Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo
Dipartimento di Matematica e Informatica - Università di Palermo
Joint work with S. Cecchini, R. Magnanini and S. Sakaguchi.

Cortona, 23/06/2011

Spherical symmetry of minimizers

Let

- $\Omega \subset \mathbb{R}^{n}, n \geq 2$, bounded domain with C^{2} boundary
- Distance from the boundary: $d(x)=\inf _{y \in \partial \Omega}|x-y|, \quad x \in \bar{\Omega}$
- $\Omega_{\delta}=\{x \in \Omega: d(x)>\delta\}$
- $\Gamma_{\delta}=\{x \in \Omega: d(x)=\delta\} . \Gamma_{\delta}$ is parallel to $\partial \Omega$.

Assume that

- u minimizes $J(v)=\int_{\Omega}[f(|D v|)-v] d x, \quad v \in W_{0}^{1, \infty}(\Omega)$
- $u=c$ on Γ_{δ} for some $c>0$.

Problem

Can we conclude that Ω is a ball?

Main result: symmetry for minimizers of J

$$
J(v)=\int_{\Omega}[f(|D v|)-v] d x, \quad v \in W_{0}^{1, \infty}(\Omega) .
$$

(f1) $f \in C^{1}([0,+\infty))$ convex, monotone nondecrasing, such that

$$
f(0)=0 \text { and } \lim _{s \rightarrow+\infty} \frac{f(s)}{s}=+\infty ;
$$

(f2) $\exists \alpha \geq 0$ s.t. $f \in C^{3}(\alpha,+\infty)$ and

- $0 \leq s \leq \alpha: \quad f^{\prime}(s)=0$
- $s>\alpha$: $f^{\prime}(s)>0$ and $f^{\prime \prime}(s)>0$;

Theorem

Let u be a minimizer of J, with f satisfying (f1) and (f2). If

- u has a level surface Γ_{δ} parallel to $\partial \Omega$, with $\delta<R_{\Omega}$,
- u is C^{1} in some open neighborhood A_{δ} of Γ_{δ}, then Ω is a ball.
$R_{\Omega}=\min _{y \in \partial \Omega}\left\{R>0: B_{R} \subset \Omega\right.$ is the largest ball tangent to $\partial \Omega$ in y$\}$.
Notice that in some cases the second assumption on $u_{\text {can }}$ be removed.

Motivations: Crasta[JEMS 06] - web functions

Consider

$$
J(v)=\int_{\Omega}[f(|D v|)-v] d x, v \in W_{0}^{1,1}(\Omega) .
$$

Assumptions on f

- $f:[0, b) \rightarrow \mathbb{R}, b \in(0,+\infty]$, is a convex, differentiable, monotone nondecreasing function;
- if $0<b<+\infty$, then $\lim _{s \rightarrow b^{-}} f(s)=+\infty$;
if $b=+\infty$, then $\lim _{s \rightarrow+\infty} \frac{f(s)}{s}>\frac{1}{n}\left(\frac{|\Omega|}{\omega_{n}}\right)^{\frac{1}{n}}$;
- $f_{+}^{\prime}(0)=0$.

Theorem

If J admits a minimizer $u \in W_{0}^{1,1}(\Omega)$ that depends only on d then Ω is a ball.

Serrin problem

Crasta's result is in connection with the Serrin problem

$$
\begin{cases}-\operatorname{div} \frac{f^{\prime}(|D u|)}{|D u|} D u=1 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega, \\ |D u|=\text { const } & \text { on } \partial \Omega\end{cases}
$$

Crasta's assumptions: weaker on f and stronger on u

- u web function regular at $\partial \Omega \Rightarrow|D u|=$ const on $\partial \Omega$;
- u web function $\Rightarrow u$ constant on Γ_{δ} for any δ.

Our proof is based on Alexandrov's method of moving planes by using an argument used in Magnanini-Sakaguchi [AIHP10].

