Andrea Malchiodi (SISSA, Trieste)

New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces

Geometric Properties for Parabolic and Elliptic PDEs Cortona, June 20-24, 2011

(1) A.M. - D.Ruiz: New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, GAFA, to appear.

(2) D.Bartolucci - F.De Marchis - A.M.: Supercritical conformal metrics on surfaces with conical singularities, IMRN, to appear.

(3) A.Carlotto - A.M.: Weighted barycentric sums and singular Liouville equations on compact surfaces, preprint, 2011.

We consider the following mean field equation on a compact orientable surface (Σ, g) without boundary:

...

$$(E_{\rho}) \qquad -\Delta u = \rho \left(k(x)e^{2u} - 1 \right) - 2\pi \sum_{j=1}^{m} \alpha_j \left(\delta_{p_j} - 1 \right).$$

We consider the following mean field equation on a compact orientable surface (Σ, g) without boundary:

$$(E_{\rho}) \qquad -\Delta u = \rho \left(k(x)e^{2u} - 1 \right) - 2\pi \sum_{j=1}^{m} \alpha_j \left(\delta_{p_j} - 1 \right).$$

Here ρ is a positive parameter, $k : \Sigma \to \mathbb{R}$ a smooth positive function, $\alpha_j \in \mathbb{R}$ and δ_{p_j} is the Dirac mass at $p_j \in \Sigma$.

We consider the following mean field equation on a compact orientable surface (Σ, g) without boundary:

$$(E_{\rho}) \qquad -\Delta u = \rho \left(k(x)e^{2u} - 1 \right) - 2\pi \sum_{j=1}^{m} \alpha_j \left(\delta_{p_j} - 1 \right).$$

Here ρ is a positive parameter, $k : \Sigma \to \mathbb{R}$ a smooth positive function, $\alpha_j \in \mathbb{R}$ and δ_{p_i} is the Dirac mass at $p_j \in \Sigma$.

• We assume also, without loss of generality, that $|\Sigma| = 1$.

In this model a wave function $\psi:\mathbb{R}^2\to\mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ}

In this model a wave function $\psi:\mathbb{R}^2\to\mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ} ($\partial_{\mu} \mapsto \partial_{\mu} - iA_{\mu}$).

In this model a wave function $\psi:\mathbb{R}^2\to\mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ} ($\partial_{\mu} \mapsto \partial_{\mu} - iA_{\mu}$). C-S coupling

$$F_{\mu,\nu} = \frac{1}{\kappa} \varepsilon_{\mu\nu\gamma} J^{\gamma}; \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$$

In this model a wave function $\psi:\mathbb{R}^2\to\mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ} ($\partial_{\mu} \mapsto \partial_{\mu} - iA_{\mu}$). C-S coupling

$$F_{\mu,\nu} = \frac{1}{\kappa} \varepsilon_{\mu\nu\gamma} J^{\gamma}; \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$$

Here $\varepsilon_{\mu\nu\gamma}$ is the antisymmetric symbol and J^{μ} is the *current*

$$J^{\mu} = (\rho, \overrightarrow{J}); \qquad \rho = |\psi|^2, \quad \overrightarrow{J} = \frac{i}{2m} \left(\psi \nabla \overline{\psi} - \overline{\psi} \nabla \psi \right).$$

In this model a wave function $\psi : \mathbb{R}^2 \to \mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ} ($\partial_{\mu} \mapsto \partial_{\mu} - iA_{\mu}$). C-S coupling

$$F_{\mu,\nu} = \frac{1}{\kappa} \varepsilon_{\mu\nu\gamma} J^{\gamma}; \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$$

Here $\varepsilon_{\mu\nu\gamma}$ is the antisymmetric symbol and J^{μ} is the *current*

$$J^{\mu} = (\rho, \vec{J}); \qquad \rho = |\psi|^2, \quad \vec{J} = \frac{i}{2m} \left(\psi \nabla \overline{\psi} - \overline{\psi} \nabla \psi \right).$$

In the static self-dual regime, $\Gamma = -\frac{1}{m\kappa}$, $v = \log |\psi|$ satisfies

$$-\Delta v = \frac{1}{\kappa}e^{2v} - 2\pi \sum_{j=1}^{m} N_j \delta_{p_j},$$

where the p_j 's are the zeroes of ψ (vortices), with order N_j .

In this model a wave function $\psi : \mathbb{R}^2 \to \mathbb{C}$ satisfying the NLS

$$i\psi_t = -\frac{1}{2m}\Delta\psi - \Gamma|\psi|^2\psi$$

is coupled to a Gauge field A_{μ} ($\partial_{\mu} \mapsto \partial_{\mu} - iA_{\mu}$). C-S coupling

$$F_{\mu,\nu} = \frac{1}{\kappa} \varepsilon_{\mu\nu\gamma} J^{\gamma}; \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$$

Here $\varepsilon_{\mu\nu\gamma}$ is the antisymmetric symbol and J^{μ} is the *current*

$$J^{\mu} = (\rho, \vec{J}); \qquad \rho = |\psi|^2, \quad \vec{J} = \frac{i}{2m} \left(\psi \nabla \overline{\psi} - \overline{\psi} \nabla \psi \right).$$

In the static self-dual regime, $\Gamma = -\frac{1}{m\kappa}$, $v = \log |\psi|$ satisfies

$$-\Delta v = \frac{1}{\kappa}e^{2v} - 2\pi \sum_{j=1}^{m} N_j \delta_{p_j},$$

where the p_j 's are the zeroes of ψ (vortices), with order N_j . Self-duality implies that vortices do not interact.

Consider a conformal metric \tilde{g} on Σ

Consider a conformal metric \tilde{g} on Σ : if we set $\tilde{g} = 2e^{2w}g$, then the Gaussian curvature transforms according to the law

$$-\Delta_g w + K_g = K_{\tilde{g}} e^{2w}.$$

Consider a conformal metric \tilde{g} on Σ : if we set $\tilde{g} = 2e^{2w}g$, then the Gaussian curvature transforms according to the law

$$-\Delta_g w + K_g = K_{\tilde{g}} e^{2w}.$$

A Dirac delta on the right-hand side gives a singular metric with conical structure.

