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 The role of the behavior at infinity of the
nonlinearity

e Positivity and Liouville Theorems: Applications to
Schroéedinger equations



A priori estimates of solutions of quasilinear elliptic equations has been a subject of
fundamental and remarkable interest in recent years. For quasilinear elliptic problems,
significant and interesting results are dealing with nonnegative solutions associated to
nonlinearities that grow faster than the differential part.

Recently, Serrin [41] considered quasilinear coercive equations and inequalities with
source term changing sign and proved some interesting Liouville theorems. These re-
sults (see also [14, 15] for related contributions) are consequence of appropriate a priori
estimates on the possible solutions or on suitable functionals of them.

It is well known that when looking for Liouville theorems of non coercive nonlinear
equations or inequalities, the fact that the nonlinearity has definite sign is of fundamental
importance. This is because, in general, canonical examples of this type show that when
the nonlinearity changes sign, the problem may posses infinitely many solutions with no
a priori bound. A canonical example in this direction is the following,

—Au=u"""u onR"Y, (1)
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Indeed, it is well known that if 1 < ¢ < 2£2, N > 2, then (1) admits infinitely many
radial solutions with increasing number of zeroes.
On the other hand, when the problem is coercive, then the situation may be completely

different as the following striking result due to Brezis [6] shows.

Theorem (Brezis) Let ¢ > 1. Ifu € LL (R™) is a distributional solution of

loc
Au> | u on RY, (2)

then u <0 a.e. on RY. In particular if equality holds in (2), then u =0 a.e. on RY.

It is worth pointing out that, besides the quite general functional framework, there
are no assumptions on the behavior of the possible solutions of (2) at infinity.

Brezis’s technique is based on a form of Kato's inequality [24, 6, 2| and on a construc-
tion of a suitable Loewner-Nirenberg barrier function. See |27] and |26, 36].

Some generalizations of Brezis’s result for quasilinear elliptic inequalities of second
order have been obtained in [14, 15, 16] and more recently in a series of papers by Farina
and Serrin |17, 18] and Pucci and Serrin [38].

One common aspect in these recent contributions is that from the technical point of
view, none of them use a form of Kato’s inequality.



Thus one natural question is the extent to which Kato’s inequality might be satisfied
in the quasilinear case. A positive answer to this problem will allow to develop a general
strategy for proving positivity type results as well as Liouville theorems for wide classes
of quasilinear inequalities. This will bring together some aspects of qualitatively different
problems, namely, coercive and non coercive quasilinear elliptic inequalities of second or-
der. To get an idea of some preliminary results contained in this paper we mention the
following special cases of Theorem 3.1 proved in the next section.



Example 1. The p-Laplacian type operator.
Let Q C RY be an open set. Let f € L} (©) and let u € W.?(Q) be a solution of the
inequality,
div (|Vuf ~Vu) > on Q.
Then,
div (‘V?ﬁ’w Vzﬁ) >sien”(u)f  on Q.
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Example 2. The 1-Laplacian type operator.
Let © C RY be an open set. Let f € LL (©) and let u € W,"'(Q) be a solution of the
inequality,
div (Wu\_lw) >f  onfl
Then,
div (Wu+|_1 Vu+) >sign”(u)f o (.
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Example 3. The mean curvature operator in non parametric form.
Let Q C RY be an open set. Let f € L. (Q) and let u € W,-*(Q) be a solution of the

loc

inequality
div vu >f  onfl
1+ [ Vul
Then,
Vut
div ¢ >sign"(u)f  on Q.
1+ |Vut[
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The main goal of this seminar is to discuss some positivity results and Liouville Theorems
for (3).

divy (z 0, Vu)) > flo,u, Vi) on QCRY. 3)

Here © ¢ RY is an open set, &/ : Q x R x R = R' is a Caratheodory vector field,
f:QxRxR = Ris a Caratheodory function and V; is a quite general vector field.

Our study of (3) can be shortly described as follows.

i) Reduction of the problem (8) to an inequality that may posses only nonnegative solutions.

ii) Good a priori bounds of the possible nonnegative solutions of the reduced problem.

iii) Nonexistence of nonnegative solutions of the reduced problem.

iv) Nonexistence of nonnegative and changing sign solutions of (3)
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In the above scheme, we shall see that point i) depends on the weak ellipticity of the
differential operators. On the other hand, roughly speaking, ii) depends on the behavior
of the nonlinearity at infinity. Notice that when dealing with non coercive problems, step
ii) depends only on the behavior of the nonlinearity near zero. See [16].

Altogether the above considerations suggest the following natural problem for elliptic
equations and inequalities.

Problem A: What kind of second order elliptic inequalities of type (3) on RN, admits
only solutions of definite sign?

The possibility to exclude solutions changing sign is of fundamental importance when
looking for Liouville theorems. We point out that an interesting consequence of the
validity of Kato’s inequality is that for a large class of differential inequalities associated

to coercive operators, the non existence of positive solutions implies that all possible
solutions of the given problem must be of definite (negative) sign. In other words, the
problem cannot have oscillatory solutions. This fact is obviously false if the problem is
non coercive, see (1).

In this paper we will give an answer to the Problem A for inequalities of type (3) and
illustrate some general implications. We shall call these consequences reduction princi-
ples. As we shall see during the course, these consequences imply some mazimum and
comparison principles, which are new in our general framework, and some of them are
new even in the Euclidean setting (see Theorems 5.12 and 5.13).