Serrin problem

Crasta's result is in connection with the Serrin problem

$$
\begin{cases}-\operatorname{div} \frac{f^{\prime}(|D u|)}{|D u|} D u=1 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega, \\ |D u|=\text { const } & \text { on } \partial \Omega\end{cases}
$$

Crasta's assumptions: weaker on f and stronger on u

- u web function regular at $\partial \Omega \Rightarrow|D u|=$ const on $\partial \Omega$;
- u web function $\Rightarrow u$ constant on Γ_{δ} for any δ.

Our proof is based on Alexandrov's method of moving planes by using an argument used in Magnanini-Sakaguchi [AIHP10].

Connection with Serrin problem?

- $u=c_{n}$ on $\Gamma_{\delta_{n}}, n \in \mathbb{N} \Rightarrow|D u|=$ const on $\partial \Omega$;
- $|D u|=$ const on $\partial \Omega \Rightarrow \max _{\Gamma_{\delta}} u-\min _{\Gamma_{\delta}} u=o(\delta)$ as $\delta \rightarrow 0$.

Radial solution and some example

When $\Omega=B_{R}$, the minimizer is given by $u_{R}(x)=\int_{|x|}^{R} g^{\prime}\left(\frac{s}{n}\right) d s$; $g(t)=\sup \{s t-f(s): s \geq 0\}$ is the Fenchel conjugate of f.

Examples:
Differentiable functionals

Radial solution and some example

When $\Omega=B_{R}$, the minimizer is given by $u_{R}(x)=\int_{|x|}^{R} g^{\prime}\left(\frac{s}{n}\right) d s$; $g(t)=\sup \{s t-f(s): s \geq 0\}$ is the Fenchel conjugate of f.

Examples:
Not differentiable functionals

Two cases of tangency:

Figure: Case 1

Figure: Case 2

Let u be the minimizer of J and v be its reflection in the plane π.
Weak Comparison Principle: $v \leq u$ on $\partial E \Rightarrow v \leq u$ in \bar{E}.

Case 1

- $\partial \Omega$ is tangent to its reflection at some point $P \notin \pi$;
- Γ_{δ} is tangent to its reflection at some point $P^{*} \notin \pi$ which lies in the interior of E;
- $u \equiv c$ on Γ_{δ}, thus

$$
u\left(P^{*}\right)=v\left(P^{*}\right)=c .
$$

- Applying the Strong Comparison

Principle to u and v in $A_{\delta} \cap E$ gives
 $v<u$ in $A_{\delta} \cap \Omega$

- contradiction -

Case 2

- π is orthogonal to $\partial \Omega$ at some point Q;
- let Q^{*} be a point on $\Gamma_{\delta} \cap \pi$; such that ℓ belongs to the tangent hyperplane to Γ_{δ} at Q^{*};
- $u\left(Q^{*}\right)=v\left(Q^{*}\right)=c$ and
$\partial_{\ell} u\left(Q^{*}\right)=\partial_{\ell} v\left(Q^{*}\right)=0$.
- Applying a Boundary Point

Principle to u and v in $A_{\delta} \cap E$ gives $\partial_{\ell} v\left(Q^{*}\right)<\partial_{\ell} u\left(Q^{*}\right)$

- contradiction -

Around Γ_{δ}

Notice that $u-c$ is a minimizer of

$$
\begin{aligned}
& J_{\Omega_{\delta}}(v)=\int_{\Omega_{\delta}}[f(|D v|)-v] d x, v \in W_{0}^{1, \infty}\left(\Omega_{\delta}\right) \\
& \Rightarrow u \geq c \text { in } \Omega_{\delta}
\end{aligned}
$$

Since $\delta<R_{\Omega}$ then Ω_{δ} has the uniform interior touching sphere property (with radius $r=R_{\Omega}-\delta$).
Let $x_{0} \in \Gamma_{\delta}$ and let B_{r} be tangent to Γ_{δ} at x_{0}.
The weak comparison principle applied to u and $c+u_{r}$ in B_{r} implies that

$$
\frac{\partial u}{\partial \nu}\left(x_{0}\right) \geq \frac{\partial u_{\rho}}{\partial \nu}\left(x_{0}\right)=g^{\prime}\left(\frac{r}{n}\right)>\alpha .
$$

From elliptic regularity theory $u \in C^{2, \beta}(\{|D u|>\alpha\})$ and thus

$$
u \in C^{2, \beta} \text { and }|D u|>\alpha \text { in an open neighborhood } A_{\delta} \text { of } \Gamma_{\delta} .
$$

Comparison results

Let u and v be local minimizers of J in $A \subseteq \Omega$.