Consider a conformal metric \tilde{g} on Σ : if we set $\tilde{g} = 2e^{2w}g$, then the Gaussian curvature transforms according to the law

$$-\Delta_g w + K_g = K_{\tilde{g}} e^{2w}.$$

A Dirac delta on the right-hand side gives a singular metric with conical structure.

For a cone with opening angle $\theta = 2\pi(1 + \alpha)$, the Gaussian curvature on the sides is zero, and it is a Dirac mass or order $-2\pi\alpha$ at the vertex.

Consider a conformal metric \tilde{g} on Σ : if we set $\tilde{g} = 2e^{2w}g$, then the Gaussian curvature transforms according to the law

$$-\Delta_g w + K_g = K_{\tilde{g}} e^{2w}.$$

A Dirac delta on the right-hand side gives a singular metric with conical structure.

For a cone with opening angle $\theta = 2\pi(1 + \alpha)$, the Gaussian curvature on the sides is zero, and it is a Dirac mass or order $-2\pi\alpha$ at the vertex. For standard cones $\alpha \in (-1, 0)$.

From now on suppose for simplicity that there is only one singularity p with weight $\alpha > 0$.

From now on suppose for simplicity that there is only one singularity p with weight $\alpha > 0$.

Let \boldsymbol{w} be a solution of

(1)
$$-\Delta w = \delta_p - 1.$$

From now on suppose for simplicity that there is only one singularity p with weight $\alpha > 0$.

Let \boldsymbol{w} be a solution of

(1)
$$-\Delta w = \delta_p - 1.$$

Clearly, $w(x) \sim -\frac{1}{2\pi} \log |x-p|$ for x close to p.

From now on suppose for simplicity that there is only one singularity p with weight $\alpha > 0$.

Let \boldsymbol{w} be a solution of

(1)
$$-\Delta w = \delta_p - 1.$$

Clearly, $w(x) \sim -\frac{1}{2\pi} \log |x - p|$ for x close to p. Using the substitution $u \mapsto u + 2\pi \alpha w$, we obtain the equivalent problem:

$$(\tilde{E}_{\rho}) \qquad -\Delta u = \rho \left(\frac{h(x)e^{2u}}{\int_{\Sigma} h(x)e^{2u}} - 1 \right); \qquad h(x) \sim dist(x,p)^{2\alpha}.$$

From now on suppose for simplicity that there is only one singularity p with weight $\alpha > 0$.

Let \boldsymbol{w} be a solution of

(1)
$$-\Delta w = \delta_p - 1.$$

Clearly, $w(x) \sim -\frac{1}{2\pi} \log |x - p|$ for x close to p. Using the substitution $u \mapsto u + 2\pi \alpha w$, we obtain the equivalent problem:

$$(\tilde{E}_{\rho}) \qquad -\Delta u = \rho \left(\frac{h(x)e^{2u}}{\int_{\Sigma} h(x)e^{2u}} - 1 \right); \qquad h(x) \sim dist(x,p)^{2\alpha}.$$

 (\tilde{E}_{ρ}) is the Euler-Lagrange equation for $I_{\rho}: H^1(\Sigma) \to \mathbb{R}$ def. as

(2)
$$I_{\rho}(u) = \int_{\Sigma} |\nabla u|^2 + 2\rho \int_{\Sigma} u - \rho \log \int_{\Sigma} h(x) e^{2u}.$$

Recall the classical Moser-Trudinger inequality

$$(\mathsf{M}-\mathsf{T}) \qquad \log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \qquad u \in H^1(\Sigma).$$

Recall the classical Moser-Trudinger inequality

(M-T)
$$\log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \quad u \in H^1(\Sigma).$$

With a weight one has *Troyanov's inequality* ([Troyanov, '91]) (T) $\log \int_{\Sigma} dist(x,p)^{2\alpha} e^{2(u-\overline{u})} \leq \frac{1}{4\pi \min\{1,1+\alpha\}} \int_{\Sigma} |\nabla u|^2 + C.$

Recall the classical Moser-Trudinger inequality

(M-T)
$$\log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \quad u \in H^1(\Sigma).$$

With a weight one has *Troyanov's inequality* ([Troyanov, '91]) (T) $\log \int_{\Sigma} dist(x,p)^{2\alpha} e^{2(u-\overline{u})} \leq \frac{1}{4\pi \min\{1,1+\alpha\}} \int_{\Sigma} |\nabla u|^2 + C.$ (compared to Miyamoto's work here the energy is free)

Recall the classical Moser-Trudinger inequality

(M-T)
$$\log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \quad u \in H^1(\Sigma).$$

With a weight one has *Troyanov's inequality* ([Troyanov, '91]) (T) $\log \int_{\Sigma} dist(x,p)^{2\alpha} e^{2(u-\overline{u})} \leq \frac{1}{4\pi \min\{1,1+\alpha\}} \int_{\Sigma} |\nabla u|^2 + C.$ (compared to Miyamoto's work here the energy is free)

Consequence ([Troyanov, '91]) For $\rho < 4\pi \min\{1, 1 + \alpha\}$ the functional I_{ρ} is coercive and solutions can be found as global minima using the direct methods of Calculus of Variations.

Recall the classical Moser-Trudinger inequality

(M-T)
$$\log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \quad u \in H^1(\Sigma).$$

With a weight one has *Troyanov's inequality* ([Troyanov, '91]) (T) $\log \int_{\Sigma} dist(x,p)^{2\alpha} e^{2(u-\overline{u})} \leq \frac{1}{4\pi \min\{1,1+\alpha\}} \int_{\Sigma} |\nabla u|^2 + C.$ (compared to Miyamoto's work here the energy is free)

Consequence ([Troyanov, '91]) For $\rho < 4\pi \min\{1, 1 + \alpha\}$ the functional I_{ρ} is coercive and solutions can be found as global minima using the direct methods of Calculus of Variations.

