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1. Introduction



Aim of this talk

We deal with the Cauchy-Dirichlet for the fast diffusion equation,

(1) O (|u|™%u) = Au  in Q X (0,00),
(2) u =0 on 9f2 X (0, 00),
(3) u(+,0) = uo in €2,

where . > 2 and Q is a bounded domain of RYY with smooth boundary 0.
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Aim of this talk

We deal with the Cauchy-Dirichlet for the fast diffusion equation,

(1) O (|u|™%u) = Au  in Q X (0,00),
(2) u =0 on 9f2 X (0, 00),
(3) u(+,0) = uo in €2,

where . > 2 and Q is a bounded domain of RYY with smooth boundary 0.

Put w = |u|™2u to reformulate (1) as
dw = A(lw|™2w), 1<m' =m/(m-1) < 2.

Background: singular diffusion of plasma (m = 3 by Okuda-Dawson '73).

- Aim of this talk ~N

Our aim of this talk is to discuss asymptotic profiles of solutions as well as

the stability and instability of profiles.
\_ J
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Assumptions

Throughout this talk, we assume that

m < 2% :

and  uo € H; (D).
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Definition of solutions

~ Definition (Weak solutions)

A function v : 2 X (0,00) — R is said to be a (weak) solution of
(1)—(3), if the following conditions are all satisfied:

e u € C([0,00); HL()) and |u|™2u € C*([0, co); H~1()),

e Forallt € (0,00) and ¥ € C§°(1?),

d

(% () @.0) + [ Vale,t) V@) =0,

e u(-,t) — wug strongly in H;(2) as t — +-O0.

~

For any uo € H;(S2), the problem (1)-(3) admits a unique solution.
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Extinction of solutions in finite time

Berryman-Holland (’80) proved
Vug € Hy (), Ft. = t.(uog) >0 sit.

1/(m—2
lus )l o (8 — 1) 72,

Namely, every solution uw = w(x, t) vanishes at t, = t.(ug) at the rate
(t, — t)/(m=2),

Here, . = t.(wug) is called the extinction time (of solutions) for .

t.: H;(Q) — [0,00)

Ug —  t.(ug)
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Asymptotic profiles of vanishing solutions
One can define the asymptotic profile ¢ = ¢(x) of u = w(x,t) by

d(x) 1= lim (t. — )"/ Dy(z,t) in HY (Q).
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Asymptotic profiles of vanishing solutions

One can define the asymptotic profile ¢ = ¢(x) of u = u(x,t) by

P(x) : —tll/r{l(t — )"V (m Dy (z,t) in HE(D).

In order to characterize ¢, we apply the following transformation:

(4) v(x,s) := (t, —t) V™ Dy(x,t) and s :=log(t./(t. —t)).

t | 0 7 t,
s| 0 7 oo

Then the asymptotic profile ¢ = ¢(x) of u = u(x, t) is reformulated as

o(x) := ll/rg)v(m s) in Hy ().
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Asymptotic profiles of vanishing solutions (contd.)
The Cauchy-Dirichlet problem (1)—(3) for u = w(x, t) is rewritten by

(5) 9s (|v|™%v) = Av+A,|v|™ %0 in QX (0, 00),
(6) v=20 on 0L X (0, 00),
(7) v(+,0) = vo in 2,

—/(m=2)ys and A\, = =1 > 0.

where  vo= t.(uo) —
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Asymptotic profiles of vanishing solutions (contd.)
The Cauchy-Dirichlet problem (1)—(3) for u = w(x, t) is rewritten by

(5) 9s (|v|™%v) = Av+A,|v|™ %0 in QX (0, 00),

(6) v=20 on 0L X (0, 00),
(7) v(+,0) = vo in 2,
where  vo= t.(uog) ™ Dug and N, = Z:; > 0.
~ Theorem 1 (Asymptotic profiles) ~

For any sequence s,, — oo, there exist a subsequence (n’) of (n) and
¢ € H;(Q2) \ {0} such that v(s,,) — ¢ strongly in H ().
Moreover, ¢ is a nontrivial stationary solution of (5)—(7), that is,

(8) — AP = An|d|™ 20 in Q, ¢ =0 on IN.
g J

See also [Berryman-Holland '80], [Kwong '88], [Savaré-Vespri '94].
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Asymptotic profiles of vanishing solutions (contd.)

