|_{1,2}=arepsilon\}>d_1.$

Assume that $c = d_1$, i.e.,

$$\exists v_n \in \mathcal{X}; \ \|v_n - \phi\|_{1,2} = \varepsilon \ \text{ and } \ J(v_n) \to d_1.$$

Since $m < 2^*$, up to a subsequence,

$$v_n
ightarrow v_\infty$$
 weakly in $H^1_0(\Omega)$ and strongly in $L^m(\Omega)$.

By two lemmas,

$$v_\infty \in \mathcal{X}, \quad ext{ and hence, } \quad d_1 \leq J(v_\infty).$$

By two lemmas,

$$v_\infty \in \mathcal{X}, \quad ext{ and hence, } \quad d_1 \leq J(v_\infty).$$

Hence

$$\begin{split} \frac{1}{2} \|v_n\|_{1,2}^2 &= J(v_n) + \frac{\lambda_m}{m} \|v_n\|_m^m \\ &\to d_1 + \frac{\lambda_m}{m} \|v_\infty\|_m^m \le J(v_\infty) + \frac{\lambda_m}{m} \|v_\infty\|_m^m = \frac{1}{2} \|v_\infty\|_{1,2}^2. \end{split}$$

Thus $v_n \to v_\infty$ strongly in $H^1_0(\Omega)$. Hence $||v_\infty - \phi||_{1,2} = \varepsilon$ and $J(v_\infty) = d_1$.

We have known that

$$v_\infty \in \mathcal{X}, \quad J(v_\infty) = d_1 \quad ext{ and } \quad \|v_\infty - \phi\|_{1,2} = arepsilon.$$

Hence $v_{\infty} \in \mathcal{LES}$. However, the fact that $||v_{\infty} - \phi||_{1,2} = \varepsilon < r$ contradicts the isolation of ϕ .

We have known that

$$v_\infty \in \mathcal{X}, \hspace{1em} J(v_\infty) = d_1 \hspace{1em} ext{and} \hspace{1em} \|v_\infty - \phi\|_{1,2} = arepsilon.$$

Hence $v_{\infty} \in \mathcal{LES}$. However, the fact that $||v_{\infty} - \phi||_{1,2} = \varepsilon < r$ contradicts the isolation of ϕ .

Let $arepsilon\in(0,r)$ be arbitrarily given. Choose $\delta\in(0,arepsilon)$ so small that

 $J(v) < c \ \ orall v \in B(\phi; \delta)$

(it is possible, because $c > d_1 = J(\phi)$ by Claim 1, and J is continuous in $H^1_0(\Omega)$).

For any $v_0 \in \mathcal{X} \cap B(\phi; \delta)$, let v(s) be a solution of (5)–(7). Then $v(s) \in \mathcal{X}$.

Claim 2: For any $s \ge 0$, $v(s) \in B(\phi; \varepsilon)$ (hence ϕ is stable).

Claim 2: For any $s \ge 0$, $v(s) \in B(\phi; \varepsilon)$ (hence ϕ is stable). Assume $v(s_0) \in \partial B(\phi; \varepsilon)$ at some $s_0 \ge 0$. By the definition of c,

 $c \leq J(v(s_0)).$

However, it contradicts the facts that $J(v(s_0)) \leq J(v_0) < c$.

✓ Theorem 4 (Instability of profiles)
Let φ be a sign-changing solution of (8). Then
(i) φ is not an asymptotically stable profile.
(ii) φ is an unstable profile, if φ is isolated in H¹₀(Ω) from the set {ψ ∈ S; J(ψ) < J(φ)}.

Let ϕ be a sign-changing solution of (8) (hence ϕ admits more than two nodal domains).

Claim 1: ϕ is not an asymptotically stable profile. Let D be a nodal domain of ϕ and define

$$\phi_\mu(x):= \left\{egin{array}{cc} \mu\phi(x) & ext{if } x\in D, \ \phi(x) & ext{if } x\in \Omega\setminus D \end{array}
ight.$$
 for $\mu\geq 0$

(Note: ϕ_{μ} might not belong to \mathcal{X}). Then one can observe that

- $\phi_{\mu} \rightarrow \phi$ strongly in $H_0^1(\Omega)$ as $\mu \rightarrow 1$.
- if $\mu \neq 1$, then $J(c\phi_{\mu}) < J(\phi)$ for any $c \geq 0$.

