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Introduction

A priori estimates of solutions of quasilinear elliptic equations has been a subject of

fundamental and remarkable interest in recent years. For quasilinear elliptic problems,

significant and interesting results are dealing with nonnegative solutions associated to

nonlinearities that grow faster than the differential part.

Recently, Serrin [41] considered quasilinear coercive equations and inequalities with

source term changing sign and proved some interesting Liouville theorems. These re-

sults (see also [14, 15] for related contributions) are consequence of appropriate a priori
estimates on the possible solutions or on suitable functionals of them.

It is well known that when looking for Liouville theorems of non coercive nonlinear

equations or inequalities, the fact that the nonlinearity has definite sign is of fundamental

importance. This is because, in general, canonical examples of this type show that when

the nonlinearity changes sign, the problem may posses infinitely many solutions with no

a priori bound. A canonical example in this direction is the following,

−∆u = |u|q−1 u on RN . (1)
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Indeed, it is well known that if 1 < q < N+2
N−2 , N > 2, then (1) admits infinitely many

radial solutions with increasing number of zeroes.

On the other hand, when the problem is coercive, then the situation may be completely

different as the following striking result due to Brezis [6] shows.

Theorem (Brezis) Let q > 1. If u ∈ Lq
loc(R

N
) is a distributional solution of

∆u ≥ |u|q−1 u on RN , (2)

then u ≤ 0 a.e. on RN . In particular if equality holds in (2), then u ≡ 0 a.e. on RN .

It is worth pointing out that, besides the quite general functional framework, there

are no assumptions on the behavior of the possible solutions of (2) at infinity.

Brezis’s technique is based on a form of Kato’s inequality [24, 6, 2] and on a construc-

tion of a suitable Loewner-Nirenberg barrier function. See [27] and [26, 36].

Some generalizations of Brezis’s result for quasilinear elliptic inequalities of second

order have been obtained in [14, 15, 16] and more recently in a series of papers by Farina

and Serrin [17, 18] and Pucci and Serrin [38].

One common aspect in these recent contributions is that from the technical point of

view, none of them use a form of Kato’s inequality.

Thus one natural question is the extent to which Kato’s inequality might be satisfied

in the quasilinear case. A positive answer to this problem will allow to develop a general

strategy for proving positivity type results as well as Liouville theorems for wide classes

of quasilinear inequalities. This will bring together some aspects of qualitatively different

problems, namely, coercive and non coercive quasilinear elliptic inequalities of second or-

der. To get an idea of some preliminary results contained in this paper we mention the

following special cases of Theorem 3.1 proved in the next section.

Example 1. The p-Laplacian type operator.
Let Ω ⊂ RN

be an open set. Let f ∈ L1
loc(Ω) and let u ∈ W 1,p

loc (Ω) be a solution of the

inequality,

div
�
|∇u|p−2 ∇u

�
≥ f on Ω.

Then,

div

���∇u+
��p−2 ∇u+

�
≥ sign

+
(u)f on Ω.

Example 2. The 1-Laplacian type operator.
Let Ω ⊂ RN

be an open set. Let f ∈ L1
loc(Ω) and let u ∈ W 1,1

loc (Ω) be a solution of the

inequality,

div
�
|∇u|−1 ∇u

�
≥ f on Ω.

Then,

div

���∇u+
��−1 ∇u+

�
≥ sign

+
(u)f on Ω.
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Example 3. The mean curvature operator in non parametric form.
Let Ω ⊂ RN be an open set. Let f ∈ L1

loc(Ω) and let u ∈ W 1,2
loc (Ω) be a solution of the

inequality

div



 ∇u�
1 + |∇u|2



 ≥ f on Ω.

Then,

div



 ∇u+

�
1 + |∇u+|2



 ≥ sign+(u)f on Ω.

We note that the conclusion of Example 1, enable us to prove the analogue of Brezis’s
theorem for the corresponding inequality (2) associated to the p-Laplacian operator by
using the original Brezis’s idea [6]. See Proposition (4.1) below and the recent contribution
by Farina and Serrin [17, 18] and the authors [14, 15, 16] for a different proof of this special
case. More generally, consider an inequality of the type

divL (A(x, u,∇Lu)) ≥ f(x, u,∇Lu) on Ω ⊂ RN . (3)

Here Ω ⊂ RN is an open set, A : Ω × R × Rl → Rl is a Caratheodory vector field,
f : Ω× R× Rl → R is a Caratheodory function and ∇L is a quite general vector field.

The main goal of this paper is to prove positivity type results as well as Liouville
theorems for (3). Our study of (3) can be shortly described as follows.

i) Reduction of the problem (3) to an inequality that may posses only nonnegative solutions.

ii) Good a priori bounds of the possible nonnegative solutions of the reduced problem.

iii) Nonexistence of nonnegative solutions of the reduced problem.

iv) Nonexistence of nonnegative and changing sign solutions of (3)

In the above scheme, we shall see that point i) depends on the weak ellipticity of the
differential operators. On the other hand, roughly speaking, ii) depends on the behavior
of the nonlinearity at infinity. Notice that when dealing with non coercive problems, step
ii) depends only on the behavior of the nonlinearity near zero. See [16].

Altogether the above considerations suggest the following natural problem for elliptic
equations and inequalities.

Problem A: What kind of second order elliptic inequalities of type (3) on RN , admits
only solutions of definite sign?

The possibility to exclude solutions changing sign is of fundamental importance when
looking for Liouville theorems. We point out that an interesting consequence of the
validity of Kato’s inequality is that for a large class of differential inequalities associated
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to coercive operators, the non existence of positive solutions implies that all possible

solutions of the given problem must be of definite (negative) sign. In other words, the

problem cannot have oscillatory solutions. This fact is obviously false if the problem is

non coercive, see (1).

In this paper we will give an answer to the Problem A for inequalities of type (3) and

illustrate some general implications. We shall call these consequences reduction princi-
ples. As we shall see during the course, these consequences imply some maximum and
comparison principles, which are new in our general framework, and some of them are

new even in the Euclidean setting (see Theorems 5.12 and 5.13).

Another point of interest is that our contribution shows that, when looking for Liouville

theorems for coercive inequalities of type (3) with f(x, t, ξ) t ≥ 0, the assumption that

the possible solutions are nonnegative involves no loss of generality.

Consequently, to our knowledge, most of the Liouville theorems concerning positive

solutions proved in the literature for coercive problems, are indeed results on the non

oscillatory character of the possible solutions of (3).

This paper is organized as follows. In Chapter I we prove some variants of Kato’s

inequality for general classes of linear and quasilinear operators, which include as spe-

cial case operators acting (roughly speaking) on Carnot groups. We will illustrate these

inequalities with some canonical examples.

The goal of Chapter II is to point out one of the main consequence of the inequali-

ties proved in the preceding chapter namely the reduction principles. These results are

described in detail in the related sections as well as some applications that will have

important consequences in the following chapters.

In Chapter III, which is the core of the present work, we focus our attention on

general a priori estimates of nonnegative solutions of coercive inequalities. Since we are

mainly interested in Liouville theorems, we have chosen to consider classes of differential

inequalities which are sufficiently general to illustrate the typical difficulties encountered

during the course avoiding non essential generalizations. Obviously more general problems

can be considered. In these respects, the reader may refer to the recent interesting work

by Serrin [41] and Farina and Serrin [17, 18] where, by using different set of ideas, a deep

and detailed study of various completely coercive problems is presented. This chapter

contains among other things some applications to a class of Schrödinger type equations,

generalizing some of the results by Benguria, Lorca and Yarur [7] to the quasilinear case.

