On the Hong-Krahn-Szego inequality

Lorenzo Brasco

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università di Napoli "Federico II"
lorenzo.brasco@unina.it — http://cvgmt.sns.it/people/brasco
Cortona, 23 June 2011

References

Some of the results here presented are contained in
L. B., A. Pratelli, Sharp stability of some spectral inequalities, submitted

The inequality we are going to discuss has been discovered (at least) 3 times...

- E. Krahn, Acta Comm. Univ. Dorpat. A9 (1926)
- I. Hong, Kōdai Math. Sem. Rep. 6 (1954)
- G. Pólya, Math. Zeitschr. 63 (1955)

Outline

(1) Introduction and goal of the talk

- Warm-up
- Goal
(2) Second eigenvalue of the Laplacian under volume constraint - The inequality...
- ...in quantitative form
- Sharpness?

Eigenvalues of the Laplacian

$$
\Omega \subset \mathbb{R}^{N} \text { open set with }|\Omega|<+\infty
$$

The boundary value problem

$$
\left\{\begin{array}{clc}
-\Delta u & =\lambda u, \quad \text { in } \Omega \\
u & =0, \quad \text { on } \partial \Omega
\end{array}\right.
$$

have solutions $\not \equiv 0$ only for a discrete set of real and positive

$$
0<\lambda_{1}(\Omega) \leq \lambda_{2}(\Omega) \leq \ldots
$$

- $\lambda_{j}(\Omega)$ are called eigenvalues of the Dirichlet-Laplacian
- corresponding solutions u_{j} are the eigenfunctions and, renormalized, give an orthonormal basis of $L^{2}(\Omega)$
- if for $\lambda>0$ this problem has m linearly independent solutions $\Longrightarrow \lambda=\lambda_{j+1}(\Omega)=\cdots=\lambda_{j+m}(\Omega)$ has multiplicity m

The first two eigenspaces: properties

$$
\mathcal{R}_{\Omega}(u)=\frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}
$$

Rayleigh quotient

The first two eigenspaces: properties

$$
\mathcal{R}_{\Omega}(u)=\frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}
$$

Rayleigh quotient

The first
(1) $\lambda_{1}(\Omega)=\min \left\{\mathcal{R}_{\Omega}(u): u \in H_{0}^{1}(\Omega)\right\}$
(2) Ω connected: $\lambda_{1}(\Omega)$ is simple and u_{1} has constant sign
(3) $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{i} \ldots$ disconnected: $\lambda_{1}(\Omega)=\min _{i} \lambda_{1}\left(\Omega_{i}\right)$

The first two eigenspaces: properties

$$
\mathcal{R}_{\Omega}(u)=\frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}
$$

Rayleigh quotient

The first
(1) $\lambda_{1}(\Omega)=\min \left\{\mathcal{R}_{\Omega}(u): u \in H_{0}^{1}(\Omega)\right\}$
(3) Ω connected: $\lambda_{1}(\Omega)$ is simple and u_{1} has constant sign
(0 $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{i} \ldots$ disconnected: $\lambda_{1}(\Omega)=\min _{i} \lambda_{1}\left(\Omega_{i}\right)$
The second
(1) $\lambda_{2}(\Omega)=\min \left\{\mathcal{R}_{\Omega}(u): u \in H_{0}^{1}(\Omega)\right.$ and $\left.\left\langle u, u_{1}\right\rangle=0\right\}$
(2) Ω connected: u_{2} has to change sign and

$$
\Omega_{+}=\left\{u_{2}>0\right\} \quad \Omega_{-}=\left\{u_{2}<0\right\} \quad \text { nodal domains }
$$

- Ω disconnected: gather and order the λ_{1} and λ_{2} of connected components, then choose the 2nd

Goal of the talk: the second eigenvalue λ_{2}

We consider the spectral optimization problem

- $\min \left\{\lambda_{2}(\Omega):|\Omega|=c\right\} \quad$ equivalently $\min |\Omega|^{2 / N} \lambda_{2}(\Omega)$

We will see that there exists a unique class of optimal sets, we aim to prove stability, i.e.
"almost optimal sets are near to the space of optimizers" and quantify this stability, possibly in sharp form

Goal of the talk: the second eigenvalue λ_{2}

We consider the spectral optimization problem

- $\min \left\{\lambda_{2}(\Omega):|\Omega|=c\right\} \quad$ equivalently $\min |\Omega|^{2 / N} \lambda_{2}(\Omega)$

We will see that there exists a unique class of optimal sets, we aim to prove stability, i.e.
"almost optimal sets are near to the space of optimizers" and quantify this stability, possibly in sharp form