Set

$$c_{\mu}:=t_{*}(\phi_{\mu})^{-1/(m-2)}, \quad v_{0,\mu}:=c_{\mu}\phi_{\mu}\in\mathcal{X}.$$

It follows that

• $t_*(\phi_\mu) \to t_*(\phi) = 1$ and $v_{0,\mu} \to \phi$ strongly in $H^1_0(\Omega)$ as $\mu \to 1$.

• if
$$\mu \neq 1$$
, then $J(v_{0,\mu}) = J(c_{\mu}\phi_{\mu}) < J(\phi)$.

Hence solutions $v_{\mu}(s)$ of (5)–(7) with $v_{\mu}(0) = v_{0,\mu}$ never converges to ϕ as $s \to \infty$, since $J(v_{\mu}(s)) \leq J(v_{0,\mu}) < J(\phi)$.

Therefore ϕ is not an asymptotically stable profile.

We further assume that

 $\exists R > 0 \quad \text{s.t.} \quad \overline{B(\phi;R)} \cap \{\psi \in \mathcal{S}; \ J(\psi) < J(\phi)\} = \emptyset.$

Claim 2: If $\mu \neq 1$, then $v_{\mu}(s) \not\in \overline{B(\phi; R)}$ for any $s \gg 1$.

We further assume that

$$\exists R > 0 \quad \text{s.t.} \quad \overline{B(\phi;R)} \cap \{\psi \in \mathcal{S}; \ J(\psi) < J(\phi)\} = \emptyset.$$

Claim 2: If $\mu \neq 1$, then $v_{\mu}(s) \notin \overline{B(\phi; R)}$ for any $s \gg 1$. Assume that $v_{\mu}(s_n) \in \overline{B(\phi; R)}$ with some sequence $s_n \to \infty$. Then

$$v_\mu(s_n) o {}^\exists \psi \in \overline{B(\phi;R)} \cap \mathcal{S} \quad ext{strongly in } H^1_0(\Omega).$$

Moreover,

$$J(\psi) \leq J(v_{0,\mu}) < J(\phi).$$

It contradicts the isolation of ϕ . Thus ϕ is an unstable profile.

5. Characterization of \mathcal{X}

Characterization of $\boldsymbol{\mathcal{X}}$

 \mathcal{X} is a separatrix for (5)-(7) !

Proposition 11 (Characterization of \mathcal{X}) -Let v(s) be a solution of (5)–(7) with $v(0) = v_0$. (i) If $v_0 \in \mathcal{X} = \{v_0 \in H^1_0(\Omega); t_*(v_0) = 1\}$,then $v(s_n) \to \phi \in \mathcal{S}$ strongly in $H^1_0(\Omega)$ as $s_n \to \infty$. (ii) If $v_0 \in \mathcal{X}^+ := \{v_0 \in H^1_0(\Omega); t_*(v_0) > 1\}$, then v(s) diverges as $s \to \infty$. Hence \mathcal{X}^+ is an unstable set. (iii) If $v_0 \in \mathcal{X}^- := \{v_0 \in H^1_0(\Omega); t_*(v_0) < 1\}$, then v(s) vanishes in finite time. Hence \mathcal{X}^- is a stable set.

Separatrix \mathcal{X} and Nehari manifold \mathcal{N}

Proposition 11 classifies the whole of energy space $H_0^1(\Omega)$ in terms of large-time behaviors of solutions for (5)–(7):

$$egin{aligned} \partial_s \left(|v|^{m-2} v
ight) &= \Delta v + \lambda_m |v|^{m-2} v & ext{ in } \Omega imes (0,\infty), \ v &= 0 & ext{ on } \partial \Omega imes (0,\infty), \ v(\cdot,0) &= v_0 \in H^1_0(\Omega) & ext{ in } \Omega. \end{aligned}$$

Moreover, we emphasize that the separatrix \mathcal{X} between the stable and unstable sets does not coincides with the Nehari manifold of J,

$$\mathcal{N}:=\left\{w\in H^1_0(\Omega);\; \langle
abla J(w),w
angle=0
ight\}.$$

We further observe that

 \mathcal{X} is surrounded by \mathcal{N} and $\mathcal{N} \cap \mathcal{X} = \mathcal{S}$.