Note that for $\alpha < 0$ one has a worse constant since $dist(x, p)^{2\alpha}$ is a singular function.

Recall the classical Moser-Trudinger inequality

(M-T)
$$\log \int_{\Sigma} e^{2(u-\overline{u})} \leq \frac{1}{4\pi} \int_{\Sigma} |\nabla u|^2 + C; \quad u \in H^1(\Sigma).$$

With a weight one has *Troyanov's inequality* ([Troyanov, '91]) (T) $\log \int_{\Sigma} dist(x,p)^{2\alpha} e^{2(u-\overline{u})} \leq \frac{1}{4\pi \min\{1,1+\alpha\}} \int_{\Sigma} |\nabla u|^2 + C.$ (compared to Miyamoto's work here the energy is free)

Consequence ([Troyanov, '91]) For $\rho < 4\pi \min\{1, 1 + \alpha\}$ the functional I_{ρ} is coercive and solutions can be found as global minima using the direct methods of Calculus of Variations.

Note that for $\alpha < 0$ one has a worse constant since $dist(x,p)^{2\alpha}$ is a singular function. For $\alpha > 0$ instead the sharp constant is the same as that for $h \equiv 1$.

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$.

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Perturbative results ([Del Pino-Esposito=Musso, '05]): multipeak solutions in a blow-up regime.

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Perturbative results ([Del Pino-Esposito=Musso, '05]): multipeak solutions in a blow-up regime. For regular case works by Del Pino, Kowalczyk, Musso, Ruf, ...
The case $\rho > 4\pi$

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Perturbative results ([Del Pino-Esposito=Musso, '05]): multipeak solutions in a blow-up regime. For regular case works by Del Pino, Kowalczyk, Musso, Ruf, ...

On-going computation of the L-S degree ([C.C.Chen - C.S. Lin, a first paper in '10]): via a refined blow-up analysis and finite dimensional reductions.

The case $\rho > 4\pi$

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Perturbative results ([Del Pino-Esposito=Musso, '05]): multipeak solutions in a blow-up regime. For regular case works by Del Pino, Kowalczyk, Musso, Ruf, ...

On-going computation of the L-S degree ([C.C.Chen - C.S. Lin, a first paper in '10]): via a refined blow-up analysis and finite dimensional reductions.

Our goal is to develop a global variational strategy to find general critical points of saddle type.

The case $\rho > 4\pi$

Using standard bubbles of the form

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \neq p,$$

it is easy to see that $\inf I_{\rho} = -\infty$. Not much was known about existence of solutions in this case.

Perturbative results ([Del Pino-Esposito=Musso, '05]): multipeak solutions in a blow-up regime. For regular case works by Del Pino, Kowalczyk, Musso, Ruf, ...

On-going computation of the L-S degree ([C.C.Chen - C.S. Lin, a first paper in '10]): via a refined blow-up analysis and finite dimensional reductions.

Our goal is to develop a global variational strategy to find general critical points of <u>saddle type</u>. This could be more direct and more general than L-S theory, as degree cancelations may occur.

Let $\mathcal H$ be an Hilbert space, and $f:\mathcal H\to\mathbb R$ a smooth functional

Let \mathcal{H} be an Hilbert space, and $f : \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels.

Let \mathcal{H} be an Hilbert space, and $f : \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels. A change in topology might suggest the presence of a critical point

Let \mathcal{H} be an Hilbert space, and $f : \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels. A change in topology might suggest the presence of a critical point

Naively, if a < b and $f : \mathcal{H} \to \mathbb{R}$ has no critical points in $\{a \leq f \leq b\}$, then using the gradient flow $\{f \leq b\}$ can be smoothly deformed into $\{f \leq a\}$, keeping $\{f \leq a\}$ fixed

Let \mathcal{H} be an Hilbert space, and $f : \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels. A change in topology might suggest the presence of a critical point

Naively, if a < b and $f : \mathcal{H} \to \mathbb{R}$ has no critical points in $\{a \leq f \leq b\}$, then using the gradient flow $\{f \leq b\}$ can be smoothly deformed into $\{f \leq a\}$, keeping $\{f \leq a\}$ fixed (deformation lemma).

Let \mathcal{H} be an Hilbert space, and $f : \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels. A change in topology might suggest the presence of a critical point

Naively, if a < b and $f : \mathcal{H} \to \mathbb{R}$ has no critical points in $\{a \leq f \leq b\}$, then using the gradient flow $\{f \leq b\}$ can be smoothly deformed into $\{f \leq a\}$, keeping $\{f \leq a\}$ fixed (deformation lemma).

Consequence:

Let \mathcal{H} be an Hilbert space, and $f: \mathcal{H} \to \mathbb{R}$ a smooth functional A general method to finding critical points of saddle type is to look at the topological properties of the sublevels. A change in topology might suggest the presence of a critical point

Naively, if a < b and $f : \mathcal{H} \to \mathbb{R}$ has no critical points in $\{a \leq f \leq b\}$, then using the gradient flow $\{f \leq b\}$ can be smoothly deformed into $\{f \leq a\}$, keeping $\{f \leq a\}$ fixed (deformation lemma).

Consequence: if one level does not deform into another, there should be a critical point between the two.

• We must be careful though: the presence of *asymptotes* might prevent deforming sublevels without critical points in between

• We must be careful though: the presence of *asymptotes* might prevent deforming sublevels without critical points in between

Some compactness criterion is needed (Palais-Smale condition or similar ones)

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ})

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

A standard tool in the field is <u>blow-up analysis</u>: rescale solutions in order to obtain *standard profiles*.

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

A standard tool in the field is <u>blow-up analysis</u>: rescale solutions in order to obtain *standard profiles*. Here they are of two kinds

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

A standard tool in the field is <u>blow-up analysis</u>: rescale solutions in order to obtain *standard profiles*. Here they are of two kinds

Theorem ([Bartolucci-Tarantello, '02]) Suppose u_n are solutions of (\tilde{E}_{ρ_n}) .

