

Shape optimization problems for variational functionals under geometric constraints

Ilaria Fragalà

2nd Italian-Japanese Workshop Cortona, June 20-24, 2011

The variational functionals

• The first Dirichlet eigenvalue of the Laplacian

$$\lambda_1(\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\Omega} u^2 \, dx} : u \in H_0^1(\Omega), \int_{\Omega} u^2 \, dx > 0 \right\}$$

• The torsional rigidity

$$\frac{1}{\tau(\Omega)} := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\left(\int_{\Omega} |u| \, dx\right)^2} : u \in H_0^1(\Omega), \int_{\Omega} |u| \, dx > 0 \right\}$$

• The Newtonian capacity (for $n \ge 3$)

$$\operatorname{Cap}(\Omega) := \inf \left\{ \int_{\mathbb{R}^n \setminus \Omega} |\nabla u|^2 \, dx \; : \; u \in C_0^\infty(\mathbb{R}^n) \, , \; u \geq \chi_\Omega \right\}$$

For any of these functionals *F* it holds:

-F is a Dirichlet energy, $F(\Omega) = \int |\nabla u_{\Omega}|^2 dx$

$$\begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{ in } \Omega\\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

$$\begin{cases} -\Delta u = 1 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \setminus \overline{\Omega} \\ u = 1 & \text{ on } \partial\Omega \\ u(x) \to 0 & \text{ as } |x| \to +\infty \end{cases}$$

- F is monotone by inclusions
- *F* is homogeneous under dilations (of degree $\alpha = -2, n+2, n-2$)
- F is continuous with respect to Hausdorff convergence
- *F* is shape differentiable: if $\Omega_t = (I + tV)(\Omega)$,

$$\frac{d}{dt} F(\Omega_t)_{|t=0} = \pm \int_{\partial \Omega} (V \cdot \nu) |\nabla u_{\Omega}|^2 \, d\mathcal{H}^{n-1}$$

• The volume $|\Omega|$

- The perimeter $|\partial \Omega|$ (for sets with finite perimeter, $\chi_{\Omega} \in BV$)
- The mean width (for convex sets, $\Omega = int(K)$)

 $w_{\mathcal{K}}(\xi) := h_{\mathcal{K}}(\xi) + h_{\mathcal{K}}(-\xi) , \quad h_{\mathcal{K}}(\xi) := \sup_{x \in \mathcal{K}} (x \cdot \xi) \quad \text{for } \xi \in S^{n-1}$

the distance between the two support planes of K normal to ξ

$$M(K) := rac{2}{\mathcal{H}^{n-1}(S^{n-1})} \int_{S^{n-1}} h_K(\xi) \, d\mathcal{H}^{n-1}(\xi) \; .$$

Find extremal domains for

$$F(\Omega) = \lambda_1(\Omega), \ \tau(\Omega), \ \operatorname{Cap}(\Omega)$$

under one of the constraints

$$|\Omega|, |\partial \Omega|, M(\Omega) = const.$$

• The meaningful problems are:

• We are interested as well in finding *stationary* domains for these problems.

- 1. Volume constrained problems
- 2. Perimeter constrained problems
- 3. Mean width constrained problems
- 4. Some results about a conjecture by Pólya-Szegö

1. Volume constrained problems

Assume $|\Omega| = |B|$. Then:

- $\lambda_1(\Omega) \geq \lambda_1(B)$ [FABER-KRAHN]
- $\tau(\Omega) \leq \tau(B)$ [Pólya]
- $Cap(\Omega) \ge Cap(B)$ [SZEGÖ]

Proof. By Schwarz symmetrization.

Under the assumption $\partial \Omega \in C^2$, if there exists a solution C^2 up to the boundary to any of the following *overdetermined b.v.p.*, necessarily $\Omega = B$:

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \left| \frac{\partial u}{\partial \nu} \right| = c & \text{on } \partial \Omega \end{cases} \begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \left| \frac{\partial u}{\partial \nu} \right| = c & \text{on } \partial \Omega \end{cases}$$

[SERRIN '71]

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \setminus \overline{\Omega} \\ u = 1 & \text{ on } \partial\Omega \\ u \to 0 & \text{ as } |x| \to +\infty \\ \left| \frac{\partial u}{\partial \nu} \right| = c & \text{ on } \partial\Omega \end{cases}$$

[Reichel '97]

Proof. By moving planes or by many different methods!

