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Part I

Introduction



 

My advisor's remark:

“Nobody is teaching calculus of variations”



The problem of the brachistochrone

Find a path in a vertical plane connecting two given
points so that a particle falling down from the first
point along that path subject to the gravity and
without friction will reach the second point in the
shortest possible time (Johann Bernoulli, 1696)



The time�of�transit functional in the problem of the
brachistochrone



Newton's problem of the body of minimal
resistance

Find the shape of a rotationally symmetric body, with
prescribed height and prescribed circular cross�section,
that minimizes the resistance encountered when
moving through a rarefied gas (Principia, 1687)
More precisely, find a monotone non�decreasing
function u over the interval [0,R] with values in [0,M]
that minimizes the following functional



Newton's body of minimal resistance

C. H. Edwards, Newton's nose
cone problem, The
Mathematica Journal 7 (1997), 64–71.



The most difficult problem

The hardest problem is to prove that the functionals
under consideration do possess a minimizer.

The classical approach to the brachistochrone
problem has its roots in the work of Weierstrass and
is found, for instance, in the following books:

G. A. Bliss, Calculus of variations. The Carus
Mathematical Monographs 1. Washington: The
Mathematical Association of America; La Salle,
Ill.: The Open Court Publishing Company, 1925.

M. Giaquinta, S. Hildebrandt, Calculus of
variations. I. Grundlehren der Mathematischen
Wissenschaften 310. Springer/Verlag, Berlin,
1996.

J. L. Troutman, Variational calculus with
elementary convexity. Springer/Verlag, New
York/Berlin, 1983.



Newton's problem revisited
Recent advances on Newton's problem include the
existence proof of a non�radial minimizer in the class of
bounded, convex functions:

G. Buttazzo, A survey on the Newton problem of
optimal profiles, in: Variational analysis and
aerospace engineering, pp. 33–48, Springer Optim.
Appl. 33, Springer, New York, 2009.

G. Buttazzo and B. Kawohl, On Newton's problem of
minimal resistance, Math. Intelligencer 15 (1993),
7–12.

G. Buttazzo, V. Ferone and B. Kawohl, Minimum
problems over sets of concave functions and related
questions, Math. Nachr. 173 (1995), 71–89.



The present approach

The present approach is based on the following
strategy:

. 1 The space of competing functions is the set of
all functions in W1,1((a,b)) attaining the
prescribed boundary values. Let (un) be a
minimizing sequence.

. 2 Replace each un with its convex rearrangement
un*. Boundary values are preserved, as well as
the graph length. Show that the functional is
reduced (Pólya(Szegö inequality).

. 3 There exists a subsequence converging to
some u locally unifomly.

. 4 Give meaning to F [u] even in case u develops
boundary singularities (no problem with G[u]).

. 5 Show that the functional F is continuous under
such convergence. Then u is a minimizer.

. 6 Finally, verify that u has no jumps at the
endpoints. Thus, u belongs to the admissible
class and therefore it is a minimizer.



Generalization

The present approach also applies to the following
functionals:

with f non�decreasing, g positive and
non�increasing, and � positive and non�decreasing.

Isoperimetric problems as the problem of the
catenary, which corresponds to f (u) = u, are
included.



Part II

The convex rearrangement



The non-decreasing rearrangement

It is defined firstly on step functions, and then extended by

continuity to the whole space L1((a,b)):

Before: v(x) After: v#(x)



The convex rearrangement

The convex rearrangement of a function u
in W1,1((a,b)) is the function u* defined as follows:

Equivalently:

. 1 Take a function u in W1,1((a,b)) whose
derivative u' is a step function.

. 2 Rearrange the line segments in the graph of u
preserving slope and continuity until slopes are
non"decreasing: call u* the resulting function.

. 3 Extend to W1,1((a,b)) by density.



    Equality holds if f is constant (graph length is preserved).



Part III

Managing boundary
singularities



Boundary singularities may appear

Since the convergence of un is just locally uniform,
the limit function u may well have jump
discontinuities at the endpoints:



Extension of the functional F

The contribution of vertical segments at the endpoints is
taken into account by suitably extending the
functional F:

The extended functional is continuous with respect to
locally uniform convergence of convex functions.



An unpleasant counterpart

The minimizer may, in principle, be a function with
jump discontinuities at the endpoints.



The minimizers have no boundary
singularities

The proof is by contradiction. Suppose, for instance,
that a minimizer u has a jump discontinuity at the
first endpoint:

The function u (black), with a jump at the first
endpoint, is replaced by uε (red), which is
continuous at the first endpoint and satisfies

Hence a minimizer cannot have a jump at the first
endpoint (and neither at the second one).



Conclusion
A new existence proof of the brachistochrone is
available.

The method also applies to the classical problem
of the body of minimal resistance posed by
Newton.

Isoperimetric problems as the problem of the
catenary are included.

Open problem: it would be interesting to
extend the method to dimension N > 1.
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