Moreover,
o U(x,t) = (1 —t)Y ™ P ¢p(x) solves (1)-(3) with U (0) = ¢ ().
e t.(¢p) = 1 and the profile of U (x, 1) is ¢(x).

Then we notice that

{Asymptotic profiles of u(x,t)} = {Nontrivial solutions ¢(x)} =: S
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Stability /instability of asymptotic profiles

Problem | Let ¢ be an asymptotic profile and set

ugp = ¢ + p with a perturbation p € H ().

If ug € HJ () is sufficiently close to ¢ (i.e., p is small), does the
asymptotic profile of w = u(x, t) also coincide with ¢ ? or not ?
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u(t) (¢ is stable) u(t) (¢ is unstable)

.0: Uz(',t) — (1 . t)}|—/(m_2)¢2

Stability /instability of asymptotic profiles

H, (€2)
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Transformation and the set of initial data

Let us recall the transformation,
v(x,s) = (t, —t) /™ Dy(x,t) and s =log(t./(t.—1)) > 0.

In particular, vo = t,(ug) Y/ (m=2y,,.
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Transformation and the set of initial data
Let us recall the transformation,
v(x,s) = (t, —t) /™ Dy(x,t) and s =log(t./(t.—1)) > 0.
In particular, vo = t,(ug) /(™ 2uy. Hence
up € Hy(Q)\ {0} & wo € A,

where
X = {t.(u0) " Dug; ug € HY(Q) \ {0} .
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Transformation and the set of initial data
Let us recall the transformation,
v(x,s) = (t, —t) /™ Dy(x,t) and s =log(t./(t.—1)) > 0.
In particular, vo = t,(ug) /(™ 2uy. Hence
up € Hy(Q)\ {0} & wo € A,

where

X = {t.(u0) " Dug; ug € HY(R) \ {0}} .
Then we note that
(i) vo e X = v(s) € X Vs > 0.

(i) X = {vo € H;(2); t.(vo) = 1}, which is homeomorphic to a unit
sphere in H;(€2).

(i) S C X by t.(¢p) =1forp € S.
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N ’..B(¢1; 5)

”’fv(s) (¢ is stable)

H, (€2)

Us(t) = (1= )" Vs

Stability /instability of asymptotic profiles
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Definition of the stability /instability of profiles

~ Definition 2 (Stability and instability of profiles)
Let ¢ € H,(2) be an asymptotic profile of vanishing solutions.

(i) ¢ is said to be stable, if for any € > O there exists 6 = d(e¢) > 0
such that any solution v of (5)—(7) satisfies

v(0) € XN B(¢;0) =  sup |v(s) — ¢lli2 <e.

s€[0,00)

(ii) ¢ is said to be unstable, if ¢ is not stable.

(iii) ¢ is said to be asymptotically stable, if ¢ is stable, and moreover,

there exists do > 0 such that any solution v of (5)-(7) satisfies

v(0) € XN B(¢56) = lim ||v(s) = Bllsz = 0.

~

J
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2. Stability Analysis



Gradient system on the surface X

Problem (5)—(7) can be written as a (generalized) gradient system,

d
ds
where V J stands for the gradient of the functional

1 m m
J(w) = Sllwll} , = el

Hence s — J(v(s)) is non-increasing. Moreover,

¢ is an asymptotic profile < VJ(¢) =0, ¢ # 0.

—[v|"v(s) = =V J(v(s)), s>0, w(0)=wv € X,
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Gradient system on the surface X
Problem (5)—(7) can be written as a (generalized) gradient system,
%|v|m_2v(s) = —VJ(v(s)), s> 0, v(0) = vy € X,
where V J stands for the gradient of the functional

Jw) = lwl2, = == wliy

Hence s — J(v(s)) is non-increasing. Moreover,
¢ is an asymptotic profile < VJ(¢) =0, ¢ # 0.