Quantify? Let \mathcal{O} the "manifold" of optimizers, λ_{2}^{*} the minimum

$$
|\Omega|^{2 / N} \lambda_{2}(\Omega)-\lambda_{2}^{*} \geq \varphi(d(\Omega, \mathcal{O}))
$$

with φ positive increasing function, $\varphi(0)=0$ and d a "distance"

Goal of the talk: the second eigenvalue λ_{2}

We consider the spectral optimization problem

- $\min \left\{\lambda_{2}(\Omega):|\Omega|=c\right\} \quad$ equivalently $\min |\Omega|^{2 / N} \lambda_{2}(\Omega)$

We will see that there exists a unique class of optimal sets, we aim to prove stability, i.e.
"almost optimal sets are near to the space of optimizers" and quantify this stability, possibly in sharp form

Quantify? Let \mathcal{O} the "manifold" of optimizers, λ_{2}^{*} the minimum

$$
|\Omega|^{2 / N} \lambda_{2}(\Omega)-\lambda_{2}^{*} \geq \varphi(d(\Omega, \mathcal{O}))
$$

with φ positive increasing function, $\varphi(0)=0$ and d a "distance" Sharp? for some Ω_{ε} slight pertubations of an optimizer

$$
\left|\Omega_{\varepsilon}\right|^{2 / N} \lambda_{2}\left(\Omega_{\varepsilon}\right)-\lambda_{2}^{*} \simeq \varphi\left(d\left(\Omega_{\varepsilon}, \mathcal{O}\right)\right) \text { as } \varepsilon \rightarrow 0
$$

One step back: the first eigenvalue λ_{1}

"Among sets of given volume, the ball is the only set minimizing λ_{1} "
Theorem [Faber-Krahn]

$$
|\Omega|^{2 / N} \lambda_{1}(\Omega) \geq|B|^{2 / N} \lambda_{1}(B)=: \lambda_{1}^{*}
$$

where B is a ball and with equality if and only if Ω is a ball

One step back: the first eigenvalue λ_{1}
"Among sets of given volume, the ball is the only set minimizing λ_{1} "
Theorem [Faber-Krahn]

$$
|\Omega|^{2 / N} \lambda_{1}(\Omega) \geq|B|^{2 / N} \lambda_{1}(B)=: \lambda_{1}^{*}
$$

where B is a ball and with equality if and only if Ω is a ball

(Sharp?) Quantitative version [Fusco-Maggi-Pratelli]

$$
|\Omega|^{2 / N} \lambda_{1}(\Omega)-\lambda_{1}^{*} \geq c_{N} \mathcal{A}(\Omega)^{4}
$$

where \mathcal{A} is the L^{1} distance from optimizers, i.e.

$$
\mathcal{A}(\Omega)=\min \left\{\frac{\left\|1_{\Omega}-1_{B}\right\|_{L^{1}}}{|\Omega|}: B \text { ball, }|B|=|\Omega|\right\} \text { (asymmetry) }
$$

The conjectured sharp exponent for \mathcal{A} is 2
(1) Introduction and goal of the talk

- Warm-up
- Goal
(2) Second eigenvalue of the Laplacian under volume constraint
- The inequality...
- ...in quantitative form
- Sharpness?

Hong-Krahn-Szego ${ }^{1}$ inequality

"Among sets of given volume, the disjoint union of equal balls is the only set minimizing λ_{2} "

Theorem [Hong-Krahn-Szego]

$$
|\Omega|^{2 / N} \lambda_{2}(\Omega) \geq 2^{2 / N}|B|^{2 / N} \lambda_{1}(B)=: \lambda_{2}^{*}
$$

where B is a ball and with equality if and only if Ω is a disjoint union of equal balls

Remark

For $\Theta_{2}=B_{1} \cup B_{2}$ with $\left|B_{1}\right|=\left|B_{2}\right|$ and $B_{1} \cap B_{2}=\emptyset$, we have

$$
\left|\Theta_{2}\right|^{2 / N} \lambda_{2}\left(\Theta_{2}\right)=2^{2 / N}\left|B_{i}\right|^{2 / N} \lambda_{1}\left(B_{i}\right)
$$

[^0]
Proof

(1) given Ω, we can find $\Omega_{+}, \Omega_{-} \subset \Omega$ disjoint such that

$$
\lambda_{2}(\Omega)=\max \left\{\lambda_{1}\left(\Omega_{+}\right), \lambda_{1}\left(\Omega_{-}\right)\right\}
$$

Who are these sets Ω_{+}and Ω_{-}?
nodal domains of u_{2} or connected components of Ω

Proof

(1) given Ω, we can find $\Omega_{+}, \Omega_{-} \subset \Omega$ disjoint such that

$$
\lambda_{2}(\Omega)=\max \left\{\lambda_{1}\left(\Omega_{+}\right), \lambda_{1}\left(\Omega_{-}\right)\right\}
$$