We end this paper with some appendices that contain some basic facts on structures,

that include the Carnot group setting, which are used throughout this work [19, 8, 10].

Note. The results of this paper were announced by the second Author to the meeting:
Giornata di lavoro in ricordo di Bruno Pini, Bologna, November 26, 2010, Dipartimento
di Matematica dell’ Università di Bologna.
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calling uη a mollifier of u related to the homogeneous norm N .

It is easy that check that if u ∈ L1
loc(Ω), then

uη → u as η → 0 in L1
loc(Ω).

See [4].
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Chapter I

Some variants of the Kato inequality

1 Notations and definitions

In this paper ∇ and |·| stand respectively for the usual gradient in RN
and the Euclidean

norm. Ω ⊂ RN
open. Let µ ∈ C(RN

;Rl
) be a matrix µ := (µij), i = 1, . . . , l, j = 1, . . . , N

and assume that for any i = 1, . . . , l, j = 1, . . . , N the derivative
∂

∂xj
µij ∈ C(Ω). For

i = 1, . . . , l, let Xi and its formal adjoint X∗
i be defined as

Xi :=

N�

j=1

µij(ξ)
∂

∂ξj
, X∗

i := −
N�

j=1

∂

∂ξj
(µij(ξ)·) , (4)

and let ∇L be the vector field defined by

∇L := (X1, . . . , Xl)
T
= µ∇,

and

∇∗
L := (X∗

1 , . . . , X
∗
l )

T .

For any vector field h = (h1, . . . , hl)
T ∈ C 1

(Ω,Rl
), we shall use the following notation

divL(h) := div
�
µTh

�
, that is

divL(h) = −
l�

i=1

X∗
i hi = −∇∗

L · h.

Examples of vector fields, which we are interested in, are the usual gradient acting on

l(≤ N) variables (see Example B.1), vector fields related to Bouendi-Grushin operator (see

Example B.2), Heisenberg-Kohn sub-Laplacian (see Example B.3), Heisenberg-Greiner

operator (see Example B.4), sub-Laplacian on Carnot Groups (see Appendix A). Another

motivation for considering these kind of operators is the following. Let A = (aij(x))1≤i,j≤N

be a matrix with continuous entries. Consider the linear operator Lu := div (A(x)∇u).
Assume that A is symmetric and positive semidefinite (that is aij = aji and A(x)ξ · ξ ≥ 0

for any ξ ∈ RN
.) With this assumption the operator L is weakly elliptic see Definition 1.1

below. Since A is symmetric and positive semidefinite, there exists a matrix µ such that

A = µT µ. Let l be the rank of µ. Since A may be singular, in general we shall have l ≤ N.
Therefore, setting ∇L := µ∇ and divL(·) := div

�
µT ·

�
, the operator L can be rewritten

as Lu = divL (∇Lu) (formally as the Laplace operator). Finally, even if the entries of the

matrix A are smooth, in general then nothing can be said on the regularity of the entries

of µ.
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Since we are interested in weak solutions of the problems under consideration, we

shall allow that the entries of the matrix µ are singular. However, for simplicity we shall

assume that µij are continuous.

Let δ := (δ1, . . . , δN) be an N -uple of positive real numbers. Let R > 0, we shall

denote by δR the anisotropic dilation δR : RN → RN
defined by

δR(x) = δR(x1, . . . , xN) := (Rδ1x1, . . . , R
δNxN). (5)

The Jacobian of the transformation δR is given by J(δR) = RQ, where Q := δ1+δ2+ · · ·+
δN .

In Chapter III we shall require that ∇L is pseudo homogeneous of degree 1 with respect
to dilation δR, that there exist δi > 0 (i = 1..N) such that

for each φ ∈ C 1
(RN

) and R > 0 : ∇L(φ(δR(·))) = R(∇Lφ)(δR)(·). (6)

A nonnegative continuous function S : RN → R+ is called a homogeneous norm, if

i) S(x) = 0 if and only if x = 0, and

ii) it is homogeneous of degree 1 with respect to δR (i.e. S(δR(x)) = RS(x)).
An example of homogeneous norm which is differentiable for x �= 0 is given by

Sδ(x) :=

�
N�

i=1

(xr
i )

d
δi

� 1
rd

, (7)

where d := δ1δ2 · · · δN and r is the lowest even integer such that r ≥ max{δ1/d, . . . , δN/d}.
Notice that if S is a homogeneous norm differentiable a.e. and ∇L is pseudo homoge-

neous of degree 1 with respect to δR, then |∇LS| is homogeneous of degree 0 with respect

to δR. Hence the function |∇LS| is bounded.
In Chapter III we shall fix a homogeneous norm S differentiable away from 0 and we

shall set

ψ := |∇LS(·)| (8)

We define BR the ball of radius R > 0 generated by the norm S, i.e. BR := {x :

S(x) < R} and AR stands for the annulus B2R \BR. Therefore we have

|BR| =
�

BR

dx = RQ

�

S(x)<1

dx = cSR
Q

and |AR| = cS(2
Q − 1)RQ.

A canonical framework for which our results apply, see next chapters, is the Euclidean

space (RN , |·|) with |·| the Euclidean norm. In this case µ = IN the identity matrix in

N dimension, ∇L = ∇ is the isotropic gradient and divL is the divergence operator. The

dilation δR defined by

δR(x) = δR(x1, . . . , xN) := (Rx1, . . . , RxN),
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is isotropic. Here, Q = N is the dimension of the space. In this case, ψ ≡ 1 and BR is
the Euclidean open ball of radius R centered at the origin.

Another setting in which our results apply is the framework of Carnot Groups. For
more details see Appendix A. Further examples will be discussed in Appendix B below.

In what follows A : RN × R × Rl → Rl shall be assumed to be a Caratheodory
applications, that is for each t ∈ R and ξ ∈ Rl the function A(·, t, ξ) is measurable; and
for a.e. x ∈ RN , A(x, ·, ·) is continuous.

We consider operators L “generated” by A, that is

L(u)(x) = divL (A(x, u(x),∇Lu(x))) .

Our model cases are the p-Laplacian operator, the mean curvature operator and some
related generalizations. See Examples 1.3 below.

Definition 1.1 Let A : RN × R× Rl → Rl be a Caratheodory function. The function A
is called weakly elliptic if it generates a weakly elliptic operator L i.e.

A(x, t, ξ) · ξ ≥ 0 for each x ∈ RN , t ∈ R, ξ ∈ Rl,

A(x, 0, ξ) = 0 or A(x, t, 0) = 0
(WE)

Let p ≥ 1, the function A is called W-p-C (weakly-p-coercive) (see [4]), if A is (WE)
and it generates a weakly-p-coercive operator L, i.e. if there exists a constant k2 > 0 such
that

(A(x, t, ξ) · ξ)p−1 ≥ k2 |A(x, t, ξ)|p for each x ∈ RN , t ∈ R, ξ ∈ Rl. (W-p-C)

Let p > 1, the function A is called S-p-C (strongly-p-coercive) (see [40, 4, 32]), if
there exist k1, k2 > 0 constants such that

(A(x, t, ξ) · ξ) ≥ k1 |ξ|p ≥ k2 |A(x, t, ξ)|p
�
for each x ∈ RN , t ∈ R, ξ ∈ Rl. (S-p-C)

Definition 1.2 Let Ω ⊂ RN be an open set and let f : Ω×R×Rl → R be a Caratheodory
function. Let p ≥ 1. We say that u ∈ W 1,p

loc (Ω) is a weak solution of

divL (A(x, u,∇Lu)) ≥ f(x, u,∇Lu) on Ω,

if A(·, u,∇u) ∈ Lp�

loc(Ω), f(·, u,∇Lu) ∈ L1
loc(Ω), and for any nonnegative φ ∈ C1

0(Ω) we
have

−
�

Ω

A(x, u,∇Lu) ·∇Lφ ≥
�

Ω

f(x, u,∇Lu)φ.