Another point of interest is that our contribution shows that, when looking for Liouville
theorems for coercive inequalities of type (3) with f(x,t¢,&)t > 0, the assumption that
the possible solutions are nonnegative involves no loss of generality:.
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Consequently, to our knowledse, most of the Liouville theorems concerning positive
solutions proved n the [terature for coercive problems, are Indeed results on the non
oscillafory character of the possible soutions of (3).
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1 Notations and definitions

In this paper V and || stand respectively for the usual gradient in RY and the Euclidean
norm. 2 C RY open. Let u € €(RY;R") be a matrix p := (u;;),i=1,...,1,j=1,...,N
and assume that for any ¢« = 1,...,[, 7 = 1,..., N the derivative %,uij € ¢(Q2). For
1 =1,...,1, let X; and its formal adjoint X be defined as

N
0
Xi _Z“W a Zﬁ_ :“w (4)
&' i

and let V, be the vector field defined by
V= (X1,...,X)" = puV,

and
Vo= (X5, XH)T

For any vector field h = (hy,..., )" € €' (Q,R"), we shall use the following notation
divy(h) := div (¢"h), that is

l
divp(h) = = > X/h; = =V} - h.

18/06/11
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Examples of vector fields, which we are interested in, are the usual gradient acting on
[(< N) variables (see Example B.1), vector fields related to Bouendi-Grushin operator (see
Example B.2), Heisenberg-Kohn sub-Laplacian (see Example B.3), Heisenberg-Greiner
operator (see Example B.4), sub-Laplacian on Carnot Groups (see Appendix A). Another
motivation for considering these kind of operators is the following. Let A = (a;;(x))1<ij<n
be a matrix with continuous entries. Consider the linear operator Lu := div (A(z)Vu).
Assume that A is symmetric and positive semidefinite (that is a;; = a;; and A(z){-& > 0
for any € € RY.) With this assumption the operator L is weakly elliptic see Definition 1.1
below. Since A is symmetric and positive semidefinite, there exists a matrix p such that
A = ur u. Let | be the rank of . Since A may be singular, in general we shall have [ < V.
Therefore, setting Vi, := pV and divy(-) := div ("), the operator L can be rewritten
as Lu = divy (Vpu) (formally as the Laplace operator). Finally, even if the entries of the
matrix A are smooth, in general then nothing can be said on the regularity of the entries

of u.
Since we are interested in weak solutions of the problems under consideration, we

shall allow that the entries of the matrix p are singular. However, for simplicity we shall
assume that p;; are continuous.

Let § := (d1,...,0n) be an N-uple of positive real numbers. Let R > 0, we shall
denote by dp the anisotropic dilation 65 : RY — R defined by

Sr(z) = 0p(x1,...,2Nn) == (R™a,..., ROVxy). (5)
The Jacobian of the transformation dy is given by J(dg) = R%, where Q := §; + 0+ -+ -+
ON.

18/06/11 21



The Jacobian of the transformation dp is given by J(d0r) = R¥, where Q := 6, + 5+ - -+
ON.

In Chapter III we shall require that Vj, is pseudo homogeneous of degree 1 with respect
to dilation Og, that there exist §; > 0 (¢ = 1..N) such that

for each ¢ € €' (R") and R > 0: V.(¢(6r(-)) = R(Vo)(0r)(-). (6)

A nonnegative continuous function S : RY — R is called a homogeneous norm, if
i) S(x) =0 if and only if z = 0, and

ii) it is homogeneous of degree 1 with respect to dg (i.e. S(0g(x)) = RS(x)).

An example of homogeneous norm which is differentiable for x # 0 is given by

1

Ss(x) = (Z(IED‘%> , (7)

=1

where d := 0105 - - - 0y and 7 is the lowest even integer such that r > max{d,/d,...,dn/d}.
Notice that if .S is a homogeneous norm differentiable a.e. and Vj, is pseudo homoge-
neous of degree 1 with respect to dg, then |V, S| is homogeneous of degree 0 with respect
to 0r. Hence the function |V, S| is bounded.
In Chapter III we shall fix a homogeneous norm S differentiable away from 0 and we
shall set

= [VLS()] (8)
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We define Bg the ball of radius R > 0 generated by the norm S, i.e. Bg := {z :
S(r) < R} and Apg stands for the annulus By \ Bg. Therefore we have

|Bgr| = / dr = RQ/ dr = csRY and |Ag| = cg(29 — 1)RY.
Br S(x)<1

A canonical framework for which our results apply, see next chapters, is the Euclidean
space (R, |-|) with |-| the Euclidean norm. In this case p = Iy the identity matrix in
N dimension, V;, = V is the isotropic gradient and divy, is the divergence operator. The
dilation 0i defined by

5R(33) = 53(1’1, .. ,ZL’N) = (Rxl, .. ,RZCN),

is isotropic. Here, () = N is the dimension of the space. In this case, v» = 1 and Bp is
the Euclidean open ball of radius R centered at the origin.

Another setting in which our results apply is the framework of Carnot Groups. For
more details see Appendix A. Further examples will be discussed in Appendix B below.
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In what follows o7 : RY xR x R! — R! shall be assumed to be a Caratheodory function,
that is for each t € R and ¢ € R the function .2+, ¢, £) is measurable; and for a.e. z € RY,
Az, -, ) is continuous.

We consider operators L “generated” by .7, that is

L(u)(z) = divy (A z,u(x), Vou(zx))) .

Our model cases are the p-Laplacian operator, the mean curvature operator and some
related generalizations. See Examples 1.3 below.

Definition 1.1 Let o7: RY x R x R — R! be a Caratheodory function. The function <f
is called weakly elliptic if it generates a weakly elliptic operator L 1.e.