Therefore one can reveal the stability /instability of profiles by investigating
the geometry of the functional J over X = {w € H;(2); t.(w) = 1}.
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Gradient system on the surface X

Problem (5)—(7) can be written as a (generalized) gradient system,
d
d—lvlm_zv(S) = —VJ(v(s)), >0, v(0)=1v € X,
S
where V J stands for the gradient of the functional

Jw) = lwl2, = == wliy

Hence s — J(v(s)) is non-increasing. Moreover,
¢ is an asymptotic profile < VJ(¢) =0, ¢ # 0.

Therefore one can reveal the stability /instability of profiles by investigating
the geometry of the functional J over X = {w € H;(2); t.(w) = 1}.

Cf. Since m > 2, J forms a mountain pass structure in H;(£2). Hence O

is stable and nontrivial critical points are unstable in H (£2).
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Main result 1 (stability)
Let d; be the least energy of J over nontrivial solutions, i.e.,
dy := igng(v), S := { nontrivial solutions of (8)}.

A least energy solution ¢, of (8) means ¢; € S satisfying J(¢1) = d;.
Every least energy solution of (8) is sign-definite.

~ Theorem 3 (Stability of profiles) ~

Let ¢ be a least energy solution of (8). Then

(i) ¢ is a stable profile, if ¢ is isolated in H(£2) from the other least
energy solutions.

(ii) ¢ is an asymptotically stable profile, if ¢ is isolated in H;(£2) from

the other sign-definite solutions.

\- J
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Main result 2 (instability)

~ Theorem 4 (Instability of profiles) ~

Let ¢ be a sign-changing solution of (8). Then
(i) ¢ is not an asymptotically stable profile.

(ii) ¢ is an unstable profile, if ¢ is isolated in H, (£2) from the set

S; J J .
_ {y € (¥) < J(@)} y
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Main result 2 (instability)

~ Theorem 4 (Instability of profiles)
Let ¢ be a sign-changing solution of (8). Then
(i) ¢ is not an asymptotically stable profile.

(ii) ¢ is an unstable profile, if ¢ is isolated in H, (£2) from the set
{ves; J(y) <J(P)}-

\-

Roughly speaking,
e least energy solutions of (8) are asymptotically stable profiles;
e sign-changing solutions of (8) are unstable profiles

under appropriate isolations of profiles.

Let us see several situations that such isolations of profiles hold...
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Corollary of the main result 1 (stability)

We first note that sign-definite solutions are isolated in H(£2) from
sign-changing solutions. Moreover, least energy solutions are also isolated
from sign-definite ones in the following cases:

- Corollary 5 (Examples of asymptotically stable profiles) —

Least energy solutions are asymptotically stable profiles in the following
cases:

e Nisaballand 2 < m < 2* (Gidas-Ni-Nirenberg '79).
e 3 C R?is bounded and convex and 2 < m < 2* (Lin '94).
e O C RN isbounded and 2 < m < 2+ 68 (Dancer '03).

o Q C RY is symmetric w.r.t. hyperplanes [x; = 0] and convex in x;

L fort =1,2,...,IN and 2* — § < m < 2* (Grossi '00). )
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Corollary of the main result 2 (instability)

[Corollary 6 (Instability of sign-changing least energy profiles)]

'Sign-changing least energy solutions’ are unstable.

e (8) always admits a 'sign-changing least energy solution’ ¢-, provided
that m < 2*.

¢ € SC satisfying J(¢p2) = dz, where
do := inf {J(¢); ¥ € SC}, SC = {sign-changing sol. of (8)}.

e Each sign-changing least energy solution ¢ is isolated in H(€2) from

{v €85 J(v) < da}.

17/41



One-dimensional case

In case N = 1 and €2 = (0, 1), the Dirichlet problem (8) is written by

(9) — 9" = Anlo|™ ¢ in (0,1), ¢(0) = ¢(1) =0.

Then one can obtain all nontrivial solutions {+@., }.en.

