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Consider a weak solution of a linear uniformly elliptic equation in
divergence form in an open set U of Rn for n ≥ 2:

Lu := ∂i (aij(x)∂ju) = 0 in U, (1)

where aij = aji are bounded, measurable, real-valued functions.

By a weak solution of (1) we mean that u ∈ H1,2
`oc(U), i.e. ∇u is

locally square-integrable, and satisfies∫
U

aij(x) ∂ju ∂iη dx = 0 for all η ∈ C∞0 (U). (2)

The classical results of De Giorgi (1957) and Nash (1957) show
that u is locally Hölder continuous in U. When the coefficients are
continuous in U, then it is well-known that ∇u ∈ Lp

`oc(U) for
1 < p <∞.

This is even true when the coefficients are in VMO (Di Fazio,
1996).
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If the coefficients are Dini-continuous in U, then u is known to be
continuously differentiable (P. Hartman, A. Wintner, 1955;
M.Taylor, 2000).

We find conditions on the coefficients aij , milder than
Dini-continuity, under which u must be Lipschitz continuous, or
even differentiable, at a given point.
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Square-Dini condition

Fix an interior point of U, which for convenience we shall assume
is the origin, x = 0. Using a change of independent variables, we
may assume that aij(0) = δij . Suppose that

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0, (3)

where ω(r) is a continuous, nondecreasing function for 0 ≤ r < 1
satisfying ω(0) = 0. We do not require the Dini condition on ω,
i.e. r−1ω(r) ∈ L1(0, 1).

Instead we assume that ω satisfies the square-Dini condition:∫ 1

0
ω2(r)

dr

r
<∞. (4)
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Our additional conditions for regularity are derived from a
dynamical system that we shall now describe. Let

R(r) :=

∫
−

Sn−1

(aij(rθ)− naik(rθ)θkθj) ds, (5)

where the slashed integral denotes mean value, r = |x |,
θ = x/|x | ∈ Sn−1. Note that |||R(r)||| ≤ c ω(r), where we use ||| · ||| to
denote the matrix norm. Also note that R need not be symmetric.
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Dynamical system

Consider the dynamical system

dφ

dt
+ R(e−t)φ = 0 for T < t <∞, (6)

where t = − log r and T is sufficiently large. We shall find that the
regularity of weak solutions of (1) is determined by the asymptotic
behavior as t →∞ of solutions of (6).

We say that (6) is uniformly stable as t →∞ if for every ε > 0
there exists a δ = δ(ε) > 0 such that any solution φ of (6)
satisfying

|φ(t1)| < δ for some t1 > 0

satisfies

|φ(t)| < ε for all t ≥ t1.
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In addition, we are interested in the condition that every solution
of (6) is asymptotically constant, i.e.

φ(t)→ φ∞ as t →∞.

These two stability conditions are independent of each other.

On the other hand, it is easy to see that r−1R(r) ∈ L1(0, ε) implies
that (6) is uniformly stable and every solution is asymptotically
constant as t →∞.

In particular, if ω satisfies the Dini condition, then these conditions
are met.
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Main Theorem

We are only concerned with regularity at x = 0, so the coefficients
are not required to be continuous elsewhere.
Theorem Suppose that

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0,

where ω obeys the square-Dini condition and that the dynamical
system (6) is uniformly stable. Then every weak solution
u ∈ H1,2

`oc(U) of ∂i (aij(x)∂ju) = 0 in U is Lipschitz continuous at
x = 0 and

|u(x)− u(0)| ≤ c |x |
r

(∫
−
|y |<r
|u(y)|2 dy

)1/2

for |x | < r/2,

where r is sufficiently small. In addition, if every solution of (6) is
asymptotically constant, then u is differentiable at x = 0 and

∂ju(0) = lim
r→0

n

r

∫
−

Sn−1

u(rθ) θj dsθ.
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Remark. If the coefficients aij are radial functions, then R(r) ≡ 0
and we only require

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0,

and the square-Dini condition to conclude that weak solutions are
differentiable at x = 0.

Moreover, if
aij(x) = a0

ij(|x |) + a1
ij(x),

then the R in (6) is completely determined by a1
ij .

