# Symmetry of minimizers with a level surface parallel to the boundary

#### Giulio Ciraolo

#### Dipartimento di Matematica e Informatica - Università di Palermo

Joint work with S. Cecchini, R. Magnanini and S. Sakaguchi.

Cortona, 23/06/2011

# Spherical symmetry of minimizers

Let

- $\Omega \subset \mathbb{R}^n, \ n \geq 2$ , bounded domain with  $C^2$  boundary
- Distance from the boundary:  $d(x) = \inf_{y \in \partial \Omega} |x y|, \quad x \in \overline{\Omega}$

• 
$$\Omega_{\delta} = \{x \in \Omega : d(x) > \delta\}$$

• 
$$\Gamma_{\delta} = \{x \in \Omega : d(x) = \delta\}$$
.  $\Gamma_{\delta}$  is parallel to  $\partial \Omega$ .

Assume that

• u minimizes  $J(v) = \int_{\Omega} [f(|Dv|) - v] dx$ ,  $v \in W_0^{1,\infty}(\Omega)$ 

• 
$$u = c$$
 on  $\Gamma_{\delta}$  for some  $c > 0$ .

#### Problem

Can we conclude that  $\Omega$  is a ball?



### Main result: symmetry for minimizers of J

$$J(v) = \int_{\Omega} [f(|Dv|) - v] dx, \qquad v \in W_0^{1,\infty}(\Omega).$$

(f1) 
$$f \in C^1([0, +\infty))$$
 convex, monotone nondecrasing, such that  
 $f(0) = 0$  and  $\lim_{s \to +\infty} \frac{f(s)}{s} = +\infty$ ;  
(f2)  $\exists \alpha \ge 0$  s.t.  $f \in C^3(\alpha, +\infty)$  and  
•  $0 \le s \le \alpha$  :  $f'(s) = 0$   
•  $s > \alpha$  :  $f'(s) > 0$  and  $f''(s) > 0$ ;

#### Theorem

Let u be a minimizer of J, with f satisfying (f1) and (f2). If

- *u* has a level surface  $\Gamma_{\delta}$  parallel to  $\partial \Omega$ , with  $\delta < R_{\Omega}$ ,
- *u* is  $C^1$  in some open neighborhood  $A_{\delta}$  of  $\Gamma_{\delta}$ ,

then  $\Omega$  is a ball.

 $R_\Omega = \min_{y \in \partial \Omega} \{ R > 0: \ B_R \subset \Omega \text{ is the largest ball tangent to } \partial \Omega \text{ in } y \}.$ 

Notice that in some cases the second assumption on  $\mu_{can}$  be removed =  $\sum_{n=1}^{\infty} \sqrt{n}$ 

# Motivations: Crasta[JEMS 06] - web functions

Consider

$$J(v) = \int_{\Omega} [f(|Dv|) - v] dx, \ v \in W_0^{1,1}(\Omega).$$

#### Assumptions on f

- f: [0, b) → ℝ, b ∈ (0, +∞], is a convex, differentiable, monotone nondecreasing function;
- if  $0 < b < +\infty$ , then  $\lim_{s \to b^{-}} f(s) = +\infty$ ; if  $b = +\infty$ , then  $\lim_{s \to +\infty} \frac{f(s)}{s} > \frac{1}{n} \left(\frac{|\Omega|}{\omega_n}\right)^{\frac{1}{n}}$ ; •  $f'_{+}(0) = 0$ .

#### Theorem

If J admits a minimizer  $u \in W_0^{1,1}(\Omega)$  that depends only on d then  $\Omega$  is a ball.

- < ∃ >

▲ 伊 ▶ ▲ 王 ▶

# Serrin problem

Crasta's result is in connection with the Serrin problem

$$\begin{cases} -\operatorname{div} \frac{f'(|Du|)}{|Du|} Du = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ |Du| = const & \text{on } \partial\Omega. \end{cases}$$

Crasta's assumptions: weaker on f and stronger on u

- *u* web function regular at  $\partial \Omega \Rightarrow |Du| = const$  on  $\partial \Omega$ ;
- *u* web function  $\Rightarrow$  *u* constant on  $\Gamma_{\delta}$  for any  $\delta$ .

