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Eigenvalues of the Laplacian

Ω ⊂ RN open set with |Ω| < +∞

The boundary value problem{
−∆u = λ u, in Ω

u = 0, on ∂Ω

have solutions 6≡ 0 only for a discrete set of real and positive

0 < λ1(Ω) ≤ λ2(Ω) ≤ . . .

λj(Ω) are called eigenvalues of the Dirichlet-Laplacian

corresponding solutions uj are the eigenfunctions and,
renormalized, give an orthonormal basis of L2(Ω)

if for λ > 0 this problem has m linearly independent solutions
=⇒ λ = λj+1(Ω) = · · · = λj+m(Ω) has multiplicity m
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The first two eigenspaces: properties

RΩ(u) =
‖∇u‖2

L2(Ω)

‖u‖2
L2(Ω)

Rayleigh quotient

The first

1 λ1(Ω) = min{RΩ(u) : u ∈ H1
0 (Ω)}

2 Ω connected: λ1(Ω) is simple and u1 has constant sign

3 Ω = Ω1 ∪ · · · ∪ Ωi . . . disconnected: λ1(Ω) = mini λ1(Ωi )

The second

1 λ2(Ω) = min{RΩ(u) : u ∈ H1
0 (Ω) and 〈u, u1〉 = 0}

2 Ω connected: u2 has to change sign and

Ω+ = {u2 > 0} Ω− = {u2 < 0} nodal domains

3 Ω disconnected: gather and order the λ1 and λ2 of
connected components, then choose the 2nd
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Goal of the talk: the second eigenvalue λ2

We consider the spectral optimization problem

min{λ2(Ω) : |Ω| = c} equivalently min |Ω|2/Nλ2(Ω)

We will see that there exists a unique class of optimal sets, we aim
to prove stability, i.e.

“almost optimal sets are near to the space of optimizers”

and quantify this stability, possibly in sharp form

Quantify? Let O the “manifold” of optimizers, λ∗2 the minimum

|Ω|2/Nλ2(Ω)− λ∗2 ≥ ϕ(d(Ω,O))

with ϕ positive increasing function, ϕ(0) = 0 and d a “distance”

Sharp? for some Ωε slight pertubations of an optimizer

|Ωε|2/Nλ2(Ωε)− λ∗2 ' ϕ(d(Ωε,O)) as ε→ 0
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One step back: the first eigenvalue λ1

“Among sets of given volume, the ball is the only set minimizing λ1”

Theorem [Faber-Krahn]

|Ω|2/Nλ1(Ω) ≥ |B|2/Nλ1(B) =: λ∗1

where B is a ball and with equality if and only if Ω is a ball

(Sharp?) Quantitative version [Fusco-Maggi-Pratelli]

|Ω|2/Nλ1(Ω)− λ∗1 ≥ cN A(Ω)4

where A is the L1 distance from optimizers, i.e.

A(Ω) = min

{
‖1Ω − 1B‖L1

|Ω|
: B ball, |B| = |Ω|

}
(asymmetry)

The conjectured sharp exponent for A is 2
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Hong-Krahn-Szego1 inequality

“Among sets of given volume, the disjoint union of equal balls
is the only set minimizing λ2”

Theorem [Hong-Krahn-Szego]

|Ω|2/Nλ2(Ω) ≥ 22/N |B|2/Nλ1(B) =: λ∗2

where B is a ball and with equality if and only if Ω is a disjoint
union of equal balls

Remark

For Θ2 = B1 ∪ B2 with |B1| = |B2| and B1 ∩ B2 = ∅, we have

|Θ2|2/Nλ2(Θ2) = 22/N |Bi |2/Nλ1(Bi )

1This is Peter Szego, son of Gabor Szegő
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Proof

1 given Ω, we can find Ω+,Ω− ⊂ Ω disjoint such that

λ2(Ω) = max{λ1(Ω+), λ1(Ω−)}

Who are these sets Ω+ and Ω−?

nodal domains of u2 or connected components of Ω

2 use Faber-Krahn inequality to say

λ2(Ω) ≥ max{λ1(B+), λ1(B−)}

with |B+| = |Ω+| and |B−| = |Ω−|

3 hence optimizer of λ2 is a disjoint union of balls B1 ∪ B2

4 use the homogeneity of λ2 to conclude that |B1| = |B2|
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HKS inequality in quantitative form

We introduce the deficit

HKS(Ω) := |Ω|2/Nλ2(Ω)− 22/N |B|2/Nλ1(B)

Quantitative HKS inequality [B.-Pratelli]

HKS(Ω) ≥ cN A2(Ω)2(N+1)

where A2 is the L1 distance from optimizers, i.e.

A2(Ω) := inf

{
‖1Ω − 1B1∪B2‖L1

|Ω|
: |B1 ∩ B2| = 0 with |Bi | =

|Ω|
2

}
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Steps of the proof

Reminder: we know that λ2(Ω) = max{λ1(Ω+), λ1(Ω−)}

1 first goal use the quantitative Faber-Krahn so to obtain

HKS(Ω) & A(Ω+)4 +

∣∣∣∣1

2
− |Ω+|
|Ω|

∣∣∣∣ +A(Ω−)4 +

∣∣∣∣1

2
− |Ω−|
|Ω|

∣∣∣∣
which means

“In terms of the deficit, I can control how Ω+ and Ω− are far
from being two balls having measure |Ω|/2”

2 second goal pass from this quantity to A2

A2(Ω)(N+1)/2 . A(Ω+) +

∣∣∣∣1

2
− |Ω+|
|Ω|

∣∣∣∣ +A(Ω−) +

∣∣∣∣1

2
− |Ω−|
|Ω|

∣∣∣∣



Introduction and goal of the talk Minimizing λ2

Optimality of the exponent for A2?

Alert! The exponent obtained for A2 is dimension-dependent!

Reasonable suspect: Maybe the exponent is not sharp...

Discussion

The two steps of the proof are sharp, in the following sense:

the first step does not require to know the sharp exponent for
the Faber-Krahn inequality, indeed the same proof provide

HKS(Ω) ≥ cN A2(Ω)κ1·(N+1)/2

with κ1 = sharp exponent (2?) for the Faber-Krahn

for the second step, take Ωε = Ω+
ε ∪ Ω−ε union of two equal

balls slightly overlapping, then

A(Ω+
ε ) +A(Ω−ε ) ' A2(Ωε)

(N+1)/2
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Conclusions and open questions

1 The sharp exponent κ2 must depend on the dimension:
just take the two overlapping balls to convince yourself

2 One is naturally led to conjecture that this is given by

κ2 = (sharp exponent for Faber-Krahn) · N + 1

2
3 We believe this conjecture to be false: indeed

to be sharp in the quantitative Faber-Krahn you have to be
smooth (Barchiesi-B.-Fusco-Pratelli, work in progress)...

...while Ω+ and Ω− are nodal sets of u2 and in general they
develop singularities (ex. corners) where {u2 = 0} touches the
boundary!

4 to (at least!) conjecture the sharp exponent, you need
precise asymptotics of λ2 for the two slightly overlapping
balls
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Further readings

On the quantitative Faber-Krahn

A. Melas, J. Differential Geom. 36 (1992)

W. Hansen, N. Nadirashvili, Potential Anal. 3 (1994)

T. Bhattacharya, Electron. J. Diff. Eq. 35 (2001)

N. Fusco, F. Maggi, A. Pratelli, Ann. Sc. Norm. Sup. 8
(2009)
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