Generalized Bernoulli problems

Chiara Bianchini

Institut Elie Cartan, Nancy

Cortona, June 2011

Chiara Bianchini Generalized Bernoulli problems

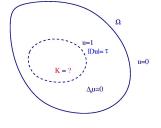
イロン 不同と 不同と 不同と

æ

The Classical Bernoulli problem

Let Ω be a bounded domain of \mathbb{R}^N and $\tau > 0$. We look for a function u_{τ} and a domain $\mathsf{K} \subseteq \Omega$, satisfying the problem:

$$[Pb] \begin{cases} \Delta_{p}u(x) = 0 & \text{in } \Omega \setminus \mathsf{K}, \\ u = 0 & \text{on } \partial\Omega, \\ u = 1, \ |Du| = \tau & \text{on } \partial\mathsf{K}. \end{cases}$$



 $\Delta_{\mathsf{p}} u = \mathsf{div}(|Du|^{\mathsf{p}-2}Du), \qquad 1 < \mathsf{p} < \infty.$

Classical problem: existence of a solution

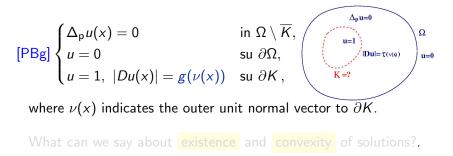
- Let Ω be an open bounded convex domain of \mathbb{R}^N . Then $\exists \Lambda(\Omega) =$ **Bernoulli constant** of Ω such that:
 - **1.** There is a solution to [Pb] if and only if $\tau \ge \Lambda(\Omega)$;
 - 2. If a solution (u_{τ}, K) exists, then K is convex (and u_{τ} is quasi-concave).
 - **3.** For every p > 1 there exists exactly one solution for $\tau = \Lambda(\Omega)$.

[A. Henrot, H. Shahgholian '00] [P. Cardaliaguet, R. Tahraoui '02] [CB, P. Salani '09]

・ロン ・回と ・ヨン・

Generalized Bernoulli problem

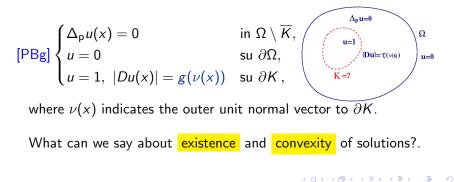
Let Ω be a bounded domain of \mathbb{R}^N and let $g: S^{N-1} \to \mathbb{R}^+$ be a continuous function s.t. $0 < c_0 \leq g(\cdot) \leq c_1$. We look for a function u and a domain $K \subseteq \Omega$, satisfying the problem:



イロン イヨン イヨン イヨン

Generalized Bernoulli problem

Let Ω be a bounded domain of \mathbb{R}^N and let $g: S^{N-1} \to \mathbb{R}^+$ be a continuous function s.t. $0 < c_0 \leq g(\cdot) \leq c_1$. We look for a function u and a domain $K \subseteq \Omega$, satisfying the problem:



Generalized problem: subsolutions

Def. Let $\Omega \subseteq \mathbb{R}^N$ be a convex domain. $\mathscr{F}^-(\Omega, g)$ is the family of subsolutions corresponding to Ω and $g : S^{N-1} \to \mathbb{R}^+$,

that is the class of $(u, K) \in \operatorname{Lip}(\overline{\Omega}) \times \mathscr{K}^N$ such that

$$\begin{cases} \Delta_{p} u(x) \geq 0 & \text{in } \Omega \setminus \overline{K}, \\ u = 0 & \text{on } \partial \Omega, \\ u = 1, \ |Du(x)| \leq g(\nu(x)) & \text{on } \partial K. \end{cases}$$

[A. Beurling ('57)] [A. Acker ('89)] [A. Henrot, H. Shahgholian ('00)]

イロト イポト イヨト イヨト

 \rightsquigarrow with abuse of notation: $K\in \mathscr{F}^{-}(\Omega,g)$ or $u\in \mathscr{F}^{-}(\Omega,g).$