Examples 1.3 1. Let p > 1. The p-Laplacian operator defined on suitable functions
u by,

∆p,Lu = divL
�
|∇Lu|p−2 ∇Lu

�

is an operator generated by A(x, t, ξ) := |ξ|p−2 ξ which is S-p-C.
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A(x, 0, ξ) = 0 or A(x, t, 0) = 0
(WE)
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that
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Examples 1.3 1. Let p > 1. The p-Laplacian operator defined on suitable functions
u by,
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|∇Lu|p−2 ∇Lu
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is an operator generated by A(x, t, ξ) := |ξ|p−2 ξ which is S-p-C.
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�
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�
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2. If A is of mean curvature type, that is A can be written as A(x, t, ξ) := A(|ξ|)ξ with
A : R → R a positive bounded continuous function (see [31, 4]), then A is W-2-C.

3. The mean curvature operator in non parametric form

Tu := divL



 ∇Lu�
1 + |∇Lu|2



 ,

is generated by A(x, t, ξ) := ξ√
1+|ξ|2

. In this case A is W-p-C with 1 ≤ p ≤ 2 and

of mean curvature type but it is not S-2-C.

4. Let m > 1. The operator

Tmu := div

�
|∇u|m−2 ∇u�
1 + |∇u|m

�

is W-p-C for m ≥ p ≥ m/2.

5. Let p > 1 and define

Lu :=
N�

i=1

∂i
�
|∂iu|p−2 ∂iu

�
.

The operator L is S-p-C.

6. The operator defined by

div

�
|u|∇u

|u|+ |∇u|

�

is W-2-C.

7. Let ν > 0 and define

Bνu := ν div



 |u|∇u�
u2 + ν2

c2 |∇u|2



 .

The operator Bν is related to the so called “tempered diffusion equation” or “rela-
tivistic heat equation” (here ν is a constant representing a kinematic viscosity and
c the speed of light). See [5] and [39]. This operator is W-2-C.

8. Letting ν → +∞ in Bν above, we obtain the operator that appears in the so called
“diffusion equation in transparent media”,

B∞u := c div

�
|u|∇u

|∇u|

�

See [5]. This operator is obviously (WE).
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This implies the pointwise convergence, as � → 0, of γ�(t) → t+ and γ�
�(t) → sign

+t.
Finally by Lemma 2.3 we have

�

Ω

γ�(u)∆Gφ ≥
�

Ω

γ�
�(u) f φ,

and by Lebesgue’s theorem we obtain

�

Ω

u+
∆Gφ ≥

�

Ω

sign
+u f φ.

The proof of (10) follows from a similar argument as above, so we shall omit it. ✷

Remark 2.4 Theorem 2.2 holds if we replace the function sign
+ and u+ respectively with

sign
+
h (t) :=

�
1 if t > h;

0 if t ≤ h;

and u+
h := (u−h)+ where h ∈ R. To this end we can argue as in the proof of Theorem 2.2

replacing γ�(t) with γ�(t− h).

3 Quasilinear weakly elliptic operators

In this section we consider a class of quasilinear elliptic operators for which we can prove

a suitable version of inequality (9). We point out that the following results hold for a

wide class of differential operators for which no group invariance is required. Of course

the price to pay for this generality is that we need to consider solutions that belong to the

space W 1,p
loc (Ω). Under additional assumption on the underline group structure and suit-

able invariance, it is possible to handle solutions that belong to the more natural space

W 1,p
L,loc(Ω). See Remark 3.5 for the exact meaning.

Let Ω be an open set contained in RN , p ≥ 1 and u ∈ W 1,p
loc (Ω).

Theorem 3.1 (Kato’s inequality: The quasilinear case) Let A be such that

A(x, t, ξ) · ξ ≥ 0 for any x ∈ Ω, t ∈ R, ξ ∈ Rl. (14)

Let f ∈ L1
loc(Ω) and let u ∈ W 1,p

loc (Ω) be a weak solution of

divL (A(x, u,∇Lu)) ≥ f on Ω. (15)

Then
divL

�
sign

+u A(x, u,∇Lu)
�
≥ sign

+u f on Ω. (16)



18/06/11	   31	  

L. D’Ambrosio, E. Mitidieri – A priori estimates and reduction principles 16

Moreover if
divL (A(x, u,∇Lu)) = f on Ω, (17)

then
divL (sign u A(x, u,∇Lu)) ≥ sign u f on Ω. (18)

In particular, if A is (WE), then u+ is a weak solution of

divL
�
A(x, u+,∇Lu

+)
�
≥ sign+u f on Ω. (19)

If in addition A is odd i.e.

A(x,−t,−ξ) = −A(x, t, ξ), (20)

and u is a solution of (17), then |u| satisfies,

divL (A(x, |u| ,∇L |u|)) ≥ sign u f on Ω. (21)

The proof relies on the following lemma.

Lemma 3.2 Let A satisfy (14). Let f ∈ L1
loc(Ω) and let u ∈ W 1,p

loc (Ω) be a weak solution
of

divL (A(x, u,∇Lu)) ≥ f on Ω.

Let γ ∈ C1(R) be nonnegative and such that γ, γ� are bounded. Then,

�

Ω

fγ(u)φ+

�

Ω

A(x, u,∇Lu) ·∇Lu γ�(u)φ ≤ −
�

Ω

A(x, u,∇Lu) ·∇Lφ γ(u). (22)

In particular if γ� ≥ 0, we have

divL (γ(u)A(x, u,∇Lu)) ≥ γ(u)f on Ω. (23)

Moreover if
divL (A(x, u,∇Lu)) = f on Ω, (24)

then (23) holds provided γ� ≥ 0 regardless the nonnegativity assumption on γ.

Proof. For simplicity we shall omit the arguments of A. So we shall write A instead of
A(x, u,∇Lu). Let γ : R → R be a nonnegative C1(R) function such that γ, γ� are bounded
by a constant M . Let uη := u � mη be a mollified family of the solution u. Choosing
γ(uη)φ, as test function, from the definition of weak solution we get,

�

Ω

fγ(uη)φ ≤ −
�

Ω

A ·∇Lφ γ(uη)−
�

Ω

A ·∇Luη γ�(uη)φ.

Now, it is easy to check that the following claims hold,
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i) |fγ(uη)φ| ≤ |f |φM ∈ L1(Ω)

ii) |A ∇Lφγ(uη)| ≤ |A| |∇Lφ|M ∈ L1
loc(Ω)

iii) |A ∇Luηγ�(uη)φ| ≤ |A|M |∇Luη| with |A| ∈ Lp�

loc(Ω), and ∇Luη → ∇Lu in Lp
loc(Ω),

2

A γ�(uη) → A γ�(u) in Lp�

loc(Ω). (25)

Since A ∈ Lp�

loc(Ω) we have the following pointwise convergence

γ�(uη) → γ�(u),

and
|A γ�(uη)| ≤ |A|M ∈ Lp�

loc(Ω).

Thus, �

Ω

fγ(u)φ+

�

Ω

A ·∇Lu γ�(u)φ ≤ −
�

Ω

A ·∇Lφ γ(u).