The geometry of the functional J

 $\pm\phi_1$: (asymptotic) stable, $\pm\phi_n$ (n
eq1): unstable

Thank you for your attention.

6. Stability and symmetry

Asymptotic profiles in a ball

Let us particularly consider the ball domain,

$$\Omega := \{ x \in \mathbb{R}^2; \; |x| < 1 \}.$$

Asymptotic profiles in a ball

Let us particularly consider the ball domain,

$$\Omega := \{ x \in \mathbb{R}^2; \; |x| < 1 \}.$$

Then the Dirichlet problem

$$-\Delta \phi = \lambda_m |\phi|^{m-2} \phi \text{ in } \Omega, \quad \phi|_{\partial \Omega} = 0$$

admits the unique positive radial solution ϕ , and no other positive solution.

Asymptotic profiles in a ball

Let us particularly consider the ball domain,

$$\Omega := \{ x \in \mathbb{R}^2; \; |x| < 1 \}.$$

Then the Dirichlet problem

$$-\Delta \phi = \lambda_m |\phi|^{m-2} \phi \ \ {
m in} \ \Omega, \ \ \phi|_{\partial\Omega} = 0$$

admits the unique positive radial solution ϕ , and no other positive solution. Hence ϕ is the unique asymptotic profiles of positive solutions for (1)–(3). By Theorem 3, the positive radial profile ϕ is asymptotically stable.

Asymptotic profiles in an annulus

Let us next treat the annular domain,

$$\Omega := \{ x \in \mathbb{R}^2; \; a < |x| < b \}, \; \; \; 0 < a < b.$$

Asymptotic profiles in an annulus

Let us next treat the annular domain,

$$\Omega := \{ x \in \mathbb{R}^2; \; a < |x| < b \}, \; \; \; 0 < a < b.$$

Let $\phi > 0$ be a positive radial solution of

(10)
$$-\Delta\phi = \lambda_m \phi^{m-1}$$
 in Ω ,

(11)
$$\phi = 0$$
 on $\partial \Omega$.

Then ϕ becomes an asymptotic profiles of solutions u = u(x, t) for (1)–(3).

Remark and question

Remark.

- (10), (11) admits the unique radial solution ϕ and infinitely many non-radial solutions. Moreover, $J(\phi) > d_1 := \inf_{\mathcal{N}} J$. Hence, ϕ is sign-definite but does not take least energy.
- Our preceding results cannot judge the stability/instability of ϕ .

Question.

Is the radial profile $\phi > 0$ (asymptotic) stable or unstable ?

Answer to the question

Our result reads,

— Theorem 12 (Instability of positive radial profiles)

Let $\boldsymbol{\Omega}$ be the annular domain.

Let ϕ be the unique positive radial solution of (10), (11).

Then ϕ is <u>not</u> an asymptotically stable profile of solutions for (1)–(3).

Remark. Due to Theorem 4, we have already known that all the sign-changing profiles are unstable.

Perturbations to radial solutions/profiles

Define $u_{0,arepsilon}:\Omega o\mathbb{R}$ with a parameter arepsilon>0 by

 $u_{0,arepsilon}(x)=\sigma_arepsilon(heta)\phi(r) \quad ext{ for } x=(r\cos heta,r\sin heta)\in\Omega$

with the function

$$\sigma_arepsilon(heta) = 1 + arepsilon \sin heta \quad ext{ for } heta \in [0, 2\pi] ext{ and } arepsilon > 0.$$

Then we have:

Proposition 13 (Perturbations to radial solutions/profiles) — Assume that

(12)
$$0 < (b-a)/a < \sqrt{\pi(m-2)}.$$

Then there exist $c_0 \in (0,1)$ and $\varepsilon_0 > 0$ such that $J(cu_{0,\varepsilon}) < J(\phi)$ for any $\varepsilon \in (0, \varepsilon_0)$ and $c > c_0$.