Who are these sets Ω_{+}and Ω_{-}?
nodal domains of u_{2} or connected components of Ω
(2) use Faber-Krahn inequality to say

$$
\begin{aligned}
& \lambda_{2}(\Omega) \geq \max \left\{\lambda_{1}\left(B_{+}\right), \lambda_{1}\left(B_{-}\right)\right\} \\
\text {with }\left|B_{+}\right|= & \left|\Omega_{+}\right| \text {and }\left|B_{-}\right|=\left|\Omega_{-}\right|
\end{aligned}
$$

Proof

(1) given Ω, we can find $\Omega_{+}, \Omega_{-} \subset \Omega$ disjoint such that

$$
\lambda_{2}(\Omega)=\max \left\{\lambda_{1}\left(\Omega_{+}\right), \lambda_{1}\left(\Omega_{-}\right)\right\}
$$

Who are these sets Ω_{+}and Ω_{-}?
nodal domains of u_{2} or connected components of Ω
(2) use Faber-Krahn inequality to say

$$
\begin{aligned}
& \lambda_{2}(\Omega) \geq \max \left\{\lambda_{1}\left(B_{+}\right), \lambda_{1}\left(B_{-}\right)\right\} \\
& \text {with }\left|B_{+}\right|=\left|\Omega_{+}\right| \text {and }\left|B_{-}\right|=\left|\Omega_{-}\right|
\end{aligned}
$$

(3) hence optimizer of λ_{2} is a disjoint union of balls $B_{1} \cup B_{2}$

Proof

(1) given Ω, we can find $\Omega_{+}, \Omega_{-} \subset \Omega$ disjoint such that

$$
\lambda_{2}(\Omega)=\max \left\{\lambda_{1}\left(\Omega_{+}\right), \lambda_{1}\left(\Omega_{-}\right)\right\}
$$

Who are these sets Ω_{+}and Ω_{-}?
nodal domains of u_{2} or connected components of Ω
(2) use Faber-Krahn inequality to say

$$
\begin{aligned}
& \lambda_{2}(\Omega) \geq \max \left\{\lambda_{1}\left(B_{+}\right), \lambda_{1}\left(B_{-}\right)\right\} \\
\text {with }\left|B_{+}\right|= & \left|\Omega_{+}\right| \text {and }\left|B_{-}\right|=\left|\Omega_{-}\right|
\end{aligned}
$$

(3) hence optimizer of λ_{2} is a disjoint union of balls $B_{1} \cup B_{2}$
(9) use the homogeneity of λ_{2} to conclude that $\left|B_{1}\right|=\left|B_{2}\right|$

HKS inequality in quantitative form

We introduce the deficit

$$
H K S(\Omega):=|\Omega|^{2 / N} \lambda_{2}(\Omega)-2^{2 / N}|B|^{2 / N} \lambda_{1}(B)
$$

Quantitative HKS inequality [B.-Pratelli]

$$
\operatorname{HKS}(\Omega) \geq c_{N} \mathcal{A}_{2}(\Omega)^{2(N+1)}
$$

where \mathcal{A}_{2} is the L^{1} distance from optimizers, i.e.
$\mathcal{A}_{2}(\Omega):=\inf \left\{\frac{\left\|1_{\Omega}-1_{B_{1} \cup B_{2}}\right\|_{L^{1}}}{|\Omega|}:\left|B_{1} \cap B_{2}\right|=0\right.$ with $\left.\left|B_{i}\right|=\frac{|\Omega|}{2}\right\}$

Steps of the proof

Reminder: we know that $\lambda_{2}(\Omega)=\max \left\{\lambda_{1}\left(\Omega_{+}\right), \lambda_{1}\left(\Omega_{-}\right)\right\}$
(1) first goal use the quantitative Faber-Krahn so to obtain

$$
H K S(\Omega) \gtrsim \mathcal{A}\left(\Omega_{+}\right)^{4}+\left|\frac{1}{2}-\frac{\left|\Omega_{+}\right|}{|\Omega|}\right|+\mathcal{A}\left(\Omega_{-}\right)^{4}+\left|\frac{1}{2}-\frac{\left|\Omega_{-}\right|}{|\Omega|}\right|
$$

which means
"In terms of the deficit, I can control how Ω_{+}and Ω_{-}are far from being two balls having measure $|\Omega| / 2 "$
(2) second goal pass from this quantity to \mathcal{A}_{2}

$$
\mathcal{A}_{2}(\Omega)^{(N+1) / 2} \lesssim \mathcal{A}\left(\Omega_{+}\right)+\left|\frac{1}{2}-\frac{\left|\Omega_{+}\right|}{|\Omega|}\right|+\mathcal{A}\left(\Omega_{-}\right)+\left|\frac{1}{2}-\frac{\left|\Omega_{-}\right|}{|\Omega|}\right|
$$

Optimality of the exponent for \mathcal{A}_{2} ?