For example, if the a1
ij are Dini continuous then weak solutions are

differentiable even though aij need only be square-Dini continuous.
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Corollaries of Main Theorem

We investigate specific analytic conditions on the coefficients aij
that imply the desired asymptotic properties of the dynamical
system (6).
We introduce the symmetric matrix

S = −1

2
(R + Rt)

and
µ(S) = largest eigenvalue of S.
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We use the theory of dynamical systems to show that if there exist
positive constants ε and K so that∫ r2

r1

µ (S(ρ))
dρ

ρ
< K for all ε > r2 > r1 > 0, (7)

then the dynamical system (6) is uniformly stable.

As a consequence, Main Theorem implies:
Corollary 1 Suppose that

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0,

the square-Dini condition, and (7) are satisfied. Then every weak
solution u of (1) is Lipschitz continuous at x = 0.
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Conditions for differentiability at x =0

As already observed, r−1R(r) ∈ L1(0, ε) is sufficient, but is there a
weaker condition? Let us suppose that for r ∈ (0, ε) the improper
integral∫ r

0
R(ρ)

dρ

ρ
converges (perhaps not absolutely). (8a)

Our examples show that this condition is not sufficient to ensure
that the dynamical system (6) is uniformly stable.

We require an additional condition such as

R(r)

r

∫ r

0
R(ρ)

dρ

ρ
∈ L1(0, ε), (8b)

which is also weaker than assuming R(r) r−1 ∈ L1(0, ε).

We show that (8a) and (8b) together imply not only that the
dynamical system (6) is uniformly stable but its solutions are
asymptotically constant.
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Consequently, Main Theorem yields:

Corollary 2. Suppose that

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0,

the square-Dini condition, as well as both (8a) and (8b) are
satisfied. Then every weak solution u of

∂i (aij(x)∂ju) = 0 in U

is differentiable at x = 0.
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Remark

The condition (8a) can be expressed as a volume integral (in the
sense of Cauchy principal value):∫

|x |<r

(
A(x)− n

A(x)x

|x |
· x

|x |

) dx

|x |n
converges for r ∈ (0, ε).

This form of the condition is better suited for changes of
coordinates, so can be expressed without assumption aij(0) = δij .
However, (8b) is not easily handled in this way. Similarly, the
condition ∫

|x |<ε
|A(x)− I | dx

|x |n
<∞

is sufficient for Corollary 2 and easily generalizes to the case
aij(0) 6= δij . However, it implies r−1R(r) ∈ L1(0, ε), so is less
general than (8a) and (8b).
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One more consequence of Main Theorem. We show that∫ ε

r
µ(S(ρ))

dρ

ρ
→ −∞ as r → 0 (9)

implies that the null solution of the dynamical system (6) is
asymptotically stable. Thus Main Theorem yields:
Corollary 3. Suppose that

sup
|x |=r
|aij(x)− δij | ≤ ω(r) as r → 0,

the square-Dini condition is satisfied, and∫ r2

r1

µ (S(ρ))
dρ

ρ
< K for all ε > r2 > r1 > 0.

Moreover, assume (9). Then every weak solution u of
∂i (aij(x)∂ju) = 0 is differentiable at x = 0 and all derivatives are
zero: ∂ju(0) = 0 for j = 1, . . . , n.
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Main ideas of the proof

We write the solution u in the form

u(x) = u0(|x |) + ~v(|x |) · ~x + w(x), (10)

where

u0(r) :=

∫
−

Sn−1

u(rθ) dsθ, vk(r) :=
n

r

∫
−

Sn−1

u(rθ)θk dsθ, (11)

and w has zero spherical mean and first spherical moments:∫
−

Sn−1

w(rθ) dsθ = 0 =

∫
−

Sn−1

w(rθ)θi dsθ for i = 1, . . . , n. (12)
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Ingradient I

We find that ~v satisfies a second-order differential system
depending upon u0 and w , but it is equivalent to a first-order
system that only depends on w .
Let r = e−t . Consider the 2n × 2n system on (0,∞)

d

dt

(
φ
ψ

)
+

(
0 0
0 −nI

)(
φ
ψ

)
+R(t)

(
φ
ψ

)
= g(t), (13)

where i) R is a 2n × 2n matrix of the form

R(t) =

(
R1(t) R2(t)
R3(t) R4(t)

)
with

∣∣∣∣∣∣Rj(t)
∣∣∣∣∣∣ ≤ ε(t) on 0 < t <∞,

and ii) g = (g1, g2) with g1 ∈ L1(0,∞). We have R1 ∼ R as
t →∞.
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Proposition. Suppose that

dφ

dt
+ R1φ = 0 for t > 0 (14)

is uniformly stable. Then all solutions (φ, ψ) of (13) that satisfy
the “finite-energy condition”∫ ∞