Cortona, June 23, 2011

Assume $|\partial \Omega| = |\partial B|$. Then the extremality of balls under volume constraint, combined with the isoperimetric inequality

$$\frac{|\Omega|^{1/n}}{|\partial \Omega|^{1/(n-1)}} \le \frac{|B|^{1/n}}{|\partial B|^{1/(n-1)}} ,$$

yields:

• $\lambda_1(\Omega) \geq \lambda_1(B)$

• $\tau(\Omega) \leq \tau(B)$

Under the assumption $\partial \Omega \in C^2$, if there exists a solution C^2 up to the boundary to any of the following *overdetermined b.v.p.*, necessarily $\Omega = B$:

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \left|\frac{\partial u}{\partial \nu}\right|^2 = c H_{\Omega} & \text{on } \partial \Omega \end{cases} \begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \left|\frac{\partial u}{\partial \nu}\right|^2 = c H_{\Omega} & \text{on } \partial \Omega \end{cases}$$

[SERRIN '71]

• Conjecture: [Pólya-Szegö '51]

Among *convex bodies* $K \subset \mathbb{R}^3$, with given *surface measure* S(K), the *planar disk* D minimizes the Newtonian capacity.

- The convexity constraint is irremissible!
- -S(K) it is meant as $\mathcal{H}^2(\partial K)$ if $int(K) \neq \emptyset$ and $2\mathcal{H}^2(K)$ otherwise.
- The solution cannot be the ball!!

• Conjecture: [CRASTA-F.-GAZZOLA '05]

Among open smooth and strictly convex sets, balls are the unique *stationary domains* for the PS problem.

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \setminus \overline{\Omega} \\ u = 1 & \text{ on } \partial\Omega \\ u \to 0 & \text{ as } |x| \to +\infty \\ \left| \frac{\partial u}{\partial \nu} \right|^2 = c H_\Omega & \text{ on } \partial\Omega \end{cases}$$

Remark: The mean width is a *Minkowski linear* functional. Recall that K + L is defined by the equality $h_{K+L} = h_K + h_L$.

Concavity inequalities in the Minkowski structure:

 $F(\Omega) = \lambda_1(\Omega), \tau(\Omega), \operatorname{Cap}(\Omega)$ satisfy a *Brunn-Minkowski type inequality*:

$$F^{1/\alpha}(K+L) \ge F^{1/\alpha}(K) + F^{1/\alpha}(L) \qquad \forall K, L \in \mathcal{K}^n,$$

with strict inequality for non-homothetic sets.

[Brascamp-Lieb '73, Borell '83, '85, Caffarelli-Jerison-Lieb '96, Colesanti '96]

Theorem (shapeopt under mean width constraint).

[BUCUR-F.-LAMBOLEY '11]

Assume that $F : \mathcal{K}^n \to \mathbb{R}^+$ satisfies a BM-type inequality, is invariant under rigid motions, and continuous in the Hausdorff distance.

Consider the quotient
$$\mathcal{E}(K) := \frac{F^{1/\alpha}(K)}{M(K)}$$
. Then:

- (i) the maximum of \mathcal{E} over \mathcal{K}^n is attained only on balls;
- (ii) if n = 2, the minimum of \mathcal{E} over \mathcal{K}^2 can be attained only on triangles or on segments.

In particular, if $M(\Omega) = M(B)$:

• $\lambda_1(\Omega) \geq \lambda_1(B)$

- $\tau(\Omega) \leq \tau(B)$
- $Cap(\Omega) \leq Cap(B)$

Proof

(i) Hadwiger's Theorem: For every K ∈ Kⁿ (with dim K > 0) there exists a sequence K_h of rotation means of K which converges in Hausdorff distance to a ball.