Ax, t,€)-£>0 for each t e RY, t eR, € € R,
(WE)
ANx,0,§) =0 or oAx,t,0)=0
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Definition 1.2 Let Q ¢ RY be an open set and let f : QxR xR' — R be a Caratheodory
function. Let p > 1. We say that u € VV;?(Q) is a weak solution of

divy (A x,u, Vu)) > fx,u, Vou) on

if -, u,Vu) € Lf;C(Q), f(,u, Vou) € L (Q), and for any nonnegative ¢ € €5(Q) we
have

—/,Q/(x,u,VLu)-VquZ/f(x,u,VLu)gb.
Q Q
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Definition 2.1 Let «7: RY x R x R' — R be a Caratheodory function. The function <f
15 called weakly elliptic if it generates a weakly elliptic operator L 1i.e.

Ax,t,w)-w >0 for each v € RNt € R,w € R,
(WE)
Ax,0,w)=0 or oAz,t,0)=0

Let p > 1, the function < is called (W-p-C) (weakly-p-coercive) if it generates a
weakly-p-coercive operator L i.e. if there exists a constant a > 0 such that

(Az,t,w)-w) > a|Ax,t,w)f for each z € RV, t € R,w € R. (W-p-C)
Example 2.2
1. Let p > 1. The p-Laplacian operator defined on suitable functions u by,
Ay pu = divL(|VLu|p_2 Viu)
is an operator generated by Az, t,w) = |w|’~> w which is W-p-C and S-p-C.
2. If of is S-p-C, then o is W-p-C.

3. The mean curvature operator in non parametric form

( VLU
\/1 + |VL’LL|2

is generated by oAz, t, w) = \/L2 In this case o7 is W-2-C and of mean curva-
1+{w]

18/06/ure type but it is not S-2-C. 26
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Let p > 1, the function < is called W-p-C (weakly-p-coercive) (see [4]), if </ is (WE)
and it generates a weakly-p-coercive operator L, i.e. if there exists a constant ko > 0 such
that

(2, t,6) - P > ky |2, t,€)]F for each z € RN, t € R, £ € R (W-p-C)

Let p > 1, the function o/ is called S-p-C (strongly-p-coercive) (see [40, 4, 32]), if
there exist ki, ko > 0 constants such that

(A, t,) &) >k |€]F > ko | A, t, )P foreachz e RV, teR, ¢ € R, (Sp-C)
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2.

Examples 1.3 1. Let p > 1. The p-Laplacian operator defined on suitable functions

u by,
Ap,L'U/ — diVL (|VLu|p_2 VLU)

is an operator generated by <A x, t,&) = |E[P"> & which is S-p-C.

If o7 is of mean curvature type, that is o/ can be written as </(x,t,&) := A(|&])E with
A: R — R a positive bounded continuous function (see [31, 4]), then <f is W=-2-C.

The mean curvature operator in non parametric form

Tu := divy, Viu ,

\/1 + | Viul?

is generated by <f(x,t,&) = \/%W In this case </ is W-p-C with 1 < p < 2 and

of mean curvature type but it is not S-2-C.

Let m > 1. The operator

V| ™3 Vu)

T, u = div
(\/1 + | Vu|™

is W-p-C form >p>m/2.

18/06/11
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5.

18/06/11

Let p > 1 and define

N
Lu = Z 82 (\&;u|p_2 &Ju) .

1=1

, lu| Vu
d - -
v (w + vl

The operator L is S-p-C.

The operator defined by

1s W-2-C.
Let v > 0 and define

lu| Vu
\/u2 + ’;—; V|

Bou = v div

The operator B, s related to the so called “tempered diffusion equation” or “rela-

tivistic heat equation” (here v is a constant representing a kinematic viscosity and
c the speed of light). See [5] and [39]. This operator is W-2-C.

Letting v — 400 in B, above, we obtain the operator that appears in the so called
“diffusion equation in transparent media”,

B.u := ¢ div <|T|VZ|U)

See [5]. This operator is obviously (WE).
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3 Quasilinear weakly elliptic operators

In this section we consider a class of quasilinear elliptic operators for which we can prove
a suitable version of inequality (9). We point out that the following results hold for a
wide class of differential operators for which no group invariance is required. Of course
the price to pay for this generality is that we need to consider solutions that belong to the
space VVlif(Q) Under additional assumption on the underline group structure and suit-
able invariance, it is possible to handle solutions that belong to the more natural space
Wb (). See Remark 3.5 for the exact meaning.

Let Q be an open set contained in RY, p > 1 and u € W,.7(Q).
Theorem 3.1 (Kato’s inequality: The quasilinear case) Let < be such that
Ax,t,&)-£>0 for any x € Q, t € R, £ € R. (14)
Let f € L} .(Q) and let u € WP (Q) be a weak solution of

divy, (A x,u, Vou)) > f on $. (15)

Then
divy, (signtu Az, u, Vou)) > signtu f on . (16)

18/06/11
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Moreover if

divy, (Az,u, VLu))=f  on
then

divy, (signu oz, u, VLu)) > signu f - on €L

In particular, if o/ 1s (WE), then u™ is a weak solution of
divy (Az,u”, Viu®)) >sign*u f - on Q.
If in addition o7 is odd 1.e.
e, =1, =) = —alx,1,),
and u 1s a solution of (17), then |u| satisfies,

divy, (oA, [u|, VL, |u])) > signu f on Q.