0

(
|ψ|2 + |ψt |2

)
e−nt dt <∞

remain bounded as t →∞, and ψ(t)→ 0.
In addition, if all solutions of (14) are asymptotically constant as
t →∞, then the solution (φ, ψ) of the system (13) also has a
limit:

(φ(t), ψ(t))→ (φ∞, 0) as t →∞.
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Ingradient II

The function w in (10) satisfies the PDE

∆w + [div(Ω∇w)]⊥ + [div(Ω∇(~v · ~x))]⊥ + [div(Ω∇u0)]⊥ = 0,

where

f (rθ)⊥ = f (rθ)−
(∫
−

Sn−1

f (rφ) dsφ + nθk

∫
−

Sn−1

φk f (rφ) dsφ

)
.

and the matrix Ω = (Ωij) has the entries

Ωij = aij − δij
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Proposition. If
−∆w = [div(f )]⊥

then ‖∇w‖p can be estimated in terms of ‖f ‖p and∫
−

Sn−1

w(rφ) dsφ = 0 =

∫
−

Sn−1

φkw(rφ) dsφ
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Combine I and II

Recall that we want

u0(r) ∼ u0 + o(r)

,

~v(r) = O(1) or ~v(r) = ~v(0) + o(1)

and
w(x) = o(|x |).
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We introduce the Lp-means

Mp(w , r) =

(∫
−
|x |<r
|w(x)|p dx

)1/p

and use Morrey’s inequality

sup
|x |<r
|∇w(x)| ≤ c r Mp(∇w , r), p > n,

to show that
Mp(∇w , r) ≤ c w(r). (15)

Then we define a Banach space in which we seek w and use (15)
to show that u0(r) and ~v(r) behave as desired.
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Examples of Gilbarg-Serrin type

Gilbarg and Serrin (1956) considered examples of the form

aij(x) = δij + g(r)θiθj , (16)

where g(0) = 0 but vanishes slowly as r → 0. They used such
examples to show that Dini continuity is essential for their
“extended maximum principle” to hold, but we shall use them to
explore the conditions in Main Theorem and its corollaries.
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We assume that |g(r)| ≤ ω(r) for r near 0 with ω satisfying the
square-Dini condition.

The dynamical system (6) reduces to the scalar equation

dφ

dt
=

n − 1

n
g̃(t)φ, (17)

where g̃(t) = g(e−t). The solution is

φ(t) = φ(0) exp
(∫ t

0
g̃(τ)dτ.
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According to Main Theorem, u is Lipschitz continuous at x = 0
provided (17) is uniformly stable for t > T with T sufficiently
large and this is the case if and only if∫ t

s
g̃(τ) dτ < K for t > s > T . (18)

Moreover, µ(R(r)) = (1− n−1)g(r), so (7) agrees with (18) and
we see that Corollary 1 is sharp for this class of examples.
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On the other hand, solutions of (17) are asymptotically constant if
and only if the improper integral∫ ∞

T
g̃(τ) dτ converges to an extended real number <∞. (19)

Thus Main Theorem implies that u is differentiable at x = 0 if
both (18) and (19) hold. The case∫ ∞

T
g̃(t) dt = −∞ (20)

in (19) pertains to Corollary 3, which is sharp for this class of
examples.
On the other hand, the case that g̃(t) is integrable pertains to
Corollary 2 and coincides with the hypothesis (8a). However, in
Corollary 2 we also require (8b), since the condition (8a) alone
does not imply the uniform stability of (6).
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In fact, this class of examples may be used to show not only this
last statement, but in general that uniform stability is not implied
by every solution being asymptotically constant: we only need to
construct g̃(t) for which (19) holds but (18) fails. If we construct
g̃ for which (20) holds and yet (18) fails, then we see that (7) is
not implied by (9), so both conditions are necessary in Corollary 3.
In this regard, let us observe that the book by W.A.Coppel
Stability and Asymptotic Behavior of Differential Equations, 1965,
gives an explicit example of a function g̃(t) satisfying (20) and yet
(18) fails: there exist tj →∞ for which∫ t2j+1

t2j

g̃(τ) dτ →∞

and yet ∫ t2j+2

t2j+1

g̃(τ) dτ → −∞

more rapidly so that (20) still holds.
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The example by Coppel does not have

g̃(t)→ 0 as t →∞,

but it can be modified to achieve this; in fact, we can even arrange
g̃(t) = O(t−2/3), which implies that g̃ ∈ L2(T ,∞) and so the aij
are square-Dini continuous at x = 0. Moreover, the example can
be modified so that (20) is replaced by the condition that g̃ is
integrable on (0,∞). Thus (18) and (19) are completely
independent conditions, even under the assumption that the
coefficients aij are square-Dini continuous at x = 0.
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Pathological solutions to equations with continuous
coefficients