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

A standard tool in the field is <u>blow-up analysis</u>: rescale solutions in order to obtain *standard profiles*. Here they are of two kinds

Theorem ([Bartolucci-Tarantello, '02]) Suppose u_n are solutions of (\tilde{E}_{ρ_n}) . Then either u_n stays bounded in $C^2(\Sigma)$ or it blows up k spheres, $k \ge 0$, [plus possibly an AF at p].

• Compactness along flow lines is somehow related to compactness of solutions to (\tilde{E}_{ρ}) (want to avoid *critical points at infinity*)

A standard tool in the field is <u>blow-up analysis</u>: rescale solutions in order to obtain *standard profiles*. Here they are of two kinds

Theorem ([Bartolucci-Tarantello, '02]) Suppose u_n are solutions of (\tilde{E}_{ρ_n}) . Then either u_n stays bounded in $C^2(\Sigma)$ or it blows up k spheres, $k \ge 0$, [plus possibly an AF at p]. If blow-up occurs then one has $\rho_n \to \overline{\rho} = 4k\pi [+4(1 + \alpha)\pi]$.

 $\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1 + \alpha)).$

$$\Lambda := 4\pi\mathbb{N} \cup (4\pi\mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded (and have bounded energy)

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded (and have bounded energy)

(2) the deformation lemma holds true

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded (and have bounded energy)

(2) the deformation lemma holds true (difference in topology of some sublevels implies existence of critical points of I_{ρ})

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded (and have bounded energy)

(2) the deformation lemma holds true (difference in topology of some sublevels implies existence of critical points of I_{ρ})

• Therefore, for $\rho \notin \Lambda$, it is crucial to understand the structure of sublevels of I_{ρ}

$$\Lambda := 4\pi \mathbb{N} \cup (4\pi \mathbb{N} + 4\pi(1+\alpha)).$$

Consequence (compactness): if $\rho \notin \Lambda$, then we have that

(1) solutions of (\tilde{E}_{ρ}) stay bounded (and have bounded energy)

(2) the deformation lemma holds true (difference in topology of some sublevels implies existence of critical points of I_{ρ})

• Therefore, for $\rho \notin \Lambda$, it is crucial to understand the structure of sublevels of I_{ρ}

For the regular case the above compactness theorem has previous counterparts by Y.Li, Shafrir, Ohtsuka, Suzuki, Ricciardi, C.Chen, C.S. Lin, ...

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$.

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 2 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1)$ and that $\rho \in (4\pi(1+\alpha), 8\pi)$.

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 2 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1)$ and that $\rho \in (4\pi(1+\alpha), 8\pi)$. Then problem (E_{ρ}) is solvable for every Σ .

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 2 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1)$ and that $\rho \in (4\pi(1+\alpha), 8\pi)$. Then problem (E_{ρ}) is solvable for every Σ .

Remark ([Bartolucci - Lin - Tarantello, '10]) If $(\Sigma, g) = (S^2, g_0)$ and if $\rho \in (4\pi, 4\pi(1 + \alpha))$ then (E_{ρ}) has no solution

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 2 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1)$ and that $\rho \in (4\pi(1+\alpha), 8\pi)$. Then problem (E_{ρ}) is solvable for every Σ .

Remark ([Bartolucci - Lin - Tarantello, '10]) If $(\Sigma, g) = (S^2, g_0)$ and if $\rho \in (4\pi, 4\pi(1 + \alpha))$ then (E_{ρ}) has no solution, therefore our assumptions are somehow sharp.
Some existence theorems (simple cases)

Theorem 1 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1]$ and that $\rho \in (4\pi, 4\pi(1+\alpha))$. Then, if $\Sigma \not\simeq S^2$, problem (E_{ρ}) is solvable.

Theorem 2 ([M.-Ruiz, '10]) Suppose $\alpha \in (0,1)$ and that $\rho \in (4\pi(1+\alpha), 8\pi)$. Then problem (E_{ρ}) is solvable for every Σ .

Remark ([Bartolucci - Lin - Tarantello, '10]) If $(\Sigma, g) = (S^2, g_0)$ and if $\rho \in (4\pi, 4\pi(1 + \alpha))$ then (E_{ρ}) has no solution, therefore our assumptions are somehow sharp. The proof uses a Pohozaev type identity. Let $L \in \mathbb{R}$ be sufficiently large:

 $\Rightarrow \qquad \{I_{\rho} \leq L\} \text{ has trivial topology} \qquad (L \gg 0)$

 $\Rightarrow \qquad \{I_{\rho} \leq L\} \text{ has trivial topology} \qquad (L \gg 0)$

Corollary If for some large L the *low sublevel* $\{I_{\rho} \leq -L\}$ has non trivial topology, a solution to (\tilde{E}_{ρ}) exists.

The Moser-Trudinger inequality can be improved for functions whose *conformal volume* is distributed into different regions.

The Moser-Trudinger inequality can be improved for functions whose *conformal volume* is distributed into different regions.

Lemma 1 ([W.Chen - C. Li, '91]) Let S_1, S_2 be subsets of Σ satisfying $dist(S_1, S_2) \ge \delta_0$, and let $\gamma_0 > 0$.

The Moser-Trudinger inequality can be improved for functions whose *conformal volume* is distributed into different regions.

Lemma 1 ([W.Chen - C. Li, '91]) Let S_1, S_2 be subsets of Σ satisfying $dist(S_1, S_2) \ge \delta_0$, and let $\gamma_0 > 0$. Suppose that

The Moser-Trudinger inequality can be improved for functions whose *conformal volume* is distributed into different regions.