(17)

(18)

(19)

(20)

1)

31



The proof of Kato’s inequality is based on the following:

Lemma 3.2 Let o satisfy (14). Let f € L} (Q) and let u € W,P(Q) be a weak solution
of

divy (A, u, Viu)) > f on
Let v € €*(R) be nonnegative and such that v, are bounded. Then,

[ o [ e Vi) Vw0 < - [ oo, Vi) G 2. (22
Q Q Q
In particular if v > 0, we have

divy (y(w) e x,u, Vou)) > y(u)f  on €. (23)

Moreover if
divy, (A z,u, Vou))=f  on Q, (24)

then (23) holds provided v' > 0 regardless the nonnegativity assumption on 7.
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Proof of Theorem 3.1. In order to prove (16) it suffices to approximate sign®™ with
a family of nonnegative smooth bounded functions which are nondecreasing and with
bounded derivative.

To this end we introduce,

2 arctan(t/e))z, if t>0;
elt) = {o ift<0.

Then 0 < 7. < 1 and v(t) — sign™(t). Applying Lemma 3.2, from (23) with 7 replaced
by 7. we obtain,

/Q Fre(u) < - / o)z, u, Vi) - Vi (27)

Passing to the limit € — 0 in (27), by Lebesgue dominated convergence theorem we finally
obtain (16), i.e.

/ sign (u) fop < — / sign™ (u) Az, u, VLu) - V. (28)
Q Q
In addition, if «/is (WE) from the identity

sign® (u) Az, u, Viu) = Az, u", Vout) on Q,

inequality (19) follows.
The proof of (18) follows once again by applying the above argument to the family of
functions

Ye(t) := %arctan(t/e).
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4 Examples

Inequality (19) holds for all (WE) operators, in particular for all operators listed in Exam-
ples 1.3. In this section we illustrate in detail some classes of operators for which Kato’s
inequality holds.

4.1 p-Laplacian type operators
Let f € L.(92) and let u € W,.7(2) be a solution of the inequality,

Lyu := divy, (|VLu|p*2 VLu) > f on S).

Then,
Lyut > signt(u) f on 2.

In particular if V7, is the Euclidean gradient V and u &€ VVllof(Q) is a weak solution of
Apyu > f on €2,
then ut € W,\7(Q) is a weak solution of
Ayut > signt(u) f on 2. (34)

As a consequence of (34), we have the following. See [41, 17] for a different proof under
stronger assumption on the solutions.
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Proposition 4.1 Let ¢ >p—1> 0. Ifu € W P(RY) N LL (RY) is a weak solution of

C loc
Apu > |ul" u on RY, (35)
then u < 0 a.e. on RY. In particular, if in (35) the equality sign holds, then u =0 a.e.
on RV,
Proof. Let ¢ > p — 1 and set

RP
ur(x) := < x € Bp,

(Rp/<p—1> _ \x\p/@’l))a

with
p 0 of g <1,
o= T B=19 ap o _ )
q—p 1 -1 uof q>1,

and the positive constant c satisfies ¢? 71! = (%)p_l max{/N,p(a+ 1)}.
p JE—
The function ug is a slight modification of the Loewner-Nirenberg [27] function used

by Brezis in his original argument [6] for p = 2. It is easy to check that for R > 0, ug is
a solution of the inequality

—Apur +uf >0 on Bpg.
Indeed
Apuy ( ap

p—1
p J—
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Now, since
cRB—p/(p—1)

B (1_ GRS 1))

_ Rﬁ—ap/(p—l)ul(M)
[0 R Y

for R > 1 we have

ApuR _ Rﬂ—ap/ p—l)R_p(A Ul)(|l’|/R) < R(l—q)(,@—ap/(p—l))—p <1
ul RaB=ep/(=D)y(|x| /R) - -

Let u € WEP(RM) N LY (RY) be a weak solution of (35).

Applying inequality (34) it follows that, in the weak sense we have,
Ayut > (ut)e on RY.

Since u™ is p-subharmonic, from [29] we deduce u* € L3 (R"Y). By the weak comparison
principle we deduce that, for any R > 1 we have u™ < ug a.e. on Bg. Since ur — 0 for

R — +o00, it follows that ut < 0 a.e. on RY. This completes the proof. O
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The reduction principles

Throughout the following sections, unless otherwise stated, (2 stands for an open subset
contained in RY and .7is (WE).

5 The role of positive solutions

In this section we are going to develop the main ideas that we shall use throughout this
paper when studying quasilinear elliptic inequalities of coercive type. It is known [16],
that dealing with non coercive problems of the form,

— divy (A x,v, VLv)) > f(x,v), v>0, on RV, (36)

where f: RY xR — R is a nonnegative function, the existence or nonexistence of positive
solutions in a suitable functional space is determined only by the behavior of the non
linearity f near zero. On the other hand in the coercive case, that is

divy (@A x, v, VL)) > g(z,v) on RY, (37)

and ¢ : RY x R — R is a given function, a first step for the understanding the solutions
set, is to reduce our problem to an inequality with solutions having a definite sign. A
remarkable fact is that this reduction is always possible for weakly elliptic quasilinear
inequalities. Even though, as we shall see during the course, this reduction leads to
nontrivial problems in finding good a priori estimates on the possible nonnegative solutions
of (37).

In keeping with the notation and terminology introduced above, we have.
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Theorem 5.1 Let f: QxR x R — R be a Caratheodory function satisfying

f(x,0,) =0 or f(z,t,0)=0, (38)

Let p > 1 and let X C I/Vllof(Q) be a set such that if u € X then ut € X. Assume that

the problem
divy (A x,v, Vv)) > f(z,v, VL) v>0 on €, (39)

has no nontrivial weak solutions in X.
Then any weak solution of the problem

divy, (A z,u, Vyu)) > f(x,u, Viu) u e X, (40)

1S nonpositive, 1.e.
u(z) <0 ae x€Q.