If γ� ≥ 0, from (14) we get

�

Ω

fγ(u)φ ≤ −
�

Ω

A ·∇Lφ γ(u). (26)

This proves (23).
If u is a solution of (24) then the same proof above applies regardless the nonnegativity

of γ. ✷

Proof of Theorem 3.1. In order to prove (16) it suffices to approximate sign+ with
a family of nonnegative smooth bounded functions which are nondecreasing and with
bounded derivative.

To this end we introduce,

γ�(t) :=

��
2
π arctan(t/�)

�2
, if t ≥ 0;

0 if t < 0.

Then 0 ≤ γ� < 1 and γ�(t) → sign+(t). Applying Lemma 3.2, from (23) with γ replaced
by γ� we obtain, �

Ω

fγ�(u)φ ≤ −
�

Ω

γ�(u)A(x, u,∇Lu) ·∇Lφ. (27)

2This follows from the fact that since ∇L = µ∇ and µ has continuous entries and ∇uη → ∇u in
Lp
loc(Ω).
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Passing to the limit � → 0 in (27), by Lebesgue dominated convergence theorem we finally
obtain (16), i.e.

�

Ω

sign+(u)fφ ≤ −
�

Ω

sign+(u)A(x, u,∇Lu) ·∇Lφ. (28)

In addition, if A is (WE) from the identity

sign+(u) A(x, u,∇Lu) = A(x, u+,∇Lu
+) on Ω,

inequality (19) follows.
The proof of (18) follows once again by applying the above argument to the family of

functions

γ�(t) :=
2

π
arctan(t/�).

✷

Remark 3.3 Under the hypotheses of Theorem 3.1, inequality (16) holds by replacing
sign+ with sign+

h . More precisely, if A = A(x, ξ) and A(x, 0) = 0, and u ∈ W 1,p
loc (Ω) is a

weak solution of (15) then for any h ∈ R, u+
h is a weak solution of

divL
�
A(x,∇Lu

+
h )
�
≥ sign+

h u f on Ω. (29)

This fact follows from the proof of Theorem 2.2 by replacing γ� with γ�(t− h).

The following result is fairly easy to prove.

Theorem 3.4 Let A = A(x, ξ) be (WE). Let u ∈ W 1,p
loc (Ω) be a weak solution of

divL(A(x,∇Lu)) ≥ f on Ω. (30)

Then for any h ∈ R, u+
h is a weak solution of

divL
�
A(x,∇Lu

+
h )
�
≥ sign+

h u f on Ω. (31)

Remark 3.5 If ∇L is the horizontal vector field in a Carnot group, then Theorem 3.1
and Lemma 3.2 hold for solutions that belong to the wider space

W 1,p
L,loc(Ω) := {u ∈ Lp

loc(Ω) : |∇Lu| ∈ Lp
loc(Ω)}.

Remark 3.6 Theorem 2.2 deals with L1
loc(Ω) solution of

∆Gu ≥ f in Ω,

while Theorem 3.1 allows to consider W 1,2
loc (Ω) solutions of the above inequality.
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If we wish to compare the solutions u and v of the inequalities





divL (A(x, u,∇Lu)) ≥ f on Ω,

divL (A(x, v,∇Lv)) ≤ g on Ω,

(32)

the following may be useful.

Theorem 3.8 Let A : Ω× R× Rl → Rl be monotone Caratheodory function. Let f, g ∈
L1
loc(Ω) and let u, v be weak solution of

−divL (A(x, v,∇Lv)) + g ≥ −divL (A(x, u,∇Lu)) + f on Ω.

Let γ ∈ C 1(R) be such that 0 ≤ γ(t), γ�(t) ≤ M , then

divL (γ(u− v)(A(x, u,∇Lu)− A(x, v,∇Lv))) ≥ γ(u− v)(f − g) on Ω.

Moreover

divL
�
sign+(u− v)(A(x, u,∇Lu)− A(x, v,∇Lv))

�
≥ sign+(u− v)(f − g) on Ω. (33)

The proof is a slight modification of the proof Theorem 3.1. We omit the details.

4 Examples

Inequality (19) holds for all (WE) operators, in particular for all operators listed in Exam-
ples 1.3. In this section we illustrate in detail some classes of operators for which Kato’s
inequality holds.

4.1 p-Laplacian type operators

Let f ∈ L1
loc(Ω) and let u ∈ W 1,p

loc (Ω) be a solution of the inequality,

Lpu := divL
�
|∇Lu|p−2 ∇Lu

�
≥ f on Ω.

Then,
Lpu

+ ≥ sign+(u)f on Ω.

In particular if ∇L is the Euclidean gradient ∇ and u ∈ W 1,p
loc (Ω) is a weak solution of

∆pu ≥ f on Ω,

then u+ ∈ W 1,p
loc (Ω) is a weak solution of

∆pu
+ ≥ sign+(u)f on Ω. (34)

As a consequence of (34), we have the following. See [41, 17] for a different proof under
stronger assumption on the solutions.
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Proposition 4.1 Let q > p− 1 > 0. If u ∈ W 1,p
loc (R

N) ∩ Lq
loc(R

N) is a weak solution of

∆pu ≥ |u|q−1 u on RN , (35)

then u ≤ 0 a.e. on RN . In particular, if in (35) the equality sign holds, then u ≡ 0 a.e.
on RN .

Proof. Let q > p− 1 and set

uR(x) :=
cRβ

�
Rp/(p−1) − |x|p/(p−1)

�α x ∈ BR,

with

α :=
p

q − p+ 1
, β :=

�
0 if q ≤ 1,
αp
p−1 −

p
q−1 if q > 1,

and the positive constant c satisfies cq−p+1 = (
αp

p− 1
)p−1 max{N, p(α + 1)}.

The function uR is a slight modification of the Loewner-Nirenberg [27] function used
by Brezis in his original argument [6] for p = 2. It is easy to check that for R > 0, uR is
a solution of the inequality

−∆puR + uq
R ≥ 0 on BR.

Indeed
∆pu1

uq
1

=

�
αp

p− 1

�p−1

c−q+p−1[N + (pα + p−N)rp/(p−1)] ≤ 1.

Now, since

uR =
cRβ−αp/(p−1)

�
1− ( |x|R )p/(p−1)

�α = Rβ−αp/(p−1)u1(
|x|
R

),

for R ≥ 1 we have

∆puR

uq
R

=
Rβ−αp/(p−1)R−p(∆pu1)(|x| /R)

Rq(β−αp/(p−1))uq
1(|x| /R)

≤ R(1−q)(β−αp/(p−1))−p ≤ 1.

Let u ∈ W 1,p
loc (R

N) ∩ Lq
loc(R

N) be a weak solution of (35).
Applying inequality (34) it follows that, in the weak sense we have,

∆pu
+ ≥ (u+)q on RN .

Since u+ is p-subharmonic, from [29] we deduce u+ ∈ L∞
loc(RN). By the weak comparison

principle we deduce that, for any R > 1 we have u+ ≤ uR a.e. on BR. Since uR → 0 for
R → +∞, it follows that u+ ≤ 0 a.e. on RN . This completes the proof. ✷
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In particular if ∇L is the Euclidean gradient ∇ and u ∈ W 1,p
loc (Ω) satisfies

div



 ∇u�
1 + |∇u|2



 ≥ f on Ω,

then u+ ∈ W 1,p
loc (Ω) is a weak solution of

div



 ∇u+

�
1 + |∇u+|2



 ≥ sign
+
(u)f on Ω.

