

Shape optimization problems for variational functionals under geometric constraints

Ilaria Fragalà

$2^{\text {nd }}$ Italian-Japanese Workshop Cortona, June 20-24, 2011

The variational functionals

- The first Dirichlet eigenvalue of the Laplacian

$$
\lambda_{1}(\Omega):=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}: u \in H_{0}^{1}(\Omega), \int_{\Omega} u^{2} d x>0\right\}
$$

- The torsional rigidity

$$
\frac{1}{\tau(\Omega)}:=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{2} d x}{\left(\int_{\Omega}|u| d x\right)^{2}}: u \in H_{0}^{1}(\Omega), \int_{\Omega}|u| d x>0\right\}
$$

- The Newtonian capacity (for $n \geq 3$)

$$
\operatorname{Cap}(\Omega):=\inf \left\{\int_{\mathbb{R}^{n} \backslash \Omega}|\nabla u|^{2} d x: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u \geq \chi_{\Omega}\right\}
$$

For any of these functionals F it holds:
$-F$ is a Dirichlet energy, $F(\Omega)=\int\left|\nabla u_{\Omega}\right|^{2} d x$

$$
\begin{aligned}
& \begin{cases}-\Delta u=\lambda_{1}(\Omega) u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \\
& \begin{cases}-\Delta u=1 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \\
& \begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\
u=1 & \text { on } \partial \Omega \\
u(x) \rightarrow 0 & \text { as }|x| \rightarrow+\infty\end{cases}
\end{aligned}
$$

$-F$ is monotone by inclusions
$-F$ is homogeneous under dilations (of degree $\alpha=-2, n+2, n-2$)
$-F$ is continuous with respect to Hausdorff convergence
$-F$ is shape differentiable: if $\Omega_{t}=(I+t V)(\Omega)$,

$$
\frac{d}{d t} F\left(\Omega_{t}\right)_{\mid t=0}= \pm \int_{\partial \Omega}(V \cdot \nu)\left|\nabla u_{\Omega}\right|^{2} d \mathcal{H}^{n-1}
$$

The geometric constraints

- The volume $|\Omega|$
- The perimeter $|\partial \Omega|$ (for sets with finite perimeter, $\chi_{\Omega} \in B V$)
- The mean width (for convex sets, $\Omega=\operatorname{int}(K)$)
$w_{K}(\xi):=h_{K}(\xi)+h_{K}(-\xi), \quad h_{K}(\xi):=\sup _{x \in K}(x \cdot \xi) \quad$ for $\xi \in S^{n-1}$ \uparrow the distance between the two support planes of K normal to ξ

$$
M(K):=\frac{2}{\mathcal{H}^{n-1}\left(S^{n-1}\right)} \int_{S^{n-1}} h_{K}(\xi) d \mathcal{H}^{n-1}(\xi)
$$

The problems under study

Find extremal domains for

$$
F(\Omega)=\lambda_{1}(\Omega), \tau(\Omega), \operatorname{Cap}(\Omega)
$$

under one of the constraints

$$
|\Omega|,|\partial \Omega|, M(\Omega)=\text { const. }
$$

- The meaningful problems are:

$$
\max _{|\Omega|=c} \tau(\Omega)
$$

$$
\min _{|\Omega|=c} \operatorname{Cap}(\Omega)
$$

$$
\min _{|\partial \Omega|=c} \lambda_{1}(\Omega)
$$

$$
\max _{|\partial \Omega|=c} \tau(\Omega)
$$

$$
\min _{|\partial \Omega|=c} \operatorname{Cap}(\Omega)
$$

$$
\min _{M(\Omega)=c} \lambda_{1}(\Omega)
$$

$$
\max _{M(\Omega)=c} \tau(\Omega)
$$

$$
\max _{M(\Omega)=c} \operatorname{Cap}(\Omega)
$$

- We are interested as well in finding stationary domains for these problems.

Outline of the talk

1. Volume constrained problems
2. Perimeter constrained problems
3. Mean width constrained problems
4. Some results about a conjecture by Pólya-Szegö

1. Volume constrained problems

Assume $|\Omega|=|B|$. Then:

- $\lambda_{1}(\Omega) \geq \lambda_{1}(B)$ [FAber-Krahn]
- $\tau(\Omega) \leq \tau(B) \quad$ [PóLYA]
- $\operatorname{Cap}(\Omega) \geq \operatorname{Cap}(\mathrm{B}) \quad[S z E G O ̈]$

Proof. By Schwarz symmetrization.