Our proof is based on Alexandrov's method of moving planes by using an argument used in Magnanini-Sakaguchi [AIHP10].



# Serrin problem

Crasta's result is in connection with the Serrin problem

$$\begin{cases} -\operatorname{div} \frac{f'(|Du|)}{|Du|} Du = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ |Du| = const & \text{on } \partial\Omega. \end{cases}$$

Crasta's assumptions: weaker on f and stronger on u

- *u* web function regular at  $\partial \Omega \Rightarrow |Du| = const$  on  $\partial \Omega$ ;
- *u* web function  $\Rightarrow$  *u* constant on  $\Gamma_{\delta}$  for any  $\delta$ .

Our proof is based on Alexandrov's method of moving planes by using an argument used in Magnanini-Sakaguchi [AIHP10].

#### Connection with Serrin problem?

• 
$$u = c_n$$
 on  $\Gamma_{\delta_n}$ ,  $n \in \mathbb{N} \implies |Du| = const$  on  $\partial \Omega$ ;

• 
$$|Du| = const$$
 on  $\partial \Omega \Rightarrow \max_{\Gamma_{\delta}} u - \min_{\Gamma_{\delta}} u = o(\delta)$  as  $\delta \to 0$ .

### Radial solution and some example

When  $\Omega = B_R$ , the minimizer is given by  $u_R(x) = \int_{|x|}^R g'(\frac{s}{n}) ds$ ;  $g(t) = \sup\{st - f(s) : s \ge 0\}$  is the Fenchel conjugate of f.

Examples:

Differentiable functionals







### Radial solution and some example

When  $\Omega = B_R$ , the minimizer is given by  $u_R(x) = \int_{|x|}^R g'(\frac{s}{n}) ds$ ;  $g(t) = \sup\{st - f(s) : s \ge 0\}$  is the Fenchel conjugate of f.

Examples:

Not differentiable functionals





### Proof: the method of moving planes

Two cases of tangency:



Figure: Case 1



Let *u* be the minimizer of *J* and *v* be its reflection in the plane  $\pi$ .

Weak Comparison Principle:  $v \leq u$  on  $\partial E \Rightarrow v \leq u$  in  $\overline{E}$ .

### Case 1

- $\partial \Omega$  is tangent to its reflection at some point  $P \notin \pi$ ;
- Γ<sub>δ</sub> is tangent to its reflection at some point P<sup>\*</sup> ∉ π which lies in the interior of E;

• 
$$u \equiv c$$
 on  $\Gamma_{\delta}$ , thus

$$u(P^*)=v(P^*)=c.$$

• Applying the Strong Comparison Principle to u and v in  $A_{\delta} \cap E$  gives v < u in  $A_{\delta} \cap \Omega$ 

- contradiction -



### Case 2

- π is orthogonal to ∂Ω at some point Q;
- let Q\* be a point on Γ<sub>δ</sub> ∩ π; such that ℓ belongs to the tangent hyperplane to Γ<sub>δ</sub> at Q\*;
- $u(Q^*) = v(Q^*) = c$  and  $\partial_{\ell} u(Q^*) = \partial_{\ell} v(Q^*) = 0.$
- Applying a Boundary Point Principle to u and v in  $A_{\delta} \cap E$  gives  $\partial_{\ell}v(Q^*) < \partial_{\ell}u(Q^*)$ 
  - contradiction -



# Around $\Gamma_{\delta}$

Notice that u - c is a minimizer of

$$J_{\Omega_{\delta}}(v) = \int_{\Omega_{\delta}} [f(|Dv|) - v] dx, \ v \in W_0^{1,\infty}(\Omega_{\delta})$$

$$\Rightarrow u \geq c \text{ in } \Omega_{\delta}.$$



∢ ≣≯

A ∰ ► A ∃ ►

Since  $\delta < R_{\Omega}$  then  $\Omega_{\delta}$  has the uniform interior touching sphere property (with radius  $r = R_{\Omega} - \delta$ ).