Chapter II

The reduction principles
Throughout the following sections, unless otherwise stated, Ω stands for an open subset

contained in RN
and A is (WE).

5 The role of positive solutions

In this section we are going to develop the main ideas that we shall use throughout this

paper when studying quasilinear elliptic inequalities of coercive type. It is known [16],

that dealing with non coercive problems of the form,

− divL(A(x, v,∇Lv)) ≥ f(x, v), v ≥ 0, on RN , (36)

where f : RN ×R → R is a nonnegative function, the existence or nonexistence of positive

solutions in a suitable functional space is determined only by the behavior of the non

linearity f near zero. On the other hand in the coercive case, that is

divL(A(x, v,∇Lv)) ≥ g(x, v) on RN , (37)

and g : RN × R → R is a given function, a first step for the understanding the solutions

set, is to reduce our problem to an inequality with solutions having a definite sign. A

remarkable fact is that this reduction is always possible for weakly elliptic quasilinear

inequalities. Even though, as we shall see during the course, this reduction leads to

nontrivial problems in finding good a priori estimates on the possible nonnegative solutions

of (37).

In keeping with the notation and terminology introduced above, we have.
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Theorem 5.1 Let f : Ω× R× Rl → R be a Caratheodory function satisfying

f(x, 0, ξ) = 0 or f(x, t, 0) = 0. (38)

Let p ≥ 1 and let X ⊂ W 1,p
loc (Ω) be a set such that if u ∈ X then u+ ∈ X. Assume that

the problem
divL (A(x, v,∇Lv)) ≥ f(x, v,∇Lv) v ≥ 0 on Ω, (39)

has no nontrivial weak solutions in X.
Then any weak solution of the problem

divL (A(x, u,∇Lu)) ≥ f(x, u,∇Lu) u ∈ X, (40)

is nonpositive, i.e.
u(x) ≤ 0 a.e. x ∈ Ω.

Proof. Let u ∈ X be a solution of (40). By inequality (19) and by hypothesis (38) it

follows that

divL

�
A(x, u+,∇Lu

+
)
�
≥ sign

+u f(x, u,∇Lu) = f(x, u+,∇Lu
+
) on Ω.

Hence u+ ∈ X is a nonnegative solution of (39). Thus u+ ≡ 0 a.e. on Ω. This completes

the proof. ✷

Remark 5.2 Notice that in the above result we do not suppose that f is nonnegative.

In what follows for a given function A : Ω × R × Rl → Rl
, we shall denote with A

the function A : Ω× R× Rl → Rl
defined by

A (x, t, ξ) := −A(x,−t,−ξ). (41)

Notice that if A is weakly elliptic or W-p-C or S-p-C then A has the same properties.

Moreover if A is odd (see (20)), then A = A.

An immediate implication of the above theorems is the following obvious consequence

for non coercive problems.

Theorem 5.3 Let f : Ω × R × Rl → R be a Caratheodory function satisfying (38). Let
p ≥ 1 and let X ⊂ W 1,p

loc (Ω) be a set such that if u ∈ X then −u, u+ ∈ X. Assume that
the problem

divL

�
A (x, v,∇Lv)

�
≥ f(x,−v,−∇Lv) v ≥ 0 on Ω, (42)

has no nontrivial weak solutions in X.
Then any weak solution of the problem

− divL (A(x, u,∇Lu)) ≥ f(x, u,∇Lu) on Ω, u ∈ X, (43)

is nonnegative, i.e.
u(x) ≥ 0 a.e. x ∈ Ω.
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Proof. Let u ∈ X be a solution of (43). The function w := −u ∈ X is a solution of

divL
�
A (x, v,∇Lv)

�
≥ f(x,−v,−∇Lv) on Ω, v ∈ X.

Since A is weakly elliptic and f satisfies (38) we are in the position to apply Theorem
5.1, which yields w ≤ 0 on Ω. This completes the proof. ✷

Theorem 5.4 Let f : Ω× R → R be a Caratheodory function satisfying (38) and set

f(x, t, ξ) = −f(x,−t,−ξ).

Let p ≥ 1 and let X ⊂ W 1,p
loc (Ω) be a set such that if u ∈ X then −u, u+ ∈ X. Assume

that the problems,

divL (A(x, v,∇Lv)) ≥ f(x, v,∇Lv), v ≥ 0, on Ω, (44)

divL
�
A (x, v,∇Lv)

�
≥ f(x, v,∇Lv), v ≥ 0, on Ω, (45)

have no nontrivial weak solutions in X.
Then the problem

divL (A(x, u,∇Lu)) = f(x, u,∇Lu) on Ω u ∈ X, (46)

has no nontrivial weak solutions.

Proof. Let u ∈ X be a weak solution of (46). An application of Theorem 5.1 implies
that u ≤ 0 on Ω. Therefore w := −u is a solution of

−divL (A(x,−w,−∇Lw)) = −f(x,−w,−∇Lw) on Ω.

In other words w solves (45). By applying again Theorem 5.1 we complete the proof. ✷

Corollary 5.5 Let f : Ω × R → R be an odd Caratheodory function. Suppose that A is
an odd and weakly elliptic function. Let p ≥ 1 and let X ⊂ W 1,p

loc (Ω) be a set such that
if u ∈ X then −u, u+ ∈ X. Assume that the inequalities (44) has no nontrivial weak
solutions in X.

Then the problem (46) has no nontrivial weak solutions in X.

Remark 5.6 Dealing with the horizontal gradient on a Carnot group, the above Theorems
5.1, 5.3 and 5.4 can be formulated for solutions belonging to X ⊂ W 1,p

L,loc(Ω).
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5.1 Applications: maximum and comparison principles

Although it is not exactly the direction in which we have been going, it seems appropriate

to include here some interesting examples and applications of the reduction ideas.

Let Ω ⊂ RN
be an open set and let u, v ∈ L1

loc(Ω). In what follows the inequality u ≤ v

in ∂Ω should be understood in the sense that for every � > 0 there exists a neighborhood

V of ∂Ω such that for a.e. x ∈ V we have u(x) ≤ v(x) + �.

Moreover we shall need of the following hypothesis on ∇L.

If O ⊂ RN
is an open connected set and ∇Lu ≡ 0 ⇒ u ≡ const on O. (47)

This assumption obviously holds if ∇L = ∇, the standard Euclidean gradient. It also

holds in Carnot group setting as well as in all the examples of Appendix B except for the

gradient of l variables, see Example B.1. A general condition assuring the validity of (47)

is related to the Hörmander condition and to Caratheodory-Chow-Rashevsky theorem,

see [8].

Theorem 5.7 (The weak maximum principle) Let A be weakly elliptic such that for
a.e.x ∈ Ω,

if A(x, t, ξ) = 0 then t = 0 or ξ = 0. (48)

Assume that (47) holds.
Let p ≥ 1 and let u ∈ W

1,p
loc (Ω) be a weak solution of

divL (A(x, u,∇Lu)) ≥ 0 on Ω.

Suppose that Ω� ⊂⊂ Ω and u ≤ 0 on ∂Ω�. Then u ≤ 0 a.e. on Ω
�.

Proof. We apply the reduction principle 5.1 with a natural choice of X. Indeed, consider

the subset of W 1,p
(Ω

�
) defined by,

X(Ω
�
) := {v ∈ W

1,p
(Ω

�
) : v ≤ 0, on ∂Ω

�}.