Under the assumption $\partial \Omega \in \mathcal{C}^{2}$, if there exists a solution \mathcal{C}^{2} up to the boundary to any of the following overdetermined b.v.p., necessarily $\Omega=B:$

$$
\left\{\begin{array} { l l }
{ - \Delta u = 1 } & { \text { in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega } \\
{ | \frac { \partial u } { \partial \nu } | = c } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta u=\lambda_{1}(\Omega) u & \text { in } \Omega \\
u=0 \\
\left|\frac{\partial u}{\partial \nu}\right|=c & \text { on } \partial \Omega \\
\text { on } \partial \Omega
\end{array}\right.\right.
$$

[SERRIN '71]

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\ u=1 & \text { on } \partial \Omega \\ u \rightarrow 0 & \text { as }|x| \rightarrow+\infty \\ \left|\frac{\partial u}{\partial \nu}\right|=c & \text { on } \partial \Omega\end{cases}
$$

[Reichel '97]
Proof. By moving planes or by many different methods!

2. Perimeter constrained problems

Assume $|\partial \Omega|=|\partial B|$. Then the extremality of balls under volume constraint, combined with the isoperimetric inequality

$$
\frac{|\Omega|^{1 / n}}{|\partial \Omega|^{1 /(n-1)}} \leq \frac{|B|^{1 / n}}{|\partial B|^{1 /(n-1)}},
$$

yields:

- $\lambda_{1}(\Omega) \geq \lambda_{1}(B)$
- $\tau(\Omega) \leq \tau(B)$

Under the assumption $\partial \Omega \in \mathcal{C}^{2}$, if there exists a solution \mathcal{C}^{2} up to the boundary to any of the following overdetermined b.v.p., necessarily $\Omega=B:$

$$
\left\{\begin{array} { l l }
{ - \Delta u = 1 } & { \text { in } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega } \\
{ | \frac { \partial u } { \partial \nu } | ^ { 2 } = c H _ { \Omega } } & { \text { on } \partial \Omega }
\end{array} \left\{\begin{array}{ll}
-\Delta u=\lambda_{1}(\Omega) u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\left|\frac{\partial u}{\partial \nu}\right|^{2}=c H_{\Omega} & \text { on } \partial \Omega
\end{array}\right.\right.
$$

[SERRIN '71]

- Conjecture: [PÓLYA-SzEGÖ '51]

Among convex bodies $K \subset \mathbb{R}^{3}$, with given surface measure $S(K)$, the planar disk D minimizes the Newtonian capacity.

- The convexity constraint is irremissible!
$-S(K)$ it is meant as $\mathcal{H}^{2}(\partial K)$ if $\operatorname{int}(K) \neq \emptyset$ and $2 \mathcal{H}^{2}(K)$ otherwise.
- The solution cannot be the ball!!
- Conjecture: [CRASTA-F.-GAZZOLA '05]

Among open smooth and strictly convex sets, balls are the unique stationary domains for the PS problem.

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\ u=1 & \text { on } \partial \Omega \\ u \rightarrow 0 & \text { as }|x| \rightarrow+\infty \\ \left|\frac{\partial u}{\partial \nu}\right|^{2}=c H_{\Omega} & \text { on } \partial \Omega\end{cases}
$$

3. Mean width constrained problems

Remark: The mean width is a Minkowski linear functional.
Recall that $K+L$ is defined by the equality $h_{K+L}=h_{K}+h_{L}$.

Concavity inequalities in the Minkowski structure:
$F(\Omega)=\lambda_{1}(\Omega), \tau(\Omega), \operatorname{Cap}(\Omega)$ satisfy a Brunn-Minkowski type inequality:

$$
F^{1 / \alpha}(K+L) \geq F^{1 / \alpha}(K)+F^{1 / \alpha}(L) \quad \forall K, L \in \mathcal{K}^{n}
$$

with strict inequality for non-homothetic sets.
[Brascamp-Lieb '73, Borell '83, '85,
Caffarelli-Jerison-Lieb '96, Colesanti '96]

Theorem (shapeopt under mean width constraint).

[BuCur-F.-LAMBOLEY '11]
Assume that $F: \mathcal{K}^{n} \rightarrow \mathbb{R}^{+}$satisfies a BM-type inequality, is invariant under rigid motions, and continuous in the Hausdorff distance.
Consider the quotient $\mathcal{E}(K):=\frac{F^{1 / \alpha}(K)}{M(K)}$. Then:
(i) the maximum of \mathcal{E} over \mathcal{K}^{n} is attained only on balls;
(ii) if $n=2$, the minimum of \mathcal{E} over \mathcal{K}^{2} can be attained only on triangles or on segments.

In particular, if $M(\Omega)=M(B)$:

- $\lambda_{1}(\Omega) \geq \lambda_{1}(B)$
- $\tau(\Omega) \leq \tau(B)$
- $\operatorname{Cap}(\Omega) \leq \operatorname{Cap}(B)$

Proof

(i) Hadwiger's Theorem: For every $K \in \mathcal{K}^{n}$ (with $\operatorname{dim} K>0$) there exists a sequence K_{h} of rotation means of K which converges in Hausdorff distance to a ball.