¢n(x)

A /\i /\é /\
n n n -~
0 2 4 n—1 1 >
™ ™" n

J(E£p1) < J(£g2) < -+« < J(F£pn) — 00 = ¢, is isolated !

- Corollary 7 (Stability and instability of profiles in N = 1) —

e Sign-definite profiles +=¢; are asymptotically stable.

_ e All the other profiles +=¢,, (n # 1) are unstable. y
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3. Proof of Theorem 3

~ Theorem 3 (Stability of profiles) N

Let ¢ be a least energy solution of (8). Then

(i) ¢ is a stable profile, if ¢ is isolated in H;(£2) from the other
least energy solutions.

(ii) ¢ is a asymptotically stable profile, if ¢ is isolated in H; (Q2)

from the other sign-definite solutions.

- J




Proof of Theorem 3

From the continuous dependence of solutions on initial data, we have

~ Proposition 8 (Continuity of £..(-))

Assume m < 2*.

Uon — up Wweakly in Hy(Q2) =

\-

ti(uo,n) — ti(uo).

y
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Proof of Theorem 3

From the continuous dependence of solutions on initial data, we have

~ Proposition 8 (Continuity of £.(-)) N

Assume m < 2*.

Ug,n — Ug weakly in Hg(ﬂ) — t*(’l,l,()’n) — t*(UO).
\_ J

Let us recall that X = {w € H;(Q); t.(w) = 1}.

~ Lemma 9 (Closedness of X) ~

up, € X and u, — u weaklyin H;(2) = u€ X.
\_ J
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Proof of Theorem 3

~ Lemma 10 (Variational feature of X') N
Let d; = infg J. Then

X Cldy < J]:={vg € Hy(Q); dy < J(vo)} .

\Moreover, if vo € X and J(vg) = dy, then VJ(vg) = 0. y
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Proof of Theorem 3

~ Lemma 10 (Variational feature of X') N
Let d; = infg J. Then

X Cldy < J]:={vg € Hy(Q); dy < J(vo)} .

\Moreover, if vo € X and J(vg) = dy, then VJ(vg) = 0. y

(Proof) Let vg € X’. Then

v(s,) — ¢ stronglyin H () and ¢ € S.

Since s — J(v(s)) is non-increasing, J(vg) > J(v(s)) > J(¢) > d;.
Hence d; < J(vo).

If v € X and J(vg) = dj, then J(vg) = miny J. Hence v(s) = vy.
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Proof of Theorem 3

Let LES := {least energy solutions of (8)}. By assumption,
dr >0 s.t. B(g;r) N LES = {¢}.
Claim 1: For any € € (0, )

c:=inf{J(v); v e X, ||[v— 0|12 =¢} > di.
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Proof of Theorem 3

Let LES := {least energy solutions of (8)}. By assumption,
Ir >0 st. B(¢p;r)NLES = {o}.
Claim 1: For any € € (0, )
c:=inf{J(v); v e X, ||[v— 0|12 =¢} > di.
Assume that ¢ = d4, i.e.,
v, € X; ||lv, — @12 =€ and J(v,) — d;.

Since m < 2*, up to a subsequence,

Up — Voo Weakly in H)(€2) and strongly in L™(£2).
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Proof of Theorem 3

By two lemmas,

Voo € X, and hence, d; < J(Vs0)-
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Proof of Theorem 3

By two lemmas,
Voo € X, and hence, d; < J(Vs0)-
Hence

1
2 m ™m
—{vn = J(v,) + —||v,

1

Am m Am m
— dy + 2 [voo|| 7 < T (Ve0) + 2 |voollT = Zlveoll2 .
m m 2

Thus v,, — v strongly in H;(€2). Hence ||[voo — ¢]|1,2 = € and
J(’Uoo) — dl.
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Proof of Theorem 3

We have known that
Voo € X, J(’Uoo) — dl and ||’Uoo — ¢||1,2 —= €.