If we prove that the only nonnegative solution v of the inequality

divL (A(x, v,∇Lv)) ≥ 0 v ∈ X(Ω
�
), (49)

is v ≡ 0 on Ω
�
, then an application of the reduction principle will imply u ≤ 0 a.e. on Ω

�
.

Indeed, let v ∈ X(Ω
�
) be a nonnegative solution of (49). Then for any nonnegative

φ ∈ C 1
0 (Ω

�
) we have

0 ≤ −
�

Ω�
A(x, v,∇Lv) ·∇Lφ.
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if A(x, t, ξ) = 0 then t = 0 or ξ = 0. (48)

Assume that (47) holds.
Let p ≥ 1 and let u ∈ W

1,p
loc (Ω) be a weak solution of

divL (A(x, u,∇Lu)) ≥ 0 on Ω.

Suppose that Ω� ⊂⊂ Ω and u ≤ 0 on ∂Ω�. Then u ≤ 0 a.e. on Ω
�.

Proof. We apply the reduction principle 5.1 with a natural choice of X. Indeed, consider

the subset of W 1,p
(Ω

�
) defined by,

X(Ω
�
) := {v ∈ W

1,p
(Ω

�
) : v ≤ 0, on ∂Ω

�}.

If we prove that the only nonnegative solution v of the inequality

divL (A(x, v,∇Lv)) ≥ 0 v ∈ X(Ω
�
), (49)

is v ≡ 0 on Ω
�
, then an application of the reduction principle will imply u ≤ 0 a.e. on Ω

�
.

Indeed, let v ∈ X(Ω
�
) be a nonnegative solution of (49). Then for any nonnegative

φ ∈ C 1
0 (Ω

�
) we have

0 ≤ −
�

Ω�
A(x, v,∇Lv) ·∇Lφ.
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Since v ≤ 0 on ∂Ω�
and it is nonnegative in Ω

�
, it follows that for � > 0 the function

(v−�)+ has compact support on Ω
�. Now we can choose as test function φη a mollification

of (v − �)+.
Letting η → 0 we have

0 ≤ −
�

Ω�
A(x, v,∇Lv) ·∇L(v − �)+ ≤ 0.

Hence

A(x, v(x),∇Lv(x)) ·∇L(v(x)− �)+ = 0 a.e. x ∈ Ω
�.

Therefore, if v(x) ≤ � then ∇L(v(x)− �)+ = 0. If v(x) > �, then ∇L(v(x)− �)+ = 0 or from

(48), ∇Lv(x) = 0, that is ∇L(v(x)− �)+ = 0. In any case we have that ∇L(v(x)− �)+ = 0

which, by (47), implies that in any connected region of Ω
�
the function (v − �)+ is equal

to some constant C. Since (v − �)+ vanishes on boundary, we deduce that C = 0. Thus,
for every � > 0 we have v ≤ �. Hence v = 0 in Ω

�. ✷

For a throughout study of maximum and comparison principles for quasilinear ellip-

tic operators in the Euclidean framework we refer the reader to the recent interesting

monograph [37].

Theorem 5.8 (The weak comparison principle) Let Ω ⊂ RN be a bounded open set.
Let A be a monotone function. Let f, g : Ω×R → R be Caratheodory functions such that

f(x, t) ≥ g(x, t), a.e. x ∈ Ω, t ∈ R, (50)

and at least one of them is nondecreasing with respect to t variable. Assume that (47)
holds and one of the following conditions

1. A is strictly monotone;

2. f(x, t) or g(x, t) is increasing with respect to t variable;

is satisfied.
Let u, v ∈ W 1,p

loc (Ω) be such that

− divL (A(x, v,∇Lv)) + g(x, v) ≥ −divL (A(x, u,∇Lu)) + f(x, u). (51)

If u ≤ v on ∂Ω, then u ≤ v a.e. in Ω.

Proof. The idea is to apply Theorem 3.8. Indeed, since the right hand side of (33) is

given by

sign
+
(u− v)(f(x, u(x))− g(x, v(x))) ≥ 0,

then for any nonnegative φ ∈ C 1
0 (Ω) from (33), we have

�

Ω

sign
+
(u− v)(A(x, u,∇Lu)− A(x, v,∇Lv)) ·∇Lφ ≤ 0.
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Let � > 0. Since u ≤ v on ∂Ω the function ψ := (u − v − �)+ ∈ W 1,p
(Ω) and it has

compact support. Choosing φη a mollified of ψ as test function, we obtain

�

Ω

sign
+
(u− v)(f(x, u(x))− g(x, v(x)))φη

+

�

Ω

sign
+
(u− v)(A(x, u,∇Lu)− A(x, v,∇Lv)) ·∇Lφη ≤ 0.

Hence, by letting η → 0,

�

Ω

sign
+
(u− v)(f(x, u(x))− g(x, v(x)))(u− v − �)+

+

�

Ω

sign
+
(u− v)(A(x, u,∇Lu)− A(x, v,∇Lv)) ·∇L(u− v − �)+ ≤ 0.

By the monotonicity of A and (50) we deduce that each integral appearing in the above

inequality is nonnegative. Therefore, setting P = {x ∈ Ω : u(x) > v(x)} we have

�

P

(A(x, u,∇Lu)− A(x, v,∇Lv)) ·∇L(u− v) = 0, (52)

�

P

(f(x, u(x))− g(x, v(x)))(u− v − �)+ = 0. (53)

From (52) it follows that

(A(x, u,∇Lu)− A(x, v,∇Lv)) · (∇Lu−∇Lv) = 0 on P.

If 1. holds, then by the strict monotonicity of A we obtain ∇Lu = ∇Lv on P . Therefore

∇L(u− v)+ ≡ 0 in Ω. Hence ∇L(u− v − �)+ ≡ 0. That is (u− v − �)+ is constant on the

connected components of Ω. Since (u− v − �)+ has compact support contained in Ω, we

deduce that (u − v − �)+ ≡ 0 in Ω. This shows that u ≤ v + � a.e. in Ω. This completes

the proof of the claim if 1. holds.
Next, suppose that 2. holds. Assume that f(x, t) is increasing with respect to t. The

case when g(x, t) is increasing being similar. Then from (53) we get that necessarily

u − v − � ≤ 0 on P . Since this is true for any � we get u ≤ v a.e. on Ω. This completes

the proof. ✷

Theorem 5.9 (A generalized weak maximum principle) Let Ω ⊂ RN be a bounded
open set and (47) holds. Suppose that there exists a Caratheodory function G : Ω×R → R
and a constant λ > 0 such that for any nonnegative v ∈ W 1,p

0 (Ω) we have G(·, v(·)) ∈
L1

(Ω) and
�

Ω

A(x, v,∇Lv) ·∇Lv ≥ λ

�

Ω

G(x, v) for any v ≥ 0, v ∈ W 1,p
0 (Ω). (54)L. D’Ambrosio, E. Mitidieri – A priori estimates and reduction principles 29

Assume that either (48) holds or

if v ∈ W 1,p
0 (Ω), v ≥ 0, v �≡ 0 ⇒

�

Ω

G(x, v) > 0. (55)

Let g : Ω× R → R be a Caratheodory function such that g(x, 0) = 0, and there exists
cg > 0 such that 0 ≤ g(x, t)t ≤ cgG(x, t) for t > 0. Let u ∈ W 1,p(Ω) be a weak solution of

divL (A(x, u,∇Lu)) + λg(x, u) ≥ 0, on Ω, u ≤ 0 on ∂Ω.

i) If λ < cg/λ, then u ≤ 0 a.e. on Ω.

ii) If λ = cg/λ and the constant λ in (54) is not achieved in W 1,p
0 (Ω), then u ≤ 0 a.e.

on Ω.