Lemma 1 ([W.Chen - C. Li, '91]) Let S_1, S_2 be subsets of Σ satisfying $dist(S_1, S_2) \ge \delta_0$, and let $\gamma_0 > 0$. Suppose that

Then $\forall \tilde{\varepsilon} > 0 \quad \exists$ a constant $C = C(\tilde{\varepsilon}, \delta_0, \gamma_0)$ (indep. of u) s.t.

$$\log \int_{\Sigma} e^{2(u-\overline{u})} dV_g \le C + \frac{1}{8\pi - \tilde{\varepsilon}} \int_{\Sigma} |\nabla u|^2 dV_g$$

spreading \Rightarrow better const. in (M-T) \Rightarrow coercivity of I_{ρ}

spreading \Rightarrow better const. in (M-T) \Rightarrow coercivity of I_{ρ} I_{ρ} low \Rightarrow no better const. in (M-T) \Rightarrow no spreading

spreading \Rightarrow better const. in (M-T) \Rightarrow coercivity of I_{ρ}

 I_{ρ} low \Rightarrow no better const. in (M-T) \Rightarrow no spreading

Lemma 2 For any $\varepsilon > 0$ and any r > 0 there exists a large positive $L = L(\varepsilon, r)$ such that for every $u \in H^1(\Sigma)$ with $I_{\rho}(u) \leq -L$ there exists a point $p_u \in \Sigma$ such that $\int_{\Sigma \setminus B_r(p_u)} h(x) e^{2u} dV_g < \varepsilon$.

spreading \Rightarrow better const. in (M-T) \Rightarrow coercivity of I_{ρ}

 I_{ρ} low \Rightarrow no better const. in (M-T) \Rightarrow no spreading

Lemma 2 For any $\varepsilon > 0$ and any r > 0 there exists a large positive $L = L(\varepsilon, r)$ such that for every $u \in H^1(\Sigma)$ with $I_{\rho}(u) \leq -L$ there exists a point $p_u \in \Sigma$ such that $\int_{\Sigma \setminus B_r(p_u)} h(x) e^{2u} dV_g < \varepsilon$.

Therefore, for $\rho < 8\pi$, we obtain a natural continuous map

 $\Psi:\{I_{\rho}\leq -L\}\to \Sigma$

Therefore, for $\rho < 8\pi$, we obtain a natural continuous map

$$\Psi: \{I_{\rho} \leq -L\} \to \Sigma$$

which associates to any u with low energy the corresponding concentration point.

Therefore, for $\rho < 8\pi$, we obtain a natural continuous map

$$\Psi: \{I_{\rho} \leq -L\} \to \Sigma$$

which associates to any u with low energy the corresponding concentration point.

• We want to understand next what is the role of the singularity.

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$.

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

• Note that for $\alpha > 0$ we now have a better constant in front of the Dirichlet norm.

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

• Note that for $\alpha > 0$ we now have a better constant in front of the Dirichlet norm. The proof uses a change of variable and the standard (M-T) inequality.

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

• Note that for $\alpha > 0$ we now have a better constant in front of the Dirichlet norm. The proof uses a change of variable and the standard (M-T) inequality. The constant is sharp, as one can see using modified α -bubbles (giving the AF)

$$\varphi_{\alpha,\lambda}(x) = \log \frac{\lambda^{1+\alpha}}{1+(\lambda|x|)^{2(1+\alpha)}}$$

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

• Note that for $\alpha > 0$ we now have a better constant in front of the Dirichlet norm. The proof uses a change of variable and the standard (M-T) inequality. The constant is sharp, as one can see using modified α -bubbles (giving the AF)

$$\varphi_{\alpha,\lambda}(x) = \log \frac{\lambda^{1+\alpha}}{1+(\lambda|x|)^{2(1+\alpha)}}$$

• The coefficient $\frac{1}{4\pi(1+\alpha)}$ is the one to aim for, but radiality assumption is rather restrictive.

Theorem ([Dolbeault - Esteban - Tarantello, '08]) Suppose u is a radial function of class $H_0^1(D)$, where D is the unit disk of \mathbb{R}^2 , and let $\alpha > -1$. Then there exists a constant C_{α} such that

$$\int_D |x|^{2\alpha} e^{2u} dx \leq \frac{1}{4\pi(1+\alpha)} \int_D |\nabla u|^2 dx + C_\alpha.$$

• Note that for $\alpha > 0$ we now have a better constant in front of the Dirichlet norm. The proof uses a change of variable and the standard (M-T) inequality. The constant is sharp, as one can see using modified α -bubbles (giving the AF)

$$\varphi_{\alpha,\lambda}(x) = \log \frac{\lambda^{1+\alpha}}{1+(\lambda|x|)^{2(1+\alpha)}}.$$

• The coefficient $\frac{1}{4\pi(1+\alpha)}$ is the one to aim for, but radiality assumption is rather restrictive. Our goal is to substitute it with a two-dimensional constraint, which is <u>much</u> more flexible.

A new Improved Moser-Trudinger inequality

Proposition Suppose $\alpha \in (0, 1]$.

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that

A new Improved Moser-Trudinger inequality

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x)e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

A new Improved Moser-Trudinger inequality

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x)e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

provided $u \in \{I_{\rho} \leq -L\}$ and $\beta(u) = p.$

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x) e^{2u} \leq \frac{1}{4\pi(1+\alpha) - \varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

provided $u \in \{I_{\rho} \leq -L\}$ and $\beta(u) = p.$

Idea of the proof.

A new Improved Moser-Trudinger inequality

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x)e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

provided $u \in \{I_{\rho} \leq -L\}$ and $\beta(u) = p.$

Idea of the proof. First of all, set $f = \frac{he^{2u}}{\int he^{2u}}$.

Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x)e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

provided $u \in \{I_{\rho} \leq -L\}$ and $\beta(u) = p.$

Idea of the proof. First of all, set $f = \frac{he^{2u}}{\int he^{2u}}$.

We next define a scale of concentration σ_x at every point x in the following way.
Proposition Suppose $\alpha \in (0, 1]$. Then there exists L > 0 and a (continuous) *barycentric* map $\beta : \{I_{\rho} \leq -L\} \rightarrow \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} h(x)e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

provided $u \in \{I_{\rho} \leq -L\}$ and $\beta(u) = p.$

Idea of the proof. First of all, set $f = \frac{he^{2u}}{\int he^{2u}}$.