Hence v, € LES. However, the fact that ||ve — @|l12 = < r
contradicts the isolation of ¢. []
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Proof of Theorem 3

We have known that
Voo € X, J(’Uoo) — dl and ||’Uoo — ¢||1,2 —= €.

Hence v, € LES. However, the fact that ||ve — @|l12 = < r
contradicts the isolation of ¢. []

Let € € (0, ) be arbitrarily given. Choose 6 € (0, £) so small that
J(v) <c Vv € B(¢;9)

(it is possible, because ¢ > d; = J(¢) by Claim 1, and J is continuous in
H;(Q)).

For any vg € X N B(¢;9d), let v(s) be a solution of (5)—(7). Then
v(s) € X.
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Proof of Theorem 3

Claim 2: For any s > 0, v(s) € B(¢;¢c) (hence ¢ is stable).
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Proof of Theorem 3

Claim 2: For any s > 0, v(s) € B(¢;¢c) (hence ¢ is stable).
Assume v(sg) € OB(¢;e) at some so > 0. By the definition of c,

c < J(v(so))-

However, it contradicts the facts that J(v(sg)) < J(vg) < c. ]
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4. Proof of Theorem 4

~ Theorem 4 (Instability of profiles) ~
Let ¢ be a sign-changing solution of (8). Then

(i) ¢ is not an asymptotically stable profile.

(ii) ¢ is an unstable profile, if ¢ is isolated in H;(£2) from the

L set {Y € §; J(¥) < J(P)}- )




Proof of Theorem 4

Let ¢ be a sign-changing solution of (8) (hence ¢ admits more than two
nodal domains).

Claim 1: ¢ is not an asymptotically stable profile.
Let D be a nodal domain of ¢ and define

| up(x) ifz e D,
1= fi >0
Pul) i¢@) fzecQ\D

P ()

(Note: ¢, might not belong to X). U s _/\% [\% Q/\ .
Then one can observe that \/7 \/7 \/7

e ¢, — ¢ stronglyin H;(2) as p — 1.

o if 4 # 1, then J(cop,) < J(¢p) forany ¢ > 0.
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Proof of Theorem 4

Set
Cu = tu(B) T TE L o, i= g € X

It follows that
e t.(¢,) — t.(¢) =1 and vy, — ¢ strongly in H (2) as p — 1.
o if u # 1, then J(vo,,) = J(c o) < J(P).

Hence solutions v, (s) of (5)—(7) with v,,(0) = v¢,,, never converges to ¢
as s — oo, since J(v,(s)) < J(vo,,) < J(P).

Therefore ¢ is not an asymptotically stable profile.
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Proof of Theorem 4

We further assume that

R >0 st B(gR)N{Y €S; J(¢) <J(¢)} =0.

Claim 2: If pu # 1, then v,,(s) € B(¢; R) for any s > 1.
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Proof of Theorem 4

We further assume that

R >0 st B(gR)N{Y €S; J(¢) <J(¢)} =0.

Claim 2: If pu # 1, then v,,(s) € B(¢; R) for any s > 1.

Assume that v,,(s,) € B(¢; R) with some sequence s,, — oo.

Then

v,.(sn) — 7 € B(¢; R) NS strongly in H (£2).
Moreover,

J(¢) < J(vo,u) < J(9).

It contradicts the isolation of ¢. Thus ¢ is an unstable profile. []

27/41



5. Characterization of X



Characterization of X

X is a separatrix for (5)—(7) !

~ Proposition 11 (Characterization of X’)
Let v(s) be a solution of (5)—(7) with v(0) = vy.
(i) fvg € X = {vg € H;(); t.(vo) = 1},then

v(sp) — ¢ €S strongly in H;(Q2) as s, — oo.

(ii) fvg € X1 := {vg € H;(2); t.(vo) > 1}, then v(s) diverges
as s — 0o. Hence X’ T is an unstable set.

(iii) If vo € X~ := {vo € H;(); t.(vo) < 1}, then v(s) vanishes
in finite time. Hence X~ is a stable set.