Proof. Let u € X be a solution of (40). By inequality (19) and by hypothesis (38) it
follows that

divy, (Az, ut, Vou™)) > signtu f(z,u, Viu) = f(z,u™, Viu)  on Q.

Hence u™ € X is a nonnegative solution of (39). Thus u™ = 0 a.e. on €. This completes
the proof. O
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In what follows for a given function &: {2 X R X R! — R!, we shall denote with o7
the function o : Q x R x R' — R’ defined by

o (v,t,€) = —adl(w, —t, ). (41)

Notice that if «7is weakly elliptic or W-p-C or S-p-C then o/ has the same properties.
Moreover if @ is odd (see (20)), then & = .

An immediate implication of the above theorems is the following obvious consequence
for non coercive problems.

Theorem 5.3 Let f: Q x R x R" = R be a Caratheodory function satisfying (38). Let

p>1andlet X C WP(Q) be a set such that if u € X then —u,ut € X. Assume that
the problem

divy, (E(w,v,VLv)) > f(z,—v,—V0) v>0 on (42)

has no nontrivial weak solutions in X.
Then any weak solution of the problem

— divy, (A x,u, Vou)) > f(x,u, Viu) on Q, ueX, (43)

1S monnegative, i.e.
u(x) >0 ae x€
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Proof. Let u € X be a solution of (43). The function w := —u € X is a solution of
divy, (y(x,v,VLv)) > f(x,—v,—Vpv) on Q, velX.

Since 7 is weakly elliptic and f satisfies (38) we are in the position to apply Theorem
5.1, which yields w < 0 on 2. This completes the proof. O

Theorem 5.4 Let f: Q) xR — R be a Caratheodory function satisfying (38) and set

if(ﬂ; taf) ::‘—Zf(ﬂ% —‘t,“f)-

Letp > 1 and let X C WEP(Q) be a set such that if u € X then —u,u™ € X. Assume
that the problems,

divy, (Az, v, Vpv)) = f(z,0,Vpv),  ©v=0, on Q, (44)

divy, (y(aj,v, VLU)) > f(x,v, Vpv), v>0, on (), (45)

have no nontrivial weak solutions in X.
Then the problem

divy, (A z,u, Vou)) = f(x,u, Viu) on Q0 ueX, (46)
has no nontrivial weak solutions.
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Proof. Let u € X be a solution of (43). The function w := —u € X is a solution of
divy, (E(x,v, VLU)) > f(x,—v,—Vv) on Q, veX.

Since .27 is weakly elliptic and f satisfies (38) we are in the position to apply Theorem
5.1, which yields w < 0 on 2. This completes the proof. O

Theorem 5.4 Let f: Q) xR — R be a Caratheodory function satisfying (38) and set

:f<377t7£) ::'_Zf(l% __ta__f)‘

Let p > 1 and let X C W,oP(Q) be a set such that if u € X then —u,ut € X. Assume
that the problems,

divy (Az,v, Vo)) = f(z,0,Vv),  v=0, on Q, (44)

divy, (E(m,v, VLv)) > f(z,v, Vi), v>0, on (45)

have no nontrivial weak solutions in X.
Then the problem

divy, (Ax,u, Vou)) = f(z,u, Vou) on Q wueX, (46)

has no nontrivial weak solutions.
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5.1 Applications: maximum and comparison principles

Although it is not exactly the direction in which we have been going, it seems appropriate
to include here some interesting examples and applications of the reduction ideas.

Let Q € RY be an open set and let u,v € L}, .(Q2). In what follows the inequality u < v
in 0€) should be understood in the sense that for every ¢ > 0 there exists a neighborhood
V' of 02 such that for a.e. x € V we have u(z) < v(z) +e.

Moreover we shall need of the following hypothesis on V.
If O c RY is an open connected set and V,u =0 = u = const on O. (47)

This assumption obviously holds if V, = V, the standard Euclidean gradient. It also
holds in Carnot group setting as well as in all the examples of Appendix B except for the
gradient of [ variables, see Example B.1. A general condition assuring the validity of (47)
is related to the Hormander condition and to Caratheodory-Chow-Rashevsky theorem,
see [8].

18/06/11

42



Theorem 5.7 (The weak maximum principle) Let o7 be weakly elliptic such that for
a.e.x € €2,
if Ax,t,§) =0 then t=0or =0. (48)

Assume that (47) holds.
Let p > 1 and let u € WP(Q) be a weak solution of

loc

divy, (A z,u, Vou)) >0 on €.

Suppose that ) CC Q and u <0 on 0Y. Then u <0 a.e. on V.

Theorem 5.8 (The weak comparison principle) Let ) C RY be a bounded open set.
Let of be a monotone function. Let f,g: QxR — R be Caratheodory functions such that

f(z,t) > g(x,t), ae. v €, teR, (50)

and at least one of them is nondecreasing with respect to t variable. Assume that (47)
holds and one of the following conditions

1. of is strictly monotone;
2. f(x,t) or g(x,t) is increasing with respect to t variable;

1s satisfied.
Let u,v € WP(Q) be such that

— divy, (Ax,v, Vo)) + g(x,v) > —divy (Ax,u, Viu)) + f(x,u). (51)

If u < v on 09, then u < v a.e. in €.
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Theorem 5.9 (A generalized weak maximum principle) Let Q C R” be a bounded
open set and (47) holds. Suppose that there exists a Caratheodory function G : QxR — R
and a constant X > 0 such that for any nonnegative v € WP (Q) we have G(-,v(-)) €
LY(Q) and

/ Ax,v, V) - Vo > X/ G(x,v) for any v >0, ve W,P(Q). (54)
0 Q

Assume that either (48) holds or
i e W) 0> 0020 = /G<x,v)>o. (55)
0

Let g : Q x R = R be a Caratheodory function such that g(x,0) = 0, and there exists
¢y > 0 such that 0 < g(z,t)t < ¢,G(x,t) fort > 0. Let u € W'(Q) be a weak solution of
divy (A x,u, Vou)) + Ag(a,u) >0, onQ,  uw<0 on 0

i) If A < cy/), thenu <0 a.e. on .
ii) If X = ¢, /X and the constant X in (54) is not achieved in W,(Q), then u <0 a.e.
on (2.
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The following Hardy inequality will play an important role in what follows (see [12] for
the proof and several other results).