We next define a scale of concentration σ_x at every point x in the following way. Fixing a large C > 0 let σ_x be such that

$$\int_{B_x(\sigma_x)} f = \int_{B_x(C\sigma_x)^c} f.$$

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

• Notice that both σ_x and T(x) are continuous (in x and u).

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

• Notice that both σ_x and T(x) are continuous (in x and u).

Lemma There exists $\tau = \tau(C) > 0$ such that

$$\max_{x\in\Sigma} T(x) > 2\tau.$$

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

• Notice that both σ_x and T(x) are continuous (in x and u).

Lemma There exists $\tau = \tau(C) > 0$ such that

$$\max_{x\in\Sigma} T(x) > 2\tau.$$

To see this, we use a covering argument

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

• Notice that both σ_x and T(x) are continuous (in x and u).

Lemma There exists $\tau = \tau(C) > 0$ such that

$$\max_{x\in\Sigma} T(x) > 2\tau.$$

To see this, we use a covering argument (intuitively, there cannot be vanishing at all scales and at all points).

Let us now define

$$T(x) = \int_{B_x(\sigma_x)} f.$$

• Notice that both σ_x and T(x) are continuous (in x and u).

Lemma There exists $\tau = \tau(C) > 0$ such that

$$\max_{x \in \Sigma} T(x) > 2\tau.$$

To see this, we use a covering argument (intuitively, there cannot be vanishing at all scales and at all points).

Define then:

$$\beta: \{I_{\rho} \leq -L\} \rightarrow \Sigma; \qquad \beta(u) = \frac{\int_{\Sigma} [T(x,f) - \tau]^{+} x}{\int_{\Sigma} [T(x,f) - \tau]^{+}}.$$

Recall that

$$\beta(u) = \frac{\int_{\Sigma} [T(x,f) - \tau]^+ x}{\int_{\Sigma} [T(x,f) - \tau]^+}.$$

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}.$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}.$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}.$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

1)
$$\int_{B_y(\overline{\sigma})} f \geq \tau;$$

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x,f) - \tau]^+ x}{\int_{\Sigma} [T(x,f) - \tau]^+}.$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

1)
$$\int_{B_y(\overline{\sigma})} f \ge \tau$$
; **2)** $\int_{B_y(C\overline{\sigma})^c} f \ge \tau$;

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}.$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

1)
$$\int_{B_y(\overline{\sigma})} f \ge \tau$$
; **2)** $\int_{B_y(C\overline{\sigma})^c} f \ge \tau$; **3)** $dist(y,p) \le C\overline{\sigma}$

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}$$

٠

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

Then there exists $y \in \Sigma$ such that

1)
$$\int_{B_y(\overline{\sigma})} f \ge \tau$$
; **2)** $\int_{B_y(C\overline{\sigma})^c} f \ge \tau$; **3)** $dist(y,p) \le C\overline{\sigma}$

Good news: we now have concentration at scale $\overline{\sigma}$ and at distance $\overline{\sigma}$ from the singularity p

Recall that
$$\beta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^+ x}{\int_{\Sigma} [T(x, f) - \tau]^+}$$

Suppose that $\beta(u) = p$, and define $\overline{\sigma}$ as

$$\overline{\sigma} = \sup \left\{ \sigma_x : T(x) \ge \tau \right\}.$$

Then there exists $y \in \Sigma$ such that

1)
$$\int_{B_y(\overline{\sigma})} f \ge \tau$$
; **2)** $\int_{B_y(C\overline{\sigma})^c} f \ge \tau$; **3)** $dist(y,p) \le C\overline{\sigma}$

Good news: we now have concentration at scale $\overline{\sigma}$ and at distance $\overline{\sigma}$ from the singularity p (notice that $\overline{\sigma}$ might not be continuous in u).

With 1)-3) we can now estimate the log of the integral in two ways.

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_y(\overline{\sigma})} |x|^{2\alpha} e^{2u}$$

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_{y}(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_{y}(\overline{\sigma})} |\nabla u|^{2} + 2\alpha \log \overline{\sigma} + \int_{\partial B_{p}(\overline{\sigma})} u.$$

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_y(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_y(\overline{\sigma})} |\nabla u|^2 + 2\alpha \log \overline{\sigma} + \int_{\partial B_p(\overline{\sigma})} u.$$

The second uses the outer inequality

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{ au} + \log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u}.$$

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_{y}(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_{y}(\overline{\sigma})} |\nabla u|^{2} + 2\alpha \log \overline{\sigma} + \int_{\partial B_{p}(\overline{\sigma})} u.$$

The second uses the outer inequality

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{ au} + \log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u}.$$

Setting $v = u + 2\alpha \log |x|$, we estimate the last integral applying (M-T) to v

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_{y}(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_{y}(\overline{\sigma})} |\nabla u|^{2} + 2\alpha \log \overline{\sigma} + \int_{\partial B_{p}(\overline{\sigma})} u.$$

The second uses the outer inequality

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{ au} + \log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u}.$$

Setting $v = u + 2\alpha \log |x|$, we estimate the last integral applying (M-T) to v

$$\log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u} \leq -2\log \overline{\sigma} + rac{1}{4\pi} \int_{B_y(C\overline{\sigma})^c} |
abla v|^2.$$

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_{y}(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_{y}(\overline{\sigma})} |\nabla u|^{2} + 2\alpha \log \overline{\sigma} + \int_{\partial B_{p}(\overline{\sigma})} u.$$

The second uses the outer inequality

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{ au} + \log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u}.$$

Setting $v = u + 2\alpha \log |x|$, we estimate the last integral applying (M-T) to v

$$\log \int_{B_y(C\overline{\sigma})^c} |x|^{2\alpha} e^{2u} \leq -2\log \overline{\sigma} + \frac{1}{4\pi} \int_{B_y(C\overline{\sigma})^c} |\nabla v|^2.$$

The terms $\nabla u \cdot \nabla \log |x|$ and $|\nabla (\log |x|)|^2$ give back the boundary integral $\int_{\partial B_p(\overline{\sigma})} u$ and $\log \overline{\sigma}$ with the right coefficients.