- Weak Comparison Principle: let assume that $|A \cap(\{|D u|>\alpha\} \cup\{|D v|>\alpha\})|>0$. If $v \leq u$ on $\partial A \Rightarrow v \leq u$ in A.
- Strong Comparison Principle: assume $u, v \in C^{1}(\bar{A})$ with $|D u|,|D v|>\alpha$. If $v \leq u$ in $A \Rightarrow$ either $v \equiv u$ or $v<u$ in A.
- Boundary Point Principle: let $u, v \in C^{2}(\bar{A})$ with $|D u|,|D v|>\alpha$ and $v \leq u$ in A. Suppose that $v=u$ at some point P on the boundary of A admitting an internally touching tangent sphere. Then, either $v \equiv u$ in A or else $v<u$ in A and $\partial_{\ell} v<\partial_{\ell} u$ at P.

Notice that, if the three principles hold, our proof works also when u is a classical or viscosity solution of $F\left(u, D u, D^{2} u\right)=0$.

Not differentiable functionals

$$
J(v)=\int_{\Omega}[f(|D v|)-v] d x, \quad v \in W_{0}^{1, \infty}(\Omega)
$$

(f1) $f \in C^{1}([0,+\infty))$ convex, monotone nondecrasing, such that

$$
f(0)=0 \text { and } \lim _{s \rightarrow+\infty} \frac{f(s)}{s}=+\infty ;
$$

(f3) $f^{\prime}(0)>0, f \in C^{3}(0,+\infty)$ and $f^{\prime \prime}(s)>0$ for every $s>0$.
The map $s \mapsto f(|s|)$ is not differentiable at the origin and we have

The minimizer u of J is unique and satisfies

$$
\left|\int_{\Omega^{\sharp}} f^{\prime}(|D u|) \frac{D u}{|D u|} \cdot D \phi d x-\int_{\Omega} \phi d x\right| \leq f^{\prime}(0) \int_{\Omega^{0}}|D \phi| d x,
$$

for any $\phi \in C_{0}^{1}(\Omega)$, where

$$
\Omega^{0}:=\{D u=0\} \quad \text { and } \quad \Omega^{\sharp}:=\Omega \backslash \Omega^{0} .
$$

$\Omega=B_{R}$

$\Omega=B_{R}$
If $\Omega=B_{R}$, then the solution is given by

$$
u_{R}(x)=\int_{|x|}^{R} g^{\prime}\left(\frac{s}{n}\right) d s
$$

where $g(t)=\sup \{s t-f(s): s \geq 0\}$ is the Fenchel conjugate of f.
Notice that

- if $R \leq n f^{\prime}(0)$, then $u \equiv 0$;
- if $R>n f^{\prime}(0)$, then $u>0$.

Symmetry?

Let

$$
h(\Omega)=\inf _{\phi \in C_{0}^{1}(\Omega)} \frac{\int_{\Omega}|D \phi| d x}{\int_{\Omega}|\phi| d x} .
$$

Theorem

Let u be the minimizer of J, with f satisfying (f1) and (f3).

$$
u \equiv 0 \Leftrightarrow f^{\prime}(0) h(\Omega) \geq 1
$$

Symmetry result

Let u be the minimizer of J, with f satisfying (f1) and (f3). If

$$
u \equiv c \text { on } \Gamma_{\delta} \quad \text { and } \quad R_{\Omega}-\delta>n f^{\prime}(0)
$$

then Ω is a ball.