Let  $x_0 \in \Gamma_{\delta}$  and let  $B_r$  be tangent to  $\Gamma_{\delta}$  at  $x_0$ .

The weak comparison principle applied to u and  $c + u_r$  in  $B_r$  implies that

$$\frac{\partial u}{\partial \nu}(x_0) \geq \frac{\partial u_{\rho}}{\partial \nu}(x_0) = g'\left(\frac{r}{n}\right) > \alpha.$$

From elliptic regularity theory  $u \in C^{2,\beta}(\{|Du| > \alpha\})$  and thus

 $u \in C^{2,\beta}$  and  $|Du| > \alpha$  in an open neighborhood  $A_{\delta}$  of  $\Gamma_{\delta}$ .

Let *u* and *v* be local minimizers of *J* in  $A \subseteq \Omega$ .

- Weak Comparison Principle: let assume that  $|A \cap (\{|Du| > \alpha\} \cup \{|Dv| > \alpha\})| > 0$ . If  $v \le u$  on  $\partial A \Rightarrow v \le u$  in A.
- **Strong Comparison Principle**: assume  $u, v \in C^1(\overline{A})$  with  $|Du|, |Dv| > \alpha$ . If  $v \le u$  in  $A \Rightarrow$  either  $v \equiv u$  or v < u in A.
- Boundary Point Principle: let u, v ∈ C<sup>2</sup>(A) with |Du|, |Dv| > α and v ≤ u in A. Suppose that v = u at some point P on the boundary of A admitting an internally touching tangent sphere. Then, either v ≡ u in A or else v < u in A and ∂<sub>ℓ</sub>v < ∂<sub>ℓ</sub>u at P.

Notice that, if the three principles hold, our proof works also when u is a classical or viscosity solution of  $F(u, Du, D^2u) = 0$ .

・ 同 ト ・ 国 ト ・ 国 ト … 国

$$J(v) = \int_{\Omega} [f(|Dv|) - v] dx, \quad v \in W_0^{1,\infty}(\Omega)$$

(f1)  $f \in C^1([0, +\infty))$  convex, monotone nondecrasing, such that f(0) = 0 and  $\lim_{s \to +\infty} \frac{f(s)}{s} = +\infty$ ; (f3) f'(0) > 0,  $f \in C^3(0, +\infty)$  and f''(s) > 0 for every s > 0.

The map  $s \mapsto f(|s|)$  is not differentiable at the origin and we have

The minimizer u of J is unique and satisfies

$$\left|\int\limits_{\Omega^{\sharp}}f'(|Du|)rac{Du}{|Du|}\cdot D\phi\,dx-\int\limits_{\Omega}\phi dx
ight|\leq f'(0)\int\limits_{\Omega^{0}}|D\phi|dx,$$

for any  $\phi \in C_0^1(\Omega)$ , where

 $\Omega^0:=\{Du=0\}\quad\text{and}\quad \Omega^\sharp:=\Omega\setminus\Omega^0.$ 

#### $\Omega = B_R$

If  $\Omega = B_R$ , then the solution is given by

$$u_R(x) = \int_{|x|}^R g'(\frac{s}{n}) ds,$$

where  $g(t) = \sup\{st - f(s) : s \ge 0\}$  is the Fenchel conjugate of f.

Notice that

- if  $R \leq nf'(0)$ , then  $u \equiv 0$ ;
- if R > nf'(0), then u > 0.



# Symmetry?

Let

$$h(\Omega) = \inf_{\phi \in C_0^1(\Omega)} \frac{\int_{\Omega} |D\phi| dx}{\int_{\Omega} |\phi| dx}.$$

#### Theorem

Let u be the minimizer of J, with f satisfying (f1) and (f3).

 $u \equiv 0 \iff f'(0)h(\Omega) \ge 1.$ 

#### Symmetry result

Let u be the minimizer of J, with f satisfying (f1) and (f3). If

$$u \equiv c \text{ on } \Gamma_{\delta}$$
 and  $R_{\Omega} - \delta > nf'(0)$ ,

then  $\Omega$  is a ball.

< ≣ >

э

▲ 🗇 🕨 🔺 🗎 🕨