\_

J
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Separatrix X and Nehari manifold N/

Proposition 11 classifies the whole of energy space H(€2) in terms of
large-time behaviors of solutions for (5)—(7):

ds (|[v]™%v) = Av 4+ Ap|v|™ %0 in Q X (0,00),
v=20 on 92 X (0, 00),
v(-,0) = vo € H} () in €.

Moreover, we emphasize that the separatrix X between the stable and
unstable sets does not coincides with the Nehari manifold of .J,

N = {w c H&(Q); (VJ(w), w) = 0} .
We further observe that

X is surrounded by NN and N N X = S.
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The geometry of the functional J

1 Ao
Jw) = Zlwlll, = “2lwlp, we Hy(®), m> 2.

J(u)

+¢q: (asymptotic) stable, =+, (n # 1): unstable
30/41



Thank you for your attention.



6. Stability and symmetry



Asymptotic profiles in a ball

Let us particularly consider the ball domain,

Q:= {x € R?; |z| < 1}.



Asymptotic profiles in a ball

Let us particularly consider the ball domain,
Q:={x € R% |z| < 1}.
Then the Dirichlet problem
—A¢ = Anl|p|™ 2 inQ,  Plog =0

admits the unique positive radial solution ¢, and no other positive solution.



Asymptotic profiles in a ball

Let us particularly consider the ball domain,
Q:= {x € R?; |z| < 1}.
Then the Dirichlet problem
—Ad = Anl9|™2p InQ,  @log =0
admits the unique positive radial solution ¢, and no other positive solution.

Hence ¢ is the unique asymptotic profiles of positive solutions for (1)—(3).

By Theorem 3, the positive radial profile ¢ is asymptotically stable.



Asymptotic profiles in an annulus

Let us next treat the annular domain,

Q:={x R’ a<|z|]<b}, 0<a<hb.



Asymptotic profiles in an annulus

Let us next treat the annular domain,
Q:={x R’ a<|z|]<b}, 0<a<hb.

Let > O be a positive radial solution of

(10) —Ap = Xn0d™ ' inQ,
(11) ¢ =0 on Of).

Then ¢ becomes an asymptotic profiles of solutions u = u(x, t) for (1)—(3).



Remark and question

Remark.

e (10), (11) admits the unique radial solution ¢ and infinitely many
non-radial solutions. Moreover, J(¢) > dy := infar J.
Hence, ¢ is sign-definite but does not take least energy.

e Our preceding results cannot judge the stability /instability of ¢.

Question.

Is the radial profile ¢ > 0 (asymptotic) stable or unstable ?



Answer to the question

Our result reads,

~ Theorem 12 (Instability of positive radial profiles) ~

Let (2 be the annular domain.
Let ¢ be the unique positive radial solution of (10), (11).

\Then ¢ is not an asymptotically stable profile of solutions for (1)—(3). )

Remark. Due to Theorem 4, we have already known that all the
sign-changing profiles are unstable.



Perturbations to radial solutions/profiles
Define ug . : {2 — R with a parameter € > 0 by
Upc(x) = 0(0)p(r) forx = (rcosB,rsinf) €
with the function
o-(0) =1+ esin@ for O € [0,27] and € > O.

Then we have:
~ Proposition 13 (Perturbations to radial solutions/profiles) —

Assume that

(12) 0<(b—a)/a < /m(m —2).

Then there exist co € (0,1) and €9 > 0 such that J(cupc) < J(¢)
for any € € (0,&9) and ¢ > cp.

J




Sketch of proof (1/2)

Let € > 0. Then we remark that

uge — ¢ strongly in H} (Q),

ti(uge) — tu(@p) =1 as € — 0.
Put v := t*(uo,s)_l/(m_z)uo,s and denote by v. = v.(x, s) the
unique solution of (5)—(7) with the initial data v .

Choose £; > 0 such that c¢. > ¢y, where cg is given by Proposition 6.5, for
all e € (0,e1). Then by Proposition 6.5, one can assure that

J(voe) = J(ccupe) < J(¢p) for e sufficiently close to O.