Then:

$$
\frac{F^{1 / \alpha}(K)}{M(K)} \leq \frac{F^{1 / \alpha}\left(K_{h}\right)}{M\left(K_{h}\right)} \rightarrow \frac{F^{1 / \alpha}(B)}{M(B)}
$$

(ii) In dimension $n=2$, the unique Minkowski indecomposable bodies are triangles and segments. (No longer true in higher dimensions!)
Then: if K is not a triangle or a segment, $K=K_{1}+K_{2} \Longrightarrow$

$$
\frac{F^{1 / \alpha}(K)}{M(K)}>\frac{F^{1 / \alpha}\left(K_{1}\right)+F^{1 / \alpha}\left(K_{2}\right)}{M\left(K_{1}\right)+M\left(K_{2}\right)} \geq \min \left\{\frac{F^{1 / \alpha}\left(K_{1}\right)}{M\left(K_{1}\right)}, \frac{F^{1 / \alpha}\left(K_{2}\right)}{M\left(K_{2}\right)}\right\}
$$

Theorem (Gaussian curvature overdetermined b.v.p.)

[F. '11]

Under the assumption $\Omega=\operatorname{int} K$ for some $K \in \mathcal{K}_{0}^{n}$, with $\partial \Omega$ of class \mathcal{C}^{2}, if there exists a solution \mathcal{C}^{2} up to the boundary to any of the following overdetermined b.v.p., necessarily $\Omega=B$:

$$
\begin{aligned}
& \left\{\begin{array}{lll}
-\Delta u=1 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\left|\frac{\partial u}{\partial \nu}\right|^{2}=c G_{\Omega} & \text { on } \partial \Omega
\end{array}\right.
\end{aligned}\left\{\begin{array}{ll}
-\Delta u=\lambda_{1}(\Omega) u & \text { in } \Omega \\
u=0 \\
\left|\frac{\partial u}{\partial \nu}\right|^{2}=c G_{\Omega} & \text { on } \partial \Omega \\
\text { on } \partial \Omega
\end{array}\right\} \begin{array}{lll}
\Delta u=0 & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\
u=1 & \text { on } \partial \Omega \\
u \rightarrow 0 & \text { as }|x| \rightarrow+\infty \\
\left|\frac{\partial u}{\partial \nu}\right|^{2}=c G_{\Omega} & \text { on } \partial \Omega
\end{array}
$$

Proof. By concavity, a stationary domain for the quotient functional $\mathcal{E}=\frac{F^{1 / \alpha}}{M}$ is necessarily a maximizer.

Concavity inequalities in the Blaschke structure:

We say that $F: \mathcal{K}_{0}^{n} \rightarrow \mathbb{R}^{+}$satisfies a Kneser-Süss type inequality if

$$
F^{(n-1) / \alpha}(K \sharp L) \geq F^{(n-1) / \alpha}(K)+F^{(n-1) / \alpha}(L) \quad \forall K, L \in \mathcal{K}_{0}^{n},
$$

with equality if and only if K and L are homothetic.

- $K \sharp L$ is defined by the equality $\sigma(K \sharp L)=\sigma(K)+\sigma(L)$, where $\sigma(K):=\left(\nu_{K}\right) *\left(\mathcal{H}^{n-1}\llcorner\partial K) \quad \nu_{K}=\right.$ Gauss map
- Kneser-Süss Theorem states that the above concavity inequality holds true for the volume functional.
- $S(K)$ is a Blaschke linear functional

Theorem (shapeopt under surface contraint).
[Bucur-F.-Lamboley '11]
Assume that $F: \mathcal{K}_{0}^{n} \rightarrow \mathbb{R}^{+}$satisfies a KS-type inequality, is invariant under rigid motions and continuous in the Hausdorff distance.
Consider the quotient $\mathcal{E}(K):=\frac{F^{(n-1) / \alpha}(K)}{S(K)}$. Then:
(i) the maximum of \mathcal{E} over \mathcal{K}_{0}^{n} is attained only on balls;
(ii) the minimum of \mathcal{E} over \mathcal{K}_{0}^{n} can be attained only on simplexes.

Counterexamples:
$F(\Omega)=\operatorname{Cap}(\Omega), \lambda_{1}(\Omega), \tau(\Omega)$ do not satisfy a KS-type inequality!

Concavity inequalities in different algebraic structures:

each of our model functional is concave with respect to
a new sum of convex bodies, which linearizes the first variation of F.

This leads to new "isoperimetric-like" inequalities.