Theorem 5.11 Let p > 1. Let d : QQ — R be a nonnegative non constant measurable
function and o € R, a # 0 such that

AP |V d|P, e VPV 1 dPt e L ().
If —L,(d*) > 0 in the weak sense, then for every u € 6, () we have

(Ial (p—l))p/Q Jul” NLd‘pde/QWmedx, (57)

P r
In particular:

1. If Vy, is the horizontal gradient on a Carnot group G and S is a homogeneous norm
—Q
such that LpSiTl = cdy® on G with Q > p > 1, then

NP p
<u) / M IV, S|P dx < / \Voul’ de, wu € D}J’p(G)AL, (58)
p g OF G

p
where the constant (%) 18 sharp and it is not achieved.

2. If the first column of the matriz w is such that 11 = 1 and pp = 0 for k = 2..0°
and ) 1s bounded in the x1 direction, then there exists ¢ > 0 such that

cp/\u\pgf\vw\p, e E(Q) (59)
Q Q
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Some direct consequences of Theorem (5.9) are the following.

Theorem 5.12 Let V;, be the horizontal gradient on a Carnot group G. Let QQ > p > 1

and let S be a homogeneous norm such that LpSz;_Tci2 =cdy on G.
Let Q C G be a bounded open set. Let u € W,;P(Q) be a weak solution of

VS|P
S

with A < (%)p. Then v <0 a.e. on .

L,u+ A lulP?u>0 on Q, u <0 on 01,

Another simple application of Theorem (5.9) is the following.

Theorem 5.14 Let V be the Euclidean gradient on RY . Let Q@ < RY be a bounded open
set with Lipschitz boundary and p > 1. Set

O(x) := dist(x,0N) x € (2.

Then there exists N(2,p) > 0 such that if X\ < X(Q2,p) and u € W'P(Q) is a weak

solution of
ul” " u

Apu+)‘uTZO on €2, uw <0 on 0L,
then uw < 0 a.e. on 2. Moreover, 0 < \(€2,p) < (%)p;

The proof is based on the Hardy inequality

/Q|Vu|p > /\(Q,p)/Q 'gf, (60)

It is known that the best constant A(€2,p) in (60) is such that A(£2,p) < (;%)p and if
Q2 is convex then A(2,p) = (7%1)1’. See [30]. Notice that if A = A(€, p), then the above

theorem holds provided A(€2, p) is not achieved. For further information on (60) we refer
to [1, 30, 12, 25] and the references therein.

18/06/11 46



A priori estimates, positivity results
and Liouville theorems

In what follows we shall assume that .o is W-p-C with p > 1. Throughout all sections,
except Section 10, we shall assume that the vector field V, satisfies (6), that is it homo-
geneous of degree one with respect to a dilation di as specified in Section 1. However for
convenience of the reader we state our assumptions at the beginning of each sections.

10 General a priori estimates

Let Q C RY be an open set. Let V € L (Q) be nonnegative and let <7 be W-p-C with
p > 1. The following preliminary lemmata will play an important role in the proof of our
main result (see Theorem 10.5 below).

Lemma 10.1 Let g € L}, () be nonnegative and let u € W,-P(Q) be a weak solution of

loc

divy (@2, u, Vou)) + Vul~! > g, u>0, on €. (94)



Let s > 1. Ifust?~t € L] (Q), then

loc
gu®, @z, u,Vou) - Vou vt € L, . (Q) (95)

and for any nonnegative ¢ € €, (Q) we have,

p
/9u5¢+613/£f($,u, Vi) - Viu u8_1¢§CQSl_p/US+p_1M+/Vus+p_1¢7 (96)
Q 0 Q Q

gr—t
where ¢c; =1 — 29%2 >0, cg = ]% and € > 0 is sufficiently small.

Remark 10.2 i) Notice that form the above result it follows that if u € VV;S(Q) 1S a
weak solution of (94), then gu € L] ().

loc

i) The above lemma still holds if we replace the function g € L, () with a regular
Borel measure on €.

Remark 10.3 i) The above lemma holds for s > 0. Indeed if 0 < s < 1 the proof follows
the same arguments as above. To this end in (97) it is enough to choose v := vy, (u + §)
where 7, is defined by (98).

i) If V<0, then the assumption u*™P~1 € L} (Q), is not needed for the validity of

loc

(95). Indeed what that really matters is us™*~1 € L] (S) where S is the support of V.

loc

This remark will be useful when dealing with inequalities on unbounded set.
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Let a : €2 — R be a nonnegative measurable function. Let u be weak solution of
divy (A x,u, Vou)) + VuP™t > a(x)u?, uw>0, on Q. (99)

The main strategy to obtain a priori estimates is to use the family of test functions
u®¢ where o« > 0 is a suitable constant that will be chosen according to our needs. See
[31]. However, a priori it is not clear why, after multiplying the inequality by u®¢, this
family is admissible, i.e. why u?t® € L} (£2). A sufficient condition for the admissibility
of the family u®¢ is contained in the following.