Generalized problem: subsolutions

Def. Let $\Omega \subseteq \mathbb{R}^N$ be a convex domain. $\mathscr{F}^-(\Omega, g)$ is the family of subsolutions corresponding to Ω and $g : S^{N-1} \to \mathbb{R}^+$, that is the class of $(u, K) \in \operatorname{Lip}(\overline{\Omega}) \times \mathscr{K}^N$ such that

$$\begin{cases} \Delta_{p}u(x) \geq 0 & \text{in } \Omega \setminus \overline{K}, \\ u = 0 & \text{on } \partial\Omega, \\ u = 1, \ |Du(x)| \leq g(\nu(x)) & \text{on } \partial K. \end{cases}$$

[A. Beurling ('57)] [A. Acker ('89)] [A. Henrot, H. Shahgholian ('00)]

イロト イポト イヨト イヨト

 \rightsquigarrow with abuse of notation: $K\in \mathscr{F}^{-}(\Omega,g)$ or $u\in \mathscr{F}^{-}(\Omega,g)$

Generalized problem: subsolutions

Def. Let $\Omega \subseteq \mathbb{R}^N$ be a convex domain. $\mathscr{F}^-(\Omega, g)$ is the family of subsolutions corresponding to Ω and $g : S^{N-1} \to \mathbb{R}^+$, that is the class of $(u, K) \in \operatorname{Lip}(\overline{\Omega}) \times \mathscr{K}^N$ such that

$$\begin{cases} \Delta_{p}u(x) \geq 0 & \text{in } \Omega \setminus \overline{K}, \\ u = 0 & \text{on } \partial\Omega, \\ u = 1, \ |Du(x)| \leq g(\nu(x)) & \text{on } \partial K. \end{cases}$$

[A. Beurling ('57)] [A. Acker ('89)] [A. Henrot, H. Shahgholian ('00)]

イロト イポト イヨト イヨト

 \rightsquigarrow with abuse of notation: $K \in \mathscr{F}^{-}(\Omega, g)$ or $u \in \mathscr{F}^{-}(\Omega, g)$.

Generalized problem: main results

Theorem. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded convex C^1 domain, and $g: S^{N-1} \to \mathbb{R}$ be a continuous function s.t. $0 < c \le g \le C$. If $\mathscr{F}^-(\Omega, g(\nu))$ is non empty, then there exists a C^1 convex domain K with $\overline{K} \subseteq \Omega$ such that the p-capacitary potential u of $\Omega \setminus \overline{K}$ is a classical solution to the Bernoulli problem [PBg].

[CB '11]

・ロン ・回と ・ヨン ・ヨン

→→ similar result by A. Acker '81; A. Henrot, H. Shahgholian '02: space variable dependent datum with a convexity assumption on it.

Generalized problem: main results

Theorem. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded convex C^1 domain, and $g: S^{N-1} \to \mathbb{R}$ be a continuous function s.t. $0 < c \le g \le C$. If $\mathscr{F}^-(\Omega, g(\nu))$ is non empty, then there exists a C^1 convex domain K with $\overline{K} \subseteq \Omega$ such that the p-capacitary potential u of $\Omega \setminus \overline{K}$ is a classical solution to the Bernoulli problem [PBg].

[CB '11]

・ロン ・回と ・ヨン ・ヨン

 \rightsquigarrow similar result by A. Acker '81; A. Henrot, H. Shahgholian '02: space variable dependent datum with a convexity assumption on it.

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(v)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$. **Proof.** We only need to prove $|Dv| \leq g(v)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

イロト イヨト イヨト イヨト

by the viscosity comparison principle: $|Dv| \leq |Du^*|$ on ∂K^* . \rightsquigarrow compare $|Du^*(y)|$ with $g(\nu_{K^*}(y))$: $|Du^*(y)| \leq g(\nu_{K^*}(y))$ $\rightsquigarrow v \in \mathscr{F}^-(\Omega, g)$.

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$. **Proof.** We only need to prove $|Dv| \leq g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

イロン イヨン イヨン イヨン

by the viscosity comparison principle: $|Dv| \leq |Du^*|$ on ∂K^* . \rightsquigarrow compare $|Du^*(y)|$ with $g(\nu_{K^*}(y))$: $|Du^*(y)| \leq g(\nu_{K^*}(y))$ $\rightsquigarrow v \in \mathscr{F}^-(\Omega, g)$.

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

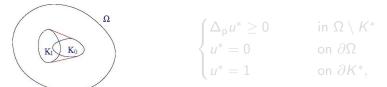
by the viscosity comparison principle: $|Dv| \leq |Du^*|$ on ∂K^* . \rightsquigarrow compare $|Du^*(y)|$ with $g(\nu_{K^*}(y))$: $|Du^*(y)| \leq g(\nu_{K^*}(y))$ $\rightsquigarrow v \in \mathscr{F}^-(\Omega, g)$.