Alert! The exponent obtained for \mathcal{A}_{2} is dimension-dependent!
Reasonable suspect: Maybe the exponent is not sharp...

Optimality of the exponent for \mathcal{A}_{2} ?

Alert! The exponent obtained for \mathcal{A}_{2} is dimension-dependent!
Reasonable suspect: Maybe the exponent is not sharp...

Discussion

The two steps of the proof are sharp, in the following sense:

- the first step does not require to know the sharp exponent for the Faber-Krahn inequality, indeed the same proof provide

$$
\operatorname{HKS}(\Omega) \geq c_{N} \mathcal{A}_{2}(\Omega)^{\kappa_{1} \cdot(N+1) / 2}
$$

with $\kappa_{1}=$ sharp exponent (2?) for the Faber-Krahn

Optimality of the exponent for \mathcal{A}_{2} ?

Alert! The exponent obtained for \mathcal{A}_{2} is dimension-dependent!
Reasonable suspect: Maybe the exponent is not sharp...

Discussion

The two steps of the proof are sharp, in the following sense:

- the first step does not require to know the sharp exponent for the Faber-Krahn inequality, indeed the same proof provide

$$
\operatorname{HKS}(\Omega) \geq c_{N} \mathcal{A}_{2}(\Omega)^{\kappa_{1} \cdot(N+1) / 2}
$$

with $\kappa_{1}=$ sharp exponent (2?) for the Faber-Krahn

- for the second step, take $\Omega_{\varepsilon}=\Omega_{\varepsilon}^{+} \cup \Omega_{\varepsilon}^{-}$union of two equal balls slightly overlapping, then

$$
\mathcal{A}\left(\Omega_{\varepsilon}^{+}\right)+\mathcal{A}\left(\Omega_{\varepsilon}^{-}\right) \simeq \mathcal{A}_{2}\left(\Omega_{\varepsilon}\right)^{(N+1) / 2}
$$

Conclusions and open questions

(1) The sharp exponent κ_{2} must depend on the dimension: just take the two overlapping balls to convince yourself

Conclusions and open questions

(1) The sharp exponent κ_{2} must depend on the dimension: just take the two overlapping balls to convince yourself
(2) One is naturally led to conjecture that this is given by

$$
\kappa_{2}=(\text { sharp exponent for Faber-Krahn }) \cdot \frac{N+1}{2}
$$

Conclusions and open questions

(1) The sharp exponent κ_{2} must depend on the dimension: just take the two overlapping balls to convince yourself
(2) One is naturally led to conjecture that this is given by

$$
\kappa_{2}=(\text { sharp exponent for Faber-Krahn }) \cdot \frac{N+1}{2}
$$

(3) We believe this conjecture to be false: indeed

- to be sharp in the quantitative Faber-Krahn you have to be smooth (Barchiesi-B.-Fusco-Pratelli, work in progress)...
- ...while Ω_{+}and Ω_{-}are nodal sets of u_{2} and in general they develop singularities (ex. corners) where $\left\{u_{2}=0\right\}$ touches the boundary!

Conclusions and open questions

(1) The sharp exponent κ_{2} must depend on the dimension: just take the two overlapping balls to convince yourself
(2) One is naturally led to conjecture that this is given by

$$
\kappa_{2}=(\text { sharp exponent for Faber-Krahn }) \cdot \frac{N+1}{2}
$$

(3) We believe this conjecture to be false: indeed

- to be sharp in the quantitative Faber-Krahn you have to be smooth (Barchiesi-B.-Fusco-Pratelli, work in progress)...
- ... while Ω_{+}and Ω_{-}are nodal sets of u_{2} and in general they develop singularities (ex. corners) where $\left\{u_{2}=0\right\}$ touches the boundary!
(9) to (at least!) conjecture the sharp exponent, you need precise asymptotics of λ_{2} for the two slightly overlapping balls

Further readings

On the quantitative Faber-Krahn

- A. Melas, J. Differential Geom. 36 (1992)
- W. Hansen, N. Nadirashvili, Potential Anal. 3 (1994)
- T. Bhattacharya, Electron. J. Diff. Eq. 35 (2001)
- N. Fusco, F. Maggi, A. Pratelli, Ann. Sc. Norm. Sup. 8 (2009)

[^0]: ${ }^{1}$ This is Peter Szego, son of Gabor Szegő