Lemma 10.4 Let u be a weak solution of (99) with ¢ > p — 1. Assume that there exists

@ > 1 such that a” +rT € L} ().
If1 <a<a, then
aud™ u*tPt e L (), (100)

and for any nonnegative ¢ € %”01 (Q2), the following inequalities hold

/auq+a¢+clo¢/£f(x,u, VL’LL) 'VL’LL ua—l(bg 02a1—p/ a+p— 1|VL¢1| /V o-+p— 1¢,
Q Q Q PP
(101)

/ audtp 4 cloz/ A, u, Viu) - Viu u* 1o <
Q Q

1/x VAP X!
coat P (/auq+o‘§b> A Lgb,' . a” pr +/Vua+p_1¢, (102)
s s PPX T Q

where x 1= a‘f;al, X = (ﬁ;ﬁ and S is the support of Vi¢.

In particular of

for any C CC Q2 : essirclfa > 0,

then for any o > 0, we have au?™™ € L}, ().
18/06/11

49



Theorem 10.5 Let u be a weak solution of (99) with ¢ > p—1 and V < 0. Assume that
there eists @ > 1 such that a”+»71 € L,.(Q).
Then
aut™ u*tP e [ (Q),
and for any 1 < o < @ and for any nonnegative ¢ € %, (Q) the inequalities (101), (102)
hold and

IVLoIPX atpm
T T (106)

/ aut¢ < (el P)X
0

qta

where x' = o
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11 Universal a priori estimates

In this section  C RY is an open set, V, is the horizontal gradient on a Carnot group
G and #/is S-p-C (see Definition 1.1). We shall denote with |-|, a homogeneous norm on

G.

Theorem 11.1 Let ¢ > p—1 and ¢ > 0. Assume that f € E(R) satisfies f(t) > ct? for
t > 0. Then there exists a constant C = C(f, G, /) > 0 such that if u is a weak solution

of
divy, (A x,u, Vou)) + B(x,u, Vpu) > f(u) on Q, (108)

with B(x,t,&) <0 fort >0, then
w(z) < Cdist(x, Q) T»r a.e. x € Q. (109)
In particular if u 1s a weak solution of
divy (Ax,u, Vou)) + B(x,u, Vou) = f(u), on Q. (110)
with B(x,t, )t <0 and f(t)t > ct?™ fort € R, then

lu(z)| < Cdist(z,00) »1  ae x €. (111)
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Remark 11.2 In general, inequality (109) is sharp as the following examples show.

For q > <55 the function u(x) := c|z| a1, for a suitable ¢ > 0, is a solution of

Au=u? on RY\ {0}

For q > 1 the function u(x) := ca:l_q%l, for a suitable c > 0 is a solution of

Au=u? on ]0,+oo[xRV 1

12 Some Liouville theorems for coercive inequalities

In this section we study Liouville theorems for a class of quasilinear elliptic inequalities
on RV,

Recently, a wide class of weakly elliptic quasilinear problems were also considered
by Farina and Serrin [18]and Pucci and Serrin [38], where sharp interesting cases were
handled. The main technique we use throughout this section, is a combination of three
ingredients: the Kato inequalities (16) and (18), a slight modification of the test functions
method together with an idea introduced in [31].

More precisely, we shall consider problems of the type

divy, (Ax,u, Vou)) + V(@) |ul’ > v = a(z)f(u) on RY, (114)

where V < 0 and a : RV — R is a nonnegative measurable function. The proof or our
main results will be organized in two steps. The first is to apply Kato’s inequality (16)
and (18) to (114) reducing the problem to the study of the nonnegative solutions of

divy (Az,u, Vou)) > a(z)u?, u>0, onRY. (115)
18/06/11



A second one will be the application of a priori estimates proved in Section 10 to (115).
These estimates depend on two parameters a and R. By using an idea first introduced in
31, see proof of Theorem 4.1], we can choose « large enough and then by letting R — +o0
we conclude.

We point out that when dealing with equations or inequalities other fine techniques
based on Keller and Osserman ideas ([26] and [36] respectively) are available. However,
the application of these later ideas need special stronger assumptions on the differential
operator and on the nonlinearity. For recent contribution see [33, 20, 28|.

Throughout this section we shall assume that .o7is W-p-C with p > 1, the vector field
V,, satisfies (6) (that is V;, is homogeneous of degree one with respect to a dilation dg as
specified in Section 1) and |-|; stands for a homogeneous norm.
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Theorem 12.1 Let V € L (RY) be such that V < 0. Suppose that f € €(R) satisfies

loc

f(t) > ct, for t >0,

at+p—1
where ¢ > p—1 and ¢ > 0. Assume that there exists @ > 1 such that a a»1 € LL (RV)

loc
and
.. _p_9ta _oatp—1
liminf R pq—p+1/ a” Pt < 400. (116)
R—>+OO AR

Let u be a weak solution of
divy, (A x,u, Viu)) + V() |[ul’ " u > a(z) f(u) on RY. (117)

Then u <0 a.e. on RY.
Moreover if
feyt>clt™  teR,

and u 15 a weak solution of the equation
divy, (A, u, Vou)) + V(2) [ulP?u = a(z) f(u) on RY, (118)

thenu=0 a.e. on RV,
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Theorem 12.4 Let o/ = o/(x,Viu) and let V € L2 (RY) be such that V < 0. Assume

loc

that there exist ¢ > p — 1 and @ > 1 such that o T € L} .(RY) and (116) holds.
Suppose that f € €(R) satisfies
t
lim inf /) > 0. (120)
t—+oco 14

Then,
1. If u is a weak solution of inequality (117), then w < max(Z(f) U{0})" a.e. on RY.