With 1)-3) we can now estimate the log of the integral in two ways. The first uses the inner inequality and a scaling

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{\tau} + \log \int_{B_{y}(\overline{\sigma})} |x|^{2\alpha} e^{2u} \leq C_{\tau} + \frac{1}{4\pi} \int_{B_{y}(\overline{\sigma})} |\nabla u|^{2} + 2\alpha \log \overline{\sigma} + \int_{\partial B_{p}(\overline{\sigma})} u.$$

The second uses the outer inequality

$$\log \int_{\Sigma} h(x) e^{2u} \leq C_{ au} + \log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u}.$$

Setting $v = u + 2\alpha \log |x|$, we estimate the last integral applying (M-T) to v

$$\log \int_{B_y(C\overline{\sigma})^c} |x|^{2lpha} e^{2u} \leq -2\log \overline{\sigma} + rac{1}{4\pi} \int_{B_y(C\overline{\sigma})^c} |
abla v|^2.$$

The terms $\nabla u \cdot \nabla \log |x|$ and $|\nabla (\log |x|)|^2$ give back the boundary integral $\int_{\partial B_p(\overline{\sigma})} u$ and $\log \overline{\sigma}$ with the right coefficients. **q.e.d.**

• Choosing a scale and a point of *maximal concentration* by looking at suitable integrals is a standard procedure in geometric analysis.

• Choosing a scale and a point of maximal concentration by looking at suitable integrals is a standard procedure in geometric analysis. The issue here is to obtain <u>continuity</u> of the barycentric map β , which is fundamental for us.

• Choosing a scale and a point of maximal concentration by looking at suitable integrals is a standard procedure in geometric analysis. The issue here is to obtain <u>continuity</u> of the barycentric map β , which is fundamental for us.

• The new feature of our inequality is that it is scaling invariant.

• Choosing a scale and a point of maximal concentration by looking at suitable integrals is a standard procedure in geometric analysis. The issue here is to obtain <u>continuity</u> of the barycentric map β , which is fundamental for us.

• The new feature of our inequality is that it is <u>scaling invariant</u>. In the previous improvements (to our knowledge) a lower bound on distances was always needed.

• Choosing a scale and a point of maximal concentration by looking at suitable integrals is a standard procedure in geometric analysis. The issue here is to obtain <u>continuity</u> of the barycentric map β , which is fundamental for us.

• The new feature of our inequality is that it is <u>scaling invariant</u>. In the previous improvements (to our knowledge) a lower bound on distances was always needed.

• The assumption $\alpha \leq 1$ is sharp.

• Choosing a scale and a point of maximal concentration by looking at suitable integrals is a standard procedure in geometric analysis. The issue here is to obtain <u>continuity</u> of the barycentric map β , which is fundamental for us.

• The new feature of our inequality is that it is <u>scaling invariant</u>. In the previous improvements (to our knowledge) a lower bound on distances was always needed.

• The assumption $\alpha \leq 1$ is sharp. For $\alpha > 1$ *splitting* the mass gives a worse constant and lowers the functional.

Proof of Theorem 1: $\rho \in (4\pi, 4\pi(1 + \alpha))$

Proof of Theorem 1: $\rho \in (4\pi, 4\pi(1 + \alpha))$

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Proof of Theorem 1: $\rho \in (4\pi, 4\pi(1 + \alpha))$

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty \text{ as } \lambda \to +\infty \quad \text{ uniformly for } x \in \Sigma \setminus B_{\delta}(p)$
For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty$ as $\lambda \to +\infty$ uniformly for $x \in \Sigma \setminus B_{\delta}(p)$, so we obtain a map from $\Sigma \setminus B_{\delta}(p)$ into low sublevels of I_{ρ} .

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty$ as $\lambda \to +\infty$ uniformly for $x \in \Sigma \setminus B_{\delta}(p)$, so we obtain a map from $\Sigma \setminus B_{\delta}(p)$ into low sublevels of I_{ρ} .

Viceversa, the barycentric map β on low sublevels cannot be equal to p, by the improved inequality.

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty$ as $\lambda \to +\infty$ uniformly for $x \in \Sigma \setminus B_{\delta}(p)$, so we obtain a map from $\Sigma \setminus B_{\delta}(p)$ into low sublevels of I_{ρ} .

Viceversa, the barycentric map β on low sublevels cannot be equal to p, by the improved inequality.

Therefore we obtain a reverse map from low sublevels of I_{ρ} into $\Sigma \setminus \{p\} \simeq \Sigma \setminus B_{\delta}(p)$.

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty$ as $\lambda \to +\infty$ uniformly for $x \in \Sigma \setminus B_{\delta}(p)$, so we obtain a map from $\Sigma \setminus B_{\delta}(p)$ into low sublevels of I_{ρ} .

Viceversa, the barycentric map β on low sublevels cannot be equal to p, by the improved inequality.

Therefore we obtain a reverse map from low sublevels of I_{ρ} into $\Sigma \setminus \{p\} \simeq \Sigma \setminus B_{\delta}(p)$.

When Σ is not the sphere $\Sigma \setminus B_{\delta}(p)$ is not contractible, so we obtain that $\{I_{\rho} \leq -L\}$, L large, has non trivial topology.

For $\delta > 0$ small consider the family of functions

$$\varphi_{\lambda,x}(y) := \log \frac{\lambda}{1 + \lambda^2 dist(x,y)^2}; \qquad x \in \Sigma \setminus B_{\delta}(p).$$

Then

 $I_{\rho}(\varphi_{\lambda,x}) \to -\infty$ as $\lambda \to +\infty$ uniformly for $x \in \Sigma \setminus B_{\delta}(p)$, so we obtain a map from $\Sigma \setminus B_{\delta}(p)$ into low sublevels of I_{ρ} .

Viceversa, the barycentric map β on low sublevels cannot be equal to p, by the improved inequality.