・ロト ・日本 ・モート ・モート

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.



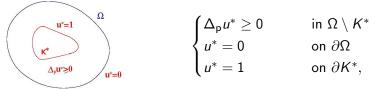
by the viscosity comparison principle: $|Dv| \leq |Du^*|$ on ∂K^* . \rightsquigarrow compare $|Du^*(y)|$ with $g(\nu_{K^*}(y))$: $|Du^*(y)| \leq g(\nu_{K^*}(y))$ $\rightsquigarrow v \in \mathscr{F}^-(\Omega, g)$.

・ロト ・日本 ・モート ・モート

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.



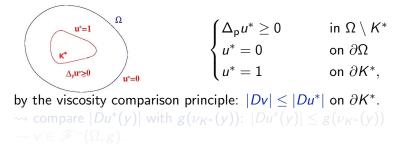
by the viscosity comparison principle: $|Dv| \leq |Du^*|$ on ∂K^* . \rightsquigarrow compare $|Du^*(y)|$ with $g(\nu_{K^*}(y))$: $|Du^*(y)| \leq g(\nu_{K^*}(y))$ $\rightsquigarrow v \in \mathscr{F}^-(\Omega, g)$.

・ロト ・日本 ・モート ・モート

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

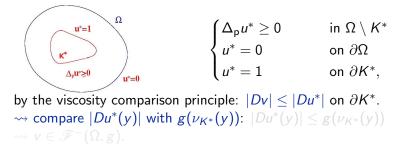


イロト イヨト イヨト イヨト

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

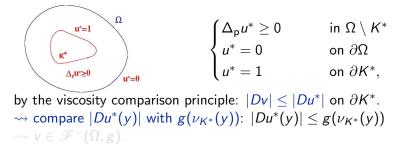


イロト イヨト イヨト イヨト

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.

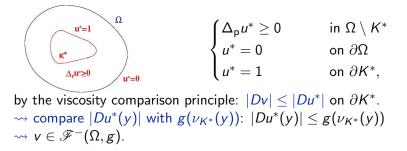


イロト イヨト イヨト イヨト

Preliminary result

Lemma. Let $(u_0, K_0), (u_1, K_1) \in \mathscr{F}^-(\Omega, g)$. Then $(v, K^*) \in \mathscr{F}^-(\Omega, g)$, where $K^* = \operatorname{conv}(K_0 \cup K_1)$, and v is the p-potential of $\Omega \setminus \overline{K}^*$.

Proof. We only need to prove $|Dv| \le g(\nu)$ on ∂K^* . $u := \max\{u_0, u_1\}$ and u^* its quasi-concave envelope.



main results idea of the proof

Proof of the main result

AIM: Let $\Omega \subseteq \mathbb{R}^N$ be a convex bounded C^1 domain, $g: S^{N-1} \to \mathbb{R}$ a continuous function s.t. $0 < c \le g \le C$. $\mathscr{F}^-(\Omega, g(\nu)) \neq \emptyset \Longrightarrow \exists K \text{ convex}, \overline{K} \subset \Omega \text{ s.t.}$ the p-potential u of $\Omega \setminus \overline{K}$ is a classical solution to [PBg] in $\Omega \setminus \overline{K}$.

イロト イポト イヨト イヨト

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow AIM: u is a solution.$

Let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{K}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

~ contradiction!

・ロン ・回 と ・ ヨン ・ ヨン

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow AIM:$ u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{k}$ with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \le g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)| = g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

 \rightarrow contradiction!

< ロ > < 回 > < 回 > < 回 > < 回 > <

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM}$: u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega,g)$

 $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus K_n$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \le g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

 \rightarrow contradiction!

< ロ > < 回 > < 回 > < 回 > < 回 > <

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM}$: u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \le g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_K(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

 \rightarrow contradiction!

・ロン ・回 と ・ 回 と ・ 回 と

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM}$: u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \le g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_K(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

→ contradiction!

・ロン ・回 と ・ 回 と ・ 回 と

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM:}$ u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

 \rightarrow contradiction!

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM:} u$ is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

 \rightarrow contradiction! •

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM:}$ u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$

→ we construct a perturbation w of u s.t. w ∈ $\mathscr{F}^{-}(\Omega, g)$ and w = u in Ω \ B(y, ε), w > u at some points.