2. If V=0 and u is a weak solution of inequality (117), then uw < max Z(f) a.e. on
RY.

3. If V=0 and f is positive, then inequality (117) has no weak solutions.

4. If V=0 and u is a weak solution of equation (118) with f satisfying

. f(@) . f(#)
l%r_>n+1cr>10f W > 0, htrilfip W <0, (121)

then,
min Z(f) <u <max Z(f) a.e. on RY,
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Corollary 12.6 Let of = o/(x,Viu) and V € LS. (RY) be such that V < 0. Let a be a
continuous positive function satisfying

a(z) > clz|’  for |z|, large,
with 8 < p. Let f € ¢(R) be such that (120) holds for some ¢ > p — 1. Then,
1. If u is a weak solution of inequality (117), then u < max(Z(f)U {0}) a.e. on RY.

2. If V=0 and u is a weak solution of inequality (117), then v < max Z(f) a.e. on
RY.

3. If V=0 and f is positive, then inequality (117) has no weak solutions.
4. If V=0 and u is a weak solution of equation (118) with f satisfying (121), then,

min Z(f) <u <maxZ(f) a.e. on R".
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Theorem 12.10 Assume that Vi, is the usual gradient V on RY or the horizontal gradient
on the Heisenberg group H" (= R***t = RY). Let f € E€(R) be such that:

+o0 t P
for some ¢ > 0 f is nondecreasing, positive on [c, +oo[ and / (/ f(s) ds) dt < 4o00.

(124)
Assume that V € L (RY) satisfies V < 0.
Then,
1. If u 1s a weak solution of
divy, (|VulP ™ Vieu) + V(z) [uP " u > f(u) on RY, (125)
then w < max(Z(f)U{0}) a.e. on R".
2. If V=0 and v is a weak solution of (125), then u < max Z(f) a.e. on RY.
3. If V.=0 and f is positive, then (125) has no weak solutions.
4. If u 1s a weak solution of
divy, (|Vyul"™ Viu) = f(u) on RY, (126)

18/06/11
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min Z(f) < u < max Z(f) a.e. on RY.
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15 Schrodinger’s equations and inequalities

In this section we shall study nonexistence of solutions of Schrodinger’s type equations of

the form
divy (Az,u, Vou)) + AV (@) |[ulf?u = a(x)|u| u  on RY, (152)

where .&7'is W-p-C and a,V and A will be specified during the course.
Similar problems have been studied in the semilinear case in [7], where nonexistence
of solutions of the equation

Au+ AV (z)u = f(z,u) on RY\ {0}, (153)

was proved by reducing to an o.d.e. inequality by applying the spherical mean operator
to (153) and using some convexity argument. For our problem (152), a radial reduction in
general is not applicable even if the differential operator is linear. So we need to proceed
differently.

Being interested in nonexistence theorem for (152), by reduction principles it is enough
to consider possible nonnegative solutions. Our results allow us to consider, as special
case in the Euclidean setting,

1 c

V(z) = —7, a(r) = —5 for |z| large.
2] 2]
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Considering a more general operator we shall require that

k
a(z) > c v for |x|; large, (154)
mL
" P
Cl‘ B > V(x) > 02‘ B for |x|, large, (155)
L

and a Hardy’s inequality holds for the weight V', that is there exists Ay > 0 such that

[ 1wt =3 [ Vier gorany o€ (") (156)
RN RN

In what follows, for simplicity, we deal with locally bounded solutions in the setting of
Carnot groups. We note that if the function &7'is S-p-C and V belongs to Lgép (RY) or
to the Morrey space M@/?P=)(R") then the positive solutions of (152) belongs L (R™).
This is due to the fact that for S-p-C operator a weak Harnack inequality holds. See [29]
for the Euclidean case and [9] for the Carnot group setting.

In this section we endow R” with a group law such that it becomes a Carnot group.
As usual, V;, stands for the horizontal gradient as described in Appendix A.

The validity of (156) with V' =?/|-|] is established among other Hardy inequalities
n [12].

We notice that in view of the reduction principles stated in Chapter II, it suffices to
study nonnegative solutions of the inequality related to (152). Notice that the case A <0
has been considered in Section 12. Hence, in what follows we shall focus our attention to

the case A > 0.
18/06/11
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Theorem 15.1 Let Q > p > 1. Let o/ be S-p-C and let a,V € L} (RY) be nonnegative

functions satisfying (154) and (155) with p > v > 60 and p > h > k > 0. Assume that

(156) holds and let X be such that 0 < A < Agky where Ay is the best constant in (156)

and ky is the constant structure appearing in the definition of S-p-C (see Definition 1.1).
Let u € WLlfoc(RN) N L2 (RY) be a weak solution of

loc

divy, (A, u, Vou)) + AV (2)uP ™ > a(z)ul, u >0, on RY. (157)

If

Q—p ’

where xo > 1 is the unique solution of the equation

p—1<q<

($_1+p>p)\:x)\Hklpp7 lea

then au =0 a.e. on RY. Moreover, if a > 0 or if A\ < Agky, then w =0 a.e. on RY.

An interesting consequence of Theorem 5.1 is the following.

Corollary 15.2 Assume that <7, a, V', X\ and q satisfy the hypotheses of Theorem 15.1.
Let u e W2 (RN N L2 (RY) be a weak solution of

L,loc loc
divy, (Ax, u, Vou)) + AV (@) [ulP>u > a(z) |u]” ", on RY. (159)

Then au < 0 a.e. on RY. Moreover, if \ < A\gky, then u <0 a.e. on RV,
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