Proof. The idea is to apply again Theorem 5.1 with the natural choice X = W 1,p
0 (Ω).

To this end it is enough to show that the problem

divL (A(x, v,∇Lv)) + λg(x, v) ≥ 0, on Ω, v ≥ 0, v ∈ X

has only the trivial solution. Let v be a nontrivial solution of the above inequality. For

simplicity, in what follows we shall omit the arguments of A. So we shall write A instead

of A(x, v,∇Lv). For any nonnegative φ ∈ C 1
0 (Ω) we have,

�

Ω

A ·∇Lφ ≥ λ

�

Ω

g(v)φ ≥ 0.

Since v ∈ W 1,p
0 (Ω), we can approximate v by a sequence of nonnegative test functions

(φn)n. In this case we have ∇Lφn → ∇Lv in Lp(Ω) and φn → v. Therefore by Fatou’s

lemma we obtain �

Ω

A ·∇Lv ≥ λ

�

Ω

g(v)v,

and

0 ≤ λ

�

Ω

g(v)v −
�

Ω

A ·∇Lv ≤ λcg

�

Ω

G(v)−
�

Ω

A ·∇Lv ≤ (λcg − λ)

�

Ω

G(v). (56)

We claim that
�
G(v) = 0. Indeed, suppose

�
G(v) > 0. If λ < cg/λ, then from (56)

we reach a contradiction. On the other end if λ = cg/λ, then from (56) it follows that

�

Ω

A ·∇Lv = λ̄

�

Ω

G(v).

In other words, λ̄ is achieved in W 1,p
0 (Ω). This is again a contradiction with our assump-

tion.

Now, if (55) holds, from
�
G(v) = 0, we have v ≡ 0.

Next, if (48) holds, then from (56) we obtain that
�

A · ∇Lv = 0 which implies that

v ≡ 0 (see the proof of Theorem 5.7). ✷
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Remark 5.10 When dealing with the horizontal gradient on a Carnot group, the above
results can be formulated for solutions belonging to W 1,p

L,0(Ω).

As an example of (54) consider the following p-Laplacian type operator,

Lpu := divL

�
|∇Lu|p−2 ∇Lu

�
.

The following Hardy inequality will play an important role in what follows (see [12] for

the proof and several other results).

Theorem 5.11 Let p > 1. Let d : Ω → R be a nonnegative non constant measurable
function and α ∈ R, α �= 0 such that

d−p |∇Ld|p , d(α−1)(p−1) |∇Ld|p−1 ∈ L1
loc(Ω).

If −Lp(dα) ≥ 0 in the weak sense, then for every u ∈ C 1
0 (Ω) we have

�
|α| (p− 1)

p

�p �

Ω

|u|p

dp
|∇Ld|p dx ≤

�

Ω

|∇Lu|p dx. (57)

In particular:

1. If ∇L is the horizontal gradient on a Carnot group G and S is a homogeneous norm

such that LpS
p−Q
p−1 = c δ03 on G with Q > p > 1, then

�
Q− p

p

�p �

G

|u|p

Sp
|∇LS|p dx ≤

�

G
|∇Lu|p dx, u ∈ D1,p

L (G)
4, (58)

where the constant
�

Q−p
p

�p
is sharp and it is not achieved.

2. If the first column of the matrix µ is such that µ11 = 1 and µk1 = 0 for k = 2..l5

and Ω is bounded in the x1 direction, then there exists c > 0 such that

cp
�

Ω

|u|p ≤
�

Ω

|∇Lu|p , u ∈ C 1
0 (Ω). (59)

Some direct consequences of Theorem (5.9) are the followings.

Theorem 5.12 Let ∇L be the horizontal gradient on a Carnot group G. Let Q > p > 1

and let S be a homogeneous norm such that LpS
p−Q
p−1 = c δ0 on G.

Let Ω ⊂ G be a bounded open set. Let u ∈ W 1,p
L (Ω) be a weak solution of

Lpu+ λ
|∇LS|p

Sp
|u|p−2 u ≥ 0 on Ω, u ≤ 0 on ∂Ω,

with λ ≤
�

Q−p
p

�p
. Then u ≤ 0 a.e. on Ω.

3In the Euclidean setting S is the Euclidean norm.
4See Appendix A.2 for the definition of D1,p

L (G).
5This condition is satisfied if ∇L is the horizontal gradient on a Carnot group, see [8].
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Theorem 5.13 Let p > 1 and let Ω ⊂ RN be a bounded open set. Assume that the first
column of the matrix µ is such that µ11 = 1 and µk1 = 0 for k = 2..l.

Then, there exists a constant λ(Ω, p) > 0 such that if λ < λ(Ω, p) and u ∈ W 1,p
(Ω) is

a weak solution of

Lpu+ λ |u|p−2 u ≥ 0 on Ω, u ≤ 0 on ∂Ω,

then u ≤ 0 a.e. on Ω.

For related interesting results in the Euclidean framework, see the earlier contribution by

Damascelli [11].

Another simple application of Theorem (5.9) is the following.

Theorem 5.14 Let ∇ be the Euclidean gradient on RN . Let Ω ⊂ RN be a bounded open
set with Lipschitz boundary and p > 1. Set

δ(x) := dist(x, ∂Ω) x ∈ Ω.

Then there exists λ(Ω, p) > 0 such that if λ < λ(Ω, p) and u ∈ W 1,p
(Ω) is a weak

solution of

∆pu+ λ
|u|p−2 u

δp
≥ 0 on Ω, u ≤ 0 on ∂Ω,

then u ≤ 0 a.e. on Ω. Moreover, 0 < λ(Ω, p) ≤ (
p−1
p )

p,

The proof is based on the Hardy inequality

�

Ω

|∇u|p ≥ λ(Ω, p)

�

Ω

|u|p

δp
, (60)

It is known that the best constant λ(Ω, p) in (60) is such that λ(Ω, p) ≤ (
p−1
p )

p
and if

Ω is convex then λ(Ω, p) = (
p−1
p )

p. See [30]. Notice that if λ = λ(Ω, p), then the above

theorem holds provided λ(Ω, p) is not achieved. For further information on (60) we refer

to [1, 30, 12, 25] and the references therein.

6 The role of the behavior at infinity of the nonlin-
earity

The goal of this section is to prove that a large class of elliptic inequalities of the type

divL (A(x,∇Lu)) + B(x, u,∇Lu) ≥ f(x, u,∇Lu),

where A is weakly elliptic, can be reduced to the study of

divL (A(x,∇Lu)) ≥ uq,
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Remark 5.10 When dealing with the horizontal gradient on a Carnot group, the above
results can be formulated for solutions belonging to W 1,p

L,0(Ω).

As an example of (54) consider the following p-Laplacian type operator,

Lpu := divL

�
|∇Lu|p−2 ∇Lu

�
.

The following Hardy inequality will play an important role in what follows (see [12] for

the proof and several other results).

Theorem 5.11 Let p > 1. Let d : Ω → R be a nonnegative non constant measurable
function and α ∈ R, α �= 0 such that

d−p |∇Ld|p , d(α−1)(p−1) |∇Ld|p−1 ∈ L1
loc(Ω).