4. Some results about PS conjecture

$$
\inf _{K \in \mathcal{K}^{3}} \mathcal{E}(K):=\frac{\operatorname{Cap}^{2}(K)}{S(K)}
$$

Theorem 1 (optimality of the disk among planar domains). [PÓLYA-SZEGÖ, '51]
Let D be a planar disk. For every planar convex domain with $\mathcal{H}^{2}(K)=\mathcal{H}^{2}(D)$, it holds

$$
\operatorname{Cap}(K) \geq \operatorname{Cap}(D)
$$

Proof. By a cylindrical symmetrization.

Theorem 2 (lower bound).

[PÓLYA-SZEGÖ, '51]
The infimum of \mathcal{E} over \mathcal{K}^{3} is strictly positive.
Proof. By using symmetrizations and monotonicity with respect to inclusions.

Theorem 3 (existence of a minimizer).
[CRASTA-F.-GAZZOLA, '05]
The infimum of \mathcal{E} over \mathcal{K}^{3} is attained.

Proof. By using Blaschke selection theorem, John Lemma, and the behaviour of thinning ellipsoids.

Theorem 4 (optimality among ellipsoids).

[F.-GAZZOLA-PiERRE '11]
The planar disk is optimal for \mathcal{E} within the class of triaxial ellipsoids.
Proof. Plot of the map $(b, c) \mapsto \mathcal{E}^{-1}\left(E_{1, b, c}\right)$ for (b, c) in the triangle $T=\left\{(b, c) \in \mathbb{R}^{2}: 1 \geq b \geq c \geq 0\right\}$ and for (b, c) near $(1,0)$.

Remarks:

(i) There is no stationary ellipsoid different from a ball.
(ii) There exists b^{*} s.t. $c \mapsto \mathcal{E}\left(E\left(1, b^{*}, c\right)\right)$ is not monotone.

Theorem 5 ("local" optimality).

[F.-GAzzola-Pierre '11]
For a large class of suitably defined one parameter families of convex domains D_{t} obtained by "fattening" the planar disk, it holds

$$
\mathcal{E}(D)<\mathcal{E}\left(D_{t}\right) \quad \text { for } 0<t \ll 1 .
$$

Proof. By a careful comparison of $\mathrm{Cap}^{\prime}(0)$ and $S^{\prime}(0)$.

Left: $\operatorname{Cap}^{\prime}(0)>0, S^{\prime}(0)=0 . \quad$ Right: $\operatorname{Cap}^{\prime}(0)=+\infty, S^{\prime}(0)<+\infty$.

Theorem 6 (no smooth portions with positive Gauss curvature). [Bucur-F.-LAmboley '11]
Assume that $F: \mathcal{K}_{0}^{n} \rightarrow \mathbb{R}^{+}$is given by

$$
F(K)=f\left(|K|, \lambda_{1}(K), \tau(K), \operatorname{Cap}(K)\right) \quad\left(\text { with } f \in \mathcal{C}^{2}\right)
$$

Let K^{*} be a minimizer over \mathcal{K}_{0}^{n} for the functional

$$
\mathcal{E}(K):=\frac{F(K)}{S(K)}
$$

If ∂K^{*} contains a subset ω of class \mathcal{C}^{3}, then $G_{K^{*}}=0$ on ω.
Proof.
$\ell_{2}^{S}\left(K^{*}\right) \cdot(\varphi, \varphi) \geq c_{1}|\varphi|_{H^{1}(\omega)}^{2}+c_{2}\|\varphi\|_{L^{2}(\omega)}^{2}, \quad\left|\ell_{2}^{F}\left(K^{*}\right) \cdot(\varphi, \varphi)\right| \leq c_{3}\|\varphi\|_{H^{\frac{1}{2}}(\omega)}^{2}$

Lemma (local concavity entails local extremality).

Let $K^{*} \in \mathcal{K}_{0}^{n}$ be a minimizer for $J: \mathcal{K}_{0}^{n} \rightarrow \mathbb{R}^{+}$.
Let $\omega \subset \partial K^{*}$ of class \mathcal{C}^{3}, and assume that $t \mapsto J\left(K_{t}\right)$ is twice differentiable at $t=0$ for any smooth V compactly supported on ω.

If the bilinear form $\ell_{2}^{J}\left(K^{*}\right)$ satisfies:

$$
\forall \varphi \in \mathcal{C}_{c}^{\infty}(\omega), \quad \ell_{2}^{J}\left(K^{*}\right) \cdot(\varphi, \varphi) \leq-c_{1}|\varphi|_{H^{1}(\omega)}^{2}+c_{2}\|\varphi\|_{H^{\frac{1}{2}}(\omega)}^{2}
$$

for some constants $c_{1}>0, c_{2} \in \mathbb{R}$, then

$$
G_{K^{*}}=0 \text { on } \omega
$$

Proof. By contradiction, against the second order optimality condition.

The end. Thank you!