Sketch of proof (1/2)

Let $\varepsilon > 0$. Then we remark that

$$egin{aligned} u_{0,arepsilon} & o \phi & ext{strongly in } H^1_0(\Omega), \ t_*(u_{0,arepsilon}) & o t_*(\phi) &= 1 & ext{as } arepsilon o 0. \end{aligned}$$

Put $v_{0,\varepsilon} := t_*(u_{0,\varepsilon})^{-1/(m-2)}u_{0,\varepsilon}$ and denote by $v_{\varepsilon} = v_{\varepsilon}(x,s)$ the unique solution of (5)–(7) with the initial data $v_{0,\varepsilon}$.

Choose $\varepsilon_1 > 0$ such that $c_{\varepsilon} > c_0$, where c_0 is given by Proposition 6.5, for all $\varepsilon \in (0, \varepsilon_1)$. Then by Proposition 6.5, one can assure that

$$J(v_{0,arepsilon}) = J(c_arepsilon u_{0,arepsilon}) < J(\phi) \quad ext{ for } arepsilon ext{ sufficiently close to } 0.$$

Sketch of proof (2/2)

Moreover, it holds that

$$v_{0,\epsilon} o \phi$$
 strongly in $H^1_0(\Omega)$.

Hence noting that

$$J(v_{arepsilon}(s)) \leq J(v_{0,arepsilon}) < J(\phi) \quad ext{ for all } s \geq 0,$$

we deduce that $v_{\epsilon}(s)$ never converges to ϕ strongly in $H_0^1(\Omega)$ as $s \to \infty$.

Thus the positive radial profile ϕ is not asymptotically stable.

Asymmetry of least energy solutions

As a corollary of our method of proof, we have:

Corollary 14 (Asymmetry of least energy solutions) -

Let Ω be the annulus and assume that (12) holds. Then the Dirichlet problem (10), (11) admits a non-radial positive solution with a lower energy than that of the unique radial positive solution.

Hence least energy solutions of (10), (11) are not radially symmetric.

Asymmetry of least energy solutions

Proof. The unique radial positive solution ϕ has the minimum energy among all the non-trivial radial solutions. In the previous arguments,

$$J(v_{arepsilon}(s)) \leq J(v_{0,arepsilon}) < J(\phi) \quad ext{ for all } s > 0.$$

Moreover, we have also verified

 $v_{\varepsilon}(s_n) \to \exists \phi_{\varepsilon} \in \mathcal{S} \quad \text{strongly in } H^1_0(\Omega) \text{ as } s_n \to \infty,$

which implies $J(\phi_{\varepsilon}) < J(\phi) = \inf\{J(\psi); \psi \text{ is a radial solution}\}$. Hence ϕ_{ε} is never radially symmetric.

Remarks

- We can extend these results to the following cases:
 - N-dimensional cases,
 - cylindrical domains,
 - toroidal domains.
- The asymmetry of least energy solutions for (10), (11) in annular domains has been proved by Coffman (N = 2), Li (N ≥ 4) and Byeon (N = 3), provided that (b a)/a is sufficiently small. However, their result does not provide any estimates for the smallness.
- Our proof of the asymmetry of least energy solutions for the elliptic problem relies on fast diffusion flow.

Let us consider a solution u = u(x, t) of the nonlinear parabolic equation:

$$\partial_t \left(|u|^{m-2} u
ight) = \Delta u, \qquad x \in \Omega \subset \mathbb{R}^N, \quad t > 0,$$

where $\partial_t = \partial/\partial t$ and $1 < m < \infty$.

Let us consider a solution u = u(x, t) of the nonlinear parabolic equation:

$$\partial_t \left(|u|^{m-2} u
ight) = \Delta u, \qquad x \in \Omega \subset \mathbb{R}^N, \quad t > 0,$$

where $\partial_t = \partial/\partial t$ and $1 < m < \infty$.