Consider the equation

−div (A∇u) = 0 in Ω

for Ω ⊂ Rn. If A : Ω→ Rn×n is bounded, measurable and
uniformly elliptic, then one can define a weak solution
u ∈W 1,1

loc (Ω) by requiring that for every ϕ ∈ C 1
0 (Ω)∫

Ω
(A∇u) · ∇ϕ = 0.

J. Serrin showed that the assumption u ∈W 1,2
loc (Ω) is essential in

E. De Giorgi’s result by constructing for every p ∈ (1, 2) a function
u ∈W 1,p

loc (Ω) that solves such an elliptic equation but which is not
locally bounded. In these counterexamples A is not continuous.
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J. Serrin conjectured that if A is Hölder continuous, then any weak
solution u ∈W 1,1

loc (Ω) is in W 1,2
loc (Ω) and one can apply E. De

Giorgi’s theory.

This conjecture was confirmed for u ∈W 1,p
loc (Ω) by R.A. Hager and

R. Ross and for u ∈W 1,1
loc (Ω) by H. Brezis. The proof by Brezis

extends to the case where the modulus of continuity of A

ωA(t) = sup
x ,y∈Ω,|x−y |≤t

|A(x)− A(y)|,

satisfies the Dini condition∫ 1

0

ωA(s)

s
ds <∞.

In the case where A is merely continuous, H. Brezis obtained the
following result.
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Theorem. (H. Brezis) Assume that A ∈ C (Ω;Rn×n) is elliptic. If
u ∈W 1,p

loc (Ω) solves the equation

−div (A∇u) = 0 in Ω

then u ∈W 1,q
loc (Ω) for every q ∈ [p,∞).

H. Brezis asked two questions about the cases p = 1 and q =∞ in
the previous theorem. We answer both questions, with a negative
answer.
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Main assertions

Proposition 1. There exists u ∈W 1,1
loc (B(0, 1)) and an elliptic

A ∈ C (B(0, 1);Rn×n) such that u solves −div (A∇u) = 0 but
u /∈W 1,p

loc (B(0, 1)) for every p > 1.

As a byproduct we obtain

Proposition 2. There exists A ∈ C (B(0, 1);Rn×n) such that the
problem

−div(A∇u) = 0 in B(0, 1)
u = 0 on ∂B(0, 1)

has a nontrivial solution.
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Our construction in Proposition 1 allows to show that the
counterexamples can be esed to obtain the following stronger
assertions.

Proposition 3. There exists u ∈W 1,1
loc (B(0, 1)) and an elliptic

A ∈ C (B(0, 1);Rn×n) such that u solves

−div (A∇u) = 0

and ∇u ∈ (L log L)loc(B(0, 1)) but u /∈W 1,p
loc (B(0, 1)) for every

p > 1.

Concerning the possibility of Lipschitz estimates, we have

Proposition 4. There exists u ∈W 1,1
loc (B(0, 1)) and an elliptic

A ∈ C (B(0, 1);Rn×n) such that u solves

−div (A∇u) = 0

and ∇u ∈W 1,p
loc (B(0, 1)) for every p > 1, ∇u ∈ BMOloc(B(0, 1))

but u /∈W 1,∞
loc (B(0, 1)).
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This shows that ∇u ∈ Lp(B(0, 1)) does not imply
∇u ∈ L∞(B(0, 1/2)) and one can wonder whether it implies
∇u ∈ BMOloc(B(0, 1/2)). The answer is still negative.

Proposition 5. There exists u ∈W 1,1
loc (B(0, 1)) and an elliptic

A ∈ C (B(0, 1);Rn×n) such that u solves

−div (A∇u) = 0

and u ∈W 1,p
loc (B(0, 1)) for every p ∈ (1,∞), but

∇u /∈ BMOloc(B(0, 1)).

The construction of counterexamples is made by explicit formulas,
inspired by the construction of J. Serrin. They can be also
obtained from asymptotic formulas of V. Kozlov and V. Maz’ya.
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