Then:

$$\frac{F^{1/\alpha}(K)}{M(K)} \leq \frac{F^{1/\alpha}(K_h)}{M(K_h)} \rightarrow \frac{F^{1/\alpha}(B)}{M(B)}$$

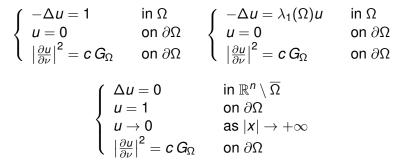
(ii) In dimension n = 2, the unique Minkowski indecomposable bodies are triangles and segments. (No longer true in higher dimensions!)

Then: if *K* is not a triangle or a segment, $K = K_1 + K_2 \Longrightarrow$

$$\frac{F^{1/\alpha}(K)}{M(K)} > \frac{F^{1/\alpha}(K_1) + F^{1/\alpha}(K_2)}{M(K_1) + M(K_2)} \ge \min\left\{\frac{F^{1/\alpha}(K_1)}{M(K_1)}, \frac{F^{1/\alpha}(K_2)}{M(K_2)}\right\}.$$

Theorem (Gaussian curvature overdetermined b.v.p.) $[F. ~^{11}]$

Under the assumption $\Omega = \operatorname{int} K$ for some $K \in \mathcal{K}_0^n$, with $\partial \Omega$ of class \mathcal{C}^2 , if there exists a solution \mathcal{C}^2 up to the boundary to any of the following *overdetermined b.v.p.*, necessarily $\Omega = B$:



Proof. By concavity, a stationary domain for the quotient functional $\mathcal{E} = \frac{F^{1/\alpha}}{M}$ is necessarily a maximizer.

Concavity inequalities in the Blaschke structure:

We say that $F : \mathcal{K}_0^n \to \mathbb{R}^+$ satisfies a *Kneser-Süss type inequality* if

$$\mathcal{F}^{(n-1)/lpha}(K \sharp L) \geq \mathcal{F}^{(n-1)/lpha}(K) + \mathcal{F}^{(n-1)/lpha}(L) \qquad orall K, L \in \mathcal{K}^n_0 \ ,$$

with equality if and only if K and L are homothetic.

- $K \sharp L$ is defined by the equality $\sigma(K \sharp L) = \sigma(K) + \sigma(L)$, where $\sigma(K) := (\nu_K)_* (\mathcal{H}^{n-1} \sqcup \partial K)$ $\nu_K =$ Gauss map
- Kneser-Süss Theorem states that the above concavity inequality holds true for the volume functional.

Theorem (shapeopt under surface contraint).

[BUCUR-F.-LAMBOLEY '11]

Assume that $F : \mathcal{K}_0^n \to \mathbb{R}^+$ satisfies a KS-type inequality, is invariant under rigid motions and continuous in the Hausdorff distance.

Consider the quotient $\mathcal{E}(K) := \frac{F^{(n-1)/\alpha}(K)}{S(K)}$. Then:

- (i) the maximum of \mathcal{E} over \mathcal{K}_0^n is attained only on balls;
- (ii) the minimum of \mathcal{E} over \mathcal{K}_0^n can be attained only on simplexes.

Counterexamples:

 $F(\Omega) = \operatorname{Cap}(\Omega), \lambda_1(\Omega), \tau(\Omega)$ do not satisfy a KS-type inequality!

Concavity inequalities in different algebraic structures:

each of our model functional is *concave* with respect to a *new* sum of convex bodies, which linearizes the first variation of *F*.

This leads to new "isoperimetric-like" inequalities.

4. Some results about PS conjecture

$$\inf_{K\in\mathcal{K}^3}\mathcal{E}(K):=\frac{\operatorname{Cap}^2(K)}{S(K)}$$

Theorem 1 (optimality of the disk among planar domains). [Polya-Szego, '51]

Let *D* be a planar disk. For every planar convex domain with $\mathcal{H}^2(K) = \mathcal{H}^2(D)$, it holds

 $\operatorname{Cap}(K) \geq \operatorname{Cap}(D)$.

Proof. By a cylindrical symmetrization.

Theorem 2 (lower bound).

[Pólya-Szegö, '51]

The infimum of \mathcal{E} over \mathcal{K}^3 is strictly positive.

Proof. By using symmetrizations and monotonicity with respect to inclusions.

Theorem 3 (existence of a minimizer).