By setting $w = |u|^{m-2}u$, one can transform it into a usual form,

$$\partial_t w = \Delta \left(|w|^{m'-2} w
ight) =
abla \cdot \left(\underbrace{(m'-1)|w|^{m'-2}}_{ ext{Diffusion coefficient } D}
abla w
ight)$$

with
$$m'=rac{m}{m-1}.$$

Let us consider a solution u = u(x, t) of the nonlinear parabolic equation:

$$\partial_t \left(|u|^{m-2} u
ight) = \Delta u, \qquad x \in \Omega \subset \mathbb{R}^N, \quad t > 0,$$

where $\partial_t = \partial/\partial t$ and $1 < m < \infty$.

By setting $w = |u|^{m-2}u$, one can transform it into a usual form,

$$\partial_t w = \Delta \left(|w|^{m'-2} w
ight) =
abla \cdot \left(\underbrace{(m'-1)|w|^{m'-2}}_{ ext{Diffusion coefficient } D}
abla w
ight)$$

with $m'=rac{m}{m-1}.$

In this talk, we address ourselves to the case that

$$m>2$$
 (equivalently, $m'<2$).

Then the diffusion coefficient D will be singular when w(x,t) = 0.

Equation	m	<i>m</i> ′	D	Properties of diffusion
Heat/Diffusion	2	2	1	Infinite-speed propagation
				Decaying as $t ightarrow\infty$
Porous medium	(1,2)	$(2,\infty)$	Degenerate	Finite-speed propagation
(PME)				Decaying as $t ightarrow\infty$
Fast diffusion	$(2,\infty)$	(1, 2)	Singular	Infinite-speed propagation
(FDE)				Extinction in finite time

Extinction of solutions in finite time

Let us first consider a separable solution, $u(x,t)=
ho(t)\psi(x)$, where $ho(t)\geq 0.$

$$rac{d}{dt}
ho(t)^{m-1}=-\lambda
ho(t) ext{ for } t>0, \quad
ho(0)=1, \ -\Delta\psi(x)=\lambda|\psi|^{m-2}\psi(x) ext{ for } x\in\Omega, \quad \psi|_{\partial\Omega}=0$$

with a constant $\lambda > 0$.
Extinction of solutions in finite time

Let us first consider a separable solution, $u(x,t)=
ho(t)\psi(x)$, where $ho(t)\geq 0.$

$$rac{d}{dt}
ho(t)^{m-1}=-\lambda
ho(t) \ \ ext{for} \ \ t>0, \quad
ho(0)=1, \ -\Delta\psi(x)=\lambda|\psi|^{m-2}\psi(x) \ \ \ ext{for} \ \ x\in\Omega, \quad \psi|_{\partial\Omega}=0$$

with a constant $\lambda > 0$. By solving the ODE of ho,

$$ho(t) = C(t_*-t)_+^{1/(m-2)} \ \ ext{for} \ \ t>0 \ \ \ ext{with} \ \ t_*:=rac{1}{\lambda}\cdotrac{m-1}{m-2},$$

and hence, ho(t) vanishes at a finite time t_* .

As for ψ , due to $m < 2^*$, the elliptic equation admits (infinitely-many) non-trivial solutions.

Extinction of solutions in finite time

Let us first consider a separable solution, $u(x,t)=
ho(t)\psi(x)$, where $ho(t)\geq 0.$

$$rac{d}{dt}
ho(t)^{m-1}=-\lambda
ho(t) \ ext{ for } t>0, \quad
ho(0)=1, \ -\Delta\psi(x)=\lambda|\psi|^{m-2}\psi(x) \ ext{ for } x\in\Omega, \quad \psi|_{\partial\Omega}=0$$

with a constant $\lambda > 0$. By solving the ODE of ho,

$$ho(t) = C(t_*-t)_+^{1/(m-2)} \ \ ext{for} \ \ t>0 \ \ \ ext{with} \ \ t_*:=rac{1}{\lambda}\cdotrac{m-1}{m-2},$$

and hence, ho(t) vanishes at a finite time t_* .

As for ψ , due to $m < 2^*$, the elliptic equation admits (infinitely-many) non-trivial solutions.

Hence these nontrivial separable solutions vanish in finite time at the rate $(t_* - t)^{1/(m-2)}$. This fact also holds for general solutions (Sabinina '62).