Therefore we obtain a reverse map from low sublevels of I_{ρ} into $\Sigma \setminus \{p\} \simeq \Sigma \setminus B_{\delta}(p)$.

When Σ is not the sphere $\Sigma \setminus B_{\delta}(p)$ is not contractible, so we obtain that $\{I_{\rho} \leq -L\}$, L large, has non trivial topology. **q.e.d.**

It is sufficient to modify the previous argument including the point p and using the modified test functions

$$\varphi_{\alpha,\lambda,x}(y) := \log \frac{\lambda^{1+\alpha}}{1+\lambda^2 dist(x,y)^{2(1+\alpha)}}; \qquad x \in \Sigma.$$

It is sufficient to modify the previous argument including the point p and using the modified test functions

$$\varphi_{\alpha,\lambda,x}(y) := \log \frac{\lambda^{1+\alpha}}{1+\lambda^2 dist(x,y)^{2(1+\alpha)}}; \qquad x \in \Sigma.$$

Now one has

 $I_{\rho}(\varphi_{\alpha,\lambda,x}) \to -\infty \text{ as } \lambda \to +\infty \quad \text{ uniformly for } \underline{\text{every }} x \in \Sigma.$

It is sufficient to modify the previous argument including the point p and using the modified test functions

$$\varphi_{\alpha,\lambda,x}(y) := \log \frac{\lambda^{1+\alpha}}{1+\lambda^2 dist(x,y)^{2(1+\alpha)}}; \qquad x \in \Sigma$$

Now one has

 $I_{\rho}(\varphi_{\alpha,\lambda,x}) \to -\infty \text{ as } \lambda \to +\infty \quad \text{ uniformly for } \underline{\text{every }} x \in \Sigma.$

The conclusion follows from the fact that every compact surface is non contractible.

It is sufficient to modify the previous argument including the point p and using the modified test functions

$$\varphi_{\alpha,\lambda,x}(y) := \log \frac{\lambda^{1+\alpha}}{1+\lambda^2 dist(x,y)^{2(1+\alpha)}}; \qquad x \in \Sigma$$

Now one has

 $I_{\rho}(\varphi_{\alpha,\lambda,x}) \to -\infty \text{ as } \lambda \to +\infty \quad \text{ uniformly for } \underline{\text{every }} x \in \Sigma.$

The conclusion follows from the fact that every compact surface is non contractible. **q.e.d.**

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when **a)** $\alpha_i > 0$ for all *i* and Σ is not the sphere.

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

a) $\alpha_i > 0$ for all *i* and Σ is not the sphere. In [Bartolucci-De Marchis-M, '10] using only partial topological information.

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

a) $\alpha_i > 0$ for all *i* and Σ is not the sphere. In [Bartolucci-De Marchis-M, '10] using only partial topological information.

b) $\alpha_i < 0$ for all *i* under further restrictions ([Carlotto-M, '11]).

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

a) $\alpha_i > 0$ for all *i* and Σ is not the sphere. In [Bartolucci-De Marchis-M, '10] using only partial topological information.

b) $\alpha_i < 0$ for all *i* under further restrictions ([Carlotto-M, '11]).

• The real issue is to get an improved inequality for $\alpha > 1$, which should be substantially different.

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

a) $\alpha_i > 0$ for all *i* and Σ is not the sphere. In [Bartolucci-De Marchis-M, '10] using only partial topological information.

b) $\alpha_i < 0$ for all *i* under further restrictions ([Carlotto-M, '11]).

• The real issue is to get an improved inequality for $\alpha > 1$, which should be substantially different.

• In many geometrically relevant situations (prescription of the Gaussian curvature) ρ might belong to the critical set Λ , by the Gauss-Bonnet formula.

For more singularities, when $\rho \notin \Lambda$ (whose definition has to be suitably modified), there are still ways to prove existence when

a) $\alpha_i > 0$ for all *i* and Σ is not the sphere. In [Bartolucci-De Marchis-M, '10] using only partial topological information.

b) $\alpha_i < 0$ for all *i* under further restrictions ([Carlotto-M, '11]).

• The real issue is to get an improved inequality for $\alpha > 1$, which should be substantially different.

• In many geometrically relevant situations (prescription of the Gaussian curvature) ρ might belong to the critical set Λ , by the Gauss-Bonnet formula.

In this case one would need a more refined blow-up analysis, together with some detailed information on the Green's function or some linear combination of different ones.

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1} \end{cases}$$

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1}, \end{cases}$$

possibly with singularities on the right-hand side.

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1}, \end{cases}$$

possibly with singularities on the right-hand side.

Some results are available concerning classification and blow-up analysis of solutions ([Jost-Wang], [Jost-Lin-Wang], ...)

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1}, \end{cases}$$

possibly with singularities on the right-hand side.

Some results are available concerning classification and blow-up analysis of solutions ([Jost-Wang], [Jost-Lin-Wang], ...), but the existence question is almost entirely open.

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1}, \end{cases}$$

possibly with singularities on the right-hand side.

Some results are available concerning classification and blow-up analysis of solutions ([Jost-Wang], [Jost-Lin-Wang], ...), but the existence question is almost entirely open. From many aspects the singular scalar equation seems like a *toy model* for understanding this system.

The study of the selfdual Chern-Simons equations in the non abelian case leads to coupled Toda systems, of the form

$$\begin{cases} -\Delta u_1 + 2\rho_1 - \rho_2 = 2\rho_1 h_1(x)e^{u_1} - \rho_2 h_2(x)e^{u_2}; \\ -\Delta u_2 + 2\rho_2 - \rho_1 = 2\rho_2 h_2(x)e^{u_2} - \rho_1 h_1(x)e^{u_1}, \end{cases}$$

possibly with singularities on the right-hand side.

Some results are available concerning classification and blow-up analysis of solutions ([Jost-Wang], [Jost-Lin-Wang], ...), but the existence question is almost entirely open. From many aspects the singular scalar equation seems like a *toy model* for understanding this system.

• The problem without the self-duality assumption seems for the moment completely out of reach.

Thank you for your attention