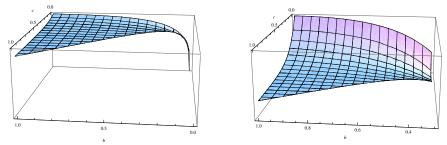
 $\begin{bmatrix} CRASTA-F.-GAZZOLA, '05 \end{bmatrix}$ The infimum of \mathcal{E} over \mathcal{K}^3 is attained.

Proof. By using Blaschke selection theorem, John Lemma, and the behaviour of thinning ellipsoids.

Theorem 4 (optimality among ellipsoids). [F.-GAZZOLA-PIERRE '11]

The planar disk is optimal for \mathcal{E} within the class of triaxial ellipsoids.

Proof. Plot of the map $(b, c) \mapsto \mathcal{E}^{-1}(E_{1,b,c})$ for (b, c) in the triangle $T = \{(b, c) \in \mathbb{R}^2 : 1 \ge b \ge c \ge 0\}$ and for (b, c) near (1, 0).



Remarks:

(i) There is no stationary ellipsoid different from a ball.

(ii) There exists b^* s.t. $c \mapsto \mathcal{E}(E(1, b^*, c))$ is *not* monotone.

Ilaria Fragalà (Politecnico di Milano)

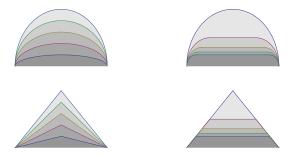
Cortona, June 23, 2011

Theorem 5 ("local" optimality). [F.-GAZZOLA-PIERRE '11]

For a large class of suitably defined one parameter families of convex domains D_t obtained by "fattening" the planar disk, it holds

 $\mathcal{E}(D) < \mathcal{E}(D_t) \qquad ext{ for } 0 < t \ll 1 \; .$

Proof. By a careful comparison of $\operatorname{Cap}'(0)$ and S'(0).



Left: $\operatorname{Cap}'(0) > 0$, S'(0) = 0. *Right*: $\operatorname{Cap}'(0) = +\infty$, $S'(0) < +\infty$.

Ilaria Fragalà (Politecnico di Milano)

Cortona, June 23, 2011

Theorem 6 (no smooth portions with positive Gauss curvature). [BUCUR-F.-LAMBOLEY '11]

Assume that $F : \mathcal{K}_0^n \to \mathbb{R}^+$ is given by

$$F(K) = f(|K|, \lambda_1(K), \tau(K), \operatorname{Cap}(K))$$
 (with $f \in C^2$).

Let K^* be a minimizer over \mathcal{K}_0^n for the functional

$$\mathcal{E}(K) := rac{F(K)}{S(K)} \; .$$

If ∂K^* contains a subset ω of class C^3 , then $G_{K^*} = 0$ on ω .

Proof. $\ell_2^S(K^*) \cdot (\varphi, \varphi) \ge c_1 |\varphi|_{H^1(\omega)}^2 + c_2 ||\varphi||_{L^2(\omega)}^2, \quad \left| \ell_2^F(K^*) \cdot (\varphi, \varphi) \right| \le c_3 ||\varphi||_{H^{\frac{1}{2}}(\omega)}^2.$

Lemma (local concavity entails local extremality).

Let $K^* \in \mathcal{K}_0^n$ be a minimizer for $J : \mathcal{K}_0^n \to \mathbb{R}^+$. Let $\omega \subset \partial K^*$ of class \mathcal{C}^3 , and assume that $t \mapsto J(K_t)$ is twice differentiable at t = 0 for any smooth *V* compactly supported on ω .

If the bilinear form $\ell_2^J(K^*)$ satisfies:

$$\forall \varphi \in \mathcal{C}^\infty_{\boldsymbol{\mathcal{C}}}(\omega), \quad \ell^J_2(\boldsymbol{K}^*) \cdot (\varphi, \varphi) \leq - \boldsymbol{c_1} |\varphi|^2_{H^1(\omega)} + \boldsymbol{c_2} \|\varphi\|^2_{H^{\frac{1}{2}}(\omega)}$$

for some constants $c_1 > 0$, $c_2 \in \mathbb{R}$, then

$$G_{K^*}=0$$
 on ω

Proof. By contradiction, against the second order optimality condition.

THE END. THANK YOU!