Sketch of proof (2/2)

Moreover, it holds that
voe — ¢ strongly in H] (£2).
Hence noting that
J(ve(s)) < J(voe) < J(¢) forall s >0,

we deduce that v.(s) never converges to ¢ strongly in H(€2) as s — oo.

Thus the positive radial profile @ is not asymptotically stable. ]



Asymmetry of least energy solutions

As a corollary of our method of proof, we have:

~ Corollary 14 (Asymmetry of least energy solutions)

Let €2 be the annulus and assume that (12) holds. Then the Dirichlet
problem (10), (11) admits a non-radial positive solution with a lower energy
than that of the unique radial positive solution.

Hence least energy solutions of (10), (11) are not radially symmetric.

\-

~
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Asymmetry of least energy solutions

Proof. The unique radial positive solution ¢ has the minimum energy among
all the non-trivial radial solutions. In the previous arguments,

J(ve(s)) < J(voe) < J(¢) forall s > 0.
Moreover, we have also verified
ve(sp) — Jp. € S strongly in H,(2) as s, — oo,

which implies J(¢.) < J(¢) = inf{J(¢)); 1 is a radial solution}.

Hence ¢. is never radially symmetric. ]



Remarks

e We can extend these results to the following cases:
— IN-dimensional cases,
— cylindrical domains,
— toroidal domains.
e The asymmetry of least energy solutions for (10), (11) in annular
domains has been proved by Coffman (IN = 2), Li (N > 4) and Byeon

(N = 3), provided that (b — a)/a is sufficiently small. However, their
result does not provide any estimates for the smallness.

e Our proof of the asymmetry of least energy solutions for the elliptic
problem relies on fast diffusion flow.



Nonlinear diffusion

Let us consider a solution u = u(x, t) of the nonlinear parabolic equation:
Oy (|u|m_2u) = Au, reQCRN, t>o0,

where 9; = d/0t and 1 < m < oo.
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Nonlinear diffusion

Let us consider a solution u = u(x, t) of the nonlinear parabolic equation:
Oy (|u|m_2u) = Au, reQCRN, t>o0,

where 9; = d/0t and 1 < m < oo.

By setting w = |u|™ 2w, one can transform it into a usual form,

Jyw = A (|w|m'_2’w) =V - Sm’ — 1)|fw|m’_2j Vw)

~/

Diffusion coefficient D

m

with m/’ = .
m — 1
In this talk, we address ourselves to the case that
m > 2 (equivalently, m’ < 2).

Then the diffusion coefficient D will be singular when w(x,t) = 0.



Nonlinear diffusion

Equation m m D Properties of diffusion

Heat /Diffusion 2 2 1 Infinite-speed propagation

Decaying as t — oo

Porous medium | (1,2) | (2,00) | Degenerate | Finite-speed propagation

(PME) Decaying as t — oo

Fast diffusion | (2,00) | (1,2) Singular | Infinite-speed propagation
(FDE) Extinction in finite time




Extinction of solutions in finite time

Let us first consider a separable solution, u(x,t) = p(t)v(x), where
p(t) > 0.

d
Ep(t)m_l = —Ap(t) for t >0, p(0)=1,

—Ap(z) = Al 2p(x) for © € 2, Plag =0

with a constant A > 0.
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and hence, p(t) vanishes at a finite time ..
As for 1), due to m < 2*, the elliptic equation admits (infinitely-many)
non-trivial solutions.



Extinction of solutions in finite time

Let us first consider a separable solution, u(x,t) = p(t)v(x), where
p(t) > 0.

d

ap(,g)m—l = —Ap(t) for t >0, p(0)=1,

—Ap(z) = AP Pp(z) for x € Q, YPloo =0
with a constant A > 0. By solving the ODE of p,

_ 1 m-—1
p(t) = C(t, — )™ for t >0 with ¢, =

and hence, p(t) vanishes at a finite time ..

As for 1), due to m < 2*, the elliptic equation admits (infinitely-many)
non-trivial solutions.

Hence these nontrivial separable solutions vanish in finite time at the rate
(t, — t)*/(m=2) This fact also holds for general solutions (Sabinina '62).