 \rightarrow contradiction! •

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM:}$ u is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)| = g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

Proof of the main result

Consider $u = \sup\{v \in \mathscr{F}^{-}(\Omega, g)\} \rightsquigarrow \mathsf{AIM:} u$ is a solution.

let u_n be a max. sequence, $u_n \in \mathscr{F}^-(\Omega, g)$ $\rightsquigarrow \{u_n\}$ increasing sequence of p-potentials of convex rings $\Omega \setminus \overline{K_n}$, with $|Du_n(x)| \leq g(\nu_{K_n}(x))$ on $\partial K_n \forall n$.

Let $K = \lim K_n \rightsquigarrow K$ convex and u is the p-potential of $\Omega \setminus \overline{K}$, with $|Du(x)| \leq g(\nu_K(x))$ on ∂K .

We need to show that in fact $|Du(x)|=g(\nu_{\mathcal{K}}(x))!$.

Assume $\exists y \in \partial K$ s.t. $|Du(y)| < g(\nu(y))$ \rightsquigarrow we construct a perturbation w of u s.t. $w \in \mathscr{F}^{-}(\Omega, g)$ and w = u in $\Omega \setminus B(y, \varepsilon)$, w > u at some points.

→ contradiction!

main results idea of the proof

What can we say about the existence of a subsolution?

 no characterizations of functions g s.t. ℱ[−](Ω, g) ≠ Ø are known;

however...

< ロ > < 回 > < 回 > < 回 > < 回 > <

 if min_{ν∈S^{N-1}} g(ν) ≥ Λ(Ω), then a solution exists, indeed: Ø ≠ 𝔅⁻(Ω, Λ(Ω)) ⊆ 𝔅⁻(Ω, g);
if M = max_{ν∈S^{N-1}} g(ν) < Λ(Ω), then there is no solution, indeed: 𝔅⁻(Ω, g) ⊆ 𝔅⁻(Ω, M) = Ø.

main results idea of the proof

What can we say about the existence of a subsolution?

 no characterizations of functions g s.t. 𝔅[−](Ω, g) ≠ ∅ are known;

however...

if min_{ν∈S^{N-1}} g(ν) ≥ Λ(Ω), then a solution exists, indeed: Ø ≠ ℱ⁻(Ω, Λ(Ω)) ⊆ ℱ⁻(Ω, g); if M = max_{ν∈S^{N-1}} g(ν) < Λ(Ω), then there is no solution, indeed: ℱ⁻(Ω, g) ⊆ ℱ⁻(Ω, M) = Ø.

main results idea of the proof

What can we say about the existence of a subsolution?

 no characterizations of functions g s.t. 𝔅[−](Ω, g) ≠ ∅ are known;

however...

・ロン ・回 と ・ ヨ と ・ ヨ と

 if min_{ν∈S^{N-1}} g(ν) ≥ Λ(Ω), then a solution exists, indeed: Ø ≠ ℱ⁻(Ω, Λ(Ω)) ⊆ ℱ⁻(Ω, g);
if M = max_{ν∈S^{N-1}} g(ν) < Λ(Ω), then there is no solution, indeed: ℱ⁻(Ω, g) ⊆ ℱ⁻(Ω, M) = Ø. H. W. Alt, L. A. Caffarelli, "Existence and regularity for a minimum problem with free boundary", 1981.

A. Beurling, "On free boundary problems for the laplace equation", Seminars on analytic functions I, 1957.

C. Bianchini, "A Bernoulli problem with non-constant gradient boundary constraint", 2011.

C. Bianchini, P. Salani, "Concavity properties for free boundary elliptic problems", 2009.

P. Cardaliaguet, R. Tahraoui, "Some uniqueness results for the Bernoulli interior free-boundary problems in convex domains", 2002.

M. Flucher, M. Rumpf, "Bernoulli's free-boundary problem, qualitative theory and numerical approximation", 1997.

A. Henrot, H. Shahgholian, "Convexity of free boundaries with Bernoulli type boundary condition", 1997;

A. Henrot, H. Shahgholian, "Existence of classical solutions to a free boundary problem for the p-Laplace operator: (I) The exterior convex case; (II) The interior convex case", 2000.

[...]

・ロト ・回ト ・ヨト ・ヨト