If −Lp(dα) ≥ 0 in the weak sense, then for every u ∈ C 1
0 (Ω) we have

�
|α| (p− 1)

p

�p �

Ω

|u|p

dp
|∇Ld|p dx ≤

�

Ω

|∇Lu|p dx. (57)

In particular:

1. If ∇L is the horizontal gradient on a Carnot group G and S is a homogeneous norm

such that LpS
p−Q
p−1 = c δ03 on G with Q > p > 1, then

�
Q− p

p

�p �

G

|u|p

Sp
|∇LS|p dx ≤

�

G
|∇Lu|p dx, u ∈ D1,p

L (G)
4, (58)

where the constant
�

Q−p
p

�p
is sharp and it is not achieved.

2. If the first column of the matrix µ is such that µ11 = 1 and µk1 = 0 for k = 2..l5

and Ω is bounded in the x1 direction, then there exists c > 0 such that

cp
�

Ω

|u|p ≤
�

Ω

|∇Lu|p , u ∈ C 1
0 (Ω). (59)

Some direct consequences of Theorem (5.9) are the following.

Theorem 5.12 Let ∇L be the horizontal gradient on a Carnot group G. Let Q > p > 1

and let S be a homogeneous norm such that LpS
p−Q
p−1 = c δ0 on G.

Let Ω ⊂ G be a bounded open set. Let u ∈ W 1,p
L (Ω) be a weak solution of

Lpu+ λ
|∇LS|p

Sp
|u|p−2 u ≥ 0 on Ω, u ≤ 0 on ∂Ω,

with λ ≤
�

Q−p
p

�p
. Then u ≤ 0 a.e. on Ω.

3In the Euclidean setting S is the Euclidean norm.
4See Appendix A.2 for the definition of D1,p

L (G).
5This condition is satisfied if ∇L is the horizontal gradient on a Carnot group, see [8].
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Proof. By (87) it follows that the function |u| is a nonnegative solution of

∆G |u| ≥ f(x, |u|) in D�
(Ω),

hence, by assumption, we get |u| ≡ 0 a.e. on Ω. ✷

We end this section with an easy consequence of the method of proof Theorem 7.3 .

Theorem 9.4 Let f ∈ C(R) be such that

− f(−t), f(t) ≥ b(t) > 0 for any t > 0, (92)

where b : [0,+∞[→ [0,+∞[ is a continuous convex function satisfying (74).
If u ∈ L1

loc(RN
;C) is a complex solution of

∆Gu = f(x, |u|) u

|u| in D�
(RN

), (93)

then u ≡ 0 a.e. on RN .

Notice that in the complex case, results on uniqueness of solutions similar to those

stated in Theorem 7.3 hold. We leave the details to the interested reader.

Chapter III

A priori estimates, positivity results
and Liouville theorems
In what follows we shall assume that A is W-p-C with p > 1. Throughout all sections,
except Section 10, we shall assume that the vector field ∇L satisfies (6), that is it homo-

geneous of degree one with respect to a dilation δR as specified in Section 1. However for

convenience of the reader we state our assumptions at the beginning of each sections.

10 General a priori estimates

Let Ω ⊂ RN
be an open set. Let V ∈ L∞

loc(Ω) be nonnegative and let A be W-p-C with

p > 1. The following preliminary lemmata will play an important role in the proof of our

main result (see Theorem 10.5 below).

Lemma 10.1 Let g ∈ L1
loc(Ω) be nonnegative and let u ∈ W 1,p

loc (Ω) be a weak solution of

divL (A(x, u,∇Lu)) + V up−1 ≥ g, u ≥ 0, on Ω. (94)
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Let s ≥ 1. If us+p−1 ∈ L1
loc(Ω), then

gus, A(x, u,∇Lu) ·∇Lu us−1 ∈ L1
loc(Ω) (95)

and for any nonnegative φ ∈ C 1
0 (Ω) we have,

�

Ω

gusφ+ c1s

�

Ω

A(x, u,∇Lu) ·∇Lu us−1φ ≤ c2s
1−p

�

Ω

us+p−1 |∇Lφ|p

φp−1
+

�

Ω

V us+p−1φ, (96)

where c1 = 1− �p
�

p�k2
> 0, c2 =

pp

p�p and � > 0 is sufficiently small.

Remark 10.2 i) Notice that form the above result it follows that if u ∈ W 1,p
loc (Ω) is a

weak solution of (94), then g u ∈ L1
loc(Ω).

ii) The above lemma still holds if we replace the function g ∈ L1
loc(Ω) with a regular

Borel measure on Ω.

Proof. Let γ ∈ C 1(R) be a bounded nonnegative function with bounded nonnegative
first derivative and let φ ∈ C 1

0 (Ω) be a nonnegative test function.
It is clear that u is a weak solution of

divL (A(x, u,∇Lu)) ≥ f, u ≥ 0, on Ω,

where f := g − V up−1. Applying Lemma 3.2, from (22), it follows that

−
�

Ω

V up−1γ(u)φ+

�

Ω

gγ(u)φ+

�

Ω

A(x, u,∇Lu) · ∇Lu γ�(u)φ

≤
�

Ω

|A(x, u,∇Lu)| |∇Lφ| γ(u)

≤
��

Ω

|A(x, u,∇Lu)|p
�
γ�(u)φ

�1/p� ��

Ω

γ(u)p

γ�(u)p−1

|∇Lφ|p

φp−1

�1/p

≤ �p
�

p�k2

�

Ω

A(x, u,∇Lu) ·∇Lu γ�(u)φ+
1

p�p

�

Ω

γ(u)p

γ�(u)p−1

|∇Lφ|p

φp−1
,

where � > 0 and all integrals are well defined provided γ(u)p

γ�(u)p−1 ∈ L1
loc(Ω). With a suitable

choice of � > 0, for any nonnegative φ ∈ C 1
0 (Ω) and γ ∈ C 1(R) as above such that

γ(u)p

γ�(u)p−1 ∈ L1
loc(Ω), it follows that,

�

Ω

gγ(u)φ+ c1

�

Ω

A ∇Luγ
�(u)φ ≤ 1

p�p

�

Ω

γ(u)p

γ�(u)p−1

|∇Lφ|p

φp−1
+

�

Ω

V up−1γ(u)φ. (97)

Now for s ≥ 1 and n ≥ 1, define

γn(t) :=






ts if 0 ≤ t < n,

cns − s

β − 1
nβ+s−1t1−β if t ≥ n,

(98)
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where c := β−1+s
β−1 and β > 1 will be chosen later. Clearly γn ∈ C1,

γ�
n(t) =






sts−1 if 0 ≤ t < n,

snβ+s−1t−β if t ≥ n,

and γn, γ�
n are nonnegative and bounded with ||γn||∞ = cns and ||γ�

n||∞ = sns−1. Moreover

γn(t)p

γ�
n(t)

p−1
=






s1−pts+p−1 for t < n,

θ(t, n) for t ≥ n,

where

θ(t, n) :=
(cns − s

β−1n
β+s−1t1−β)p

(snβ+s−1t−β)p−1
≤ (cns)ps1−pn−(β+s−1)(p−1) tβ(p−1).

Choosing β := s+p−1
p−1 we have c = p, and

θ(t, n) ≤ pps1−pnsp−(β+s−1)(p−1)ts+p−1 = pps1−pts+p−1.

Therefore, for t ≥ 0 we have,

γn(t)p

γ�
n(t)

p−1
≤ pps1−pts+p−1.

Since by assumption us+p−1 ∈ L1
loc(Ω), from (97) with γ = γn, it follows that

�

Ω

gγn(u)φ+ c1

�

Ω

A(x, u,∇Lu) ·∇Lu γ�
n(u)φ ≤ pps1−p

p�p

�

Ω

us+p−1 |∇Lφ|p

φp−1
+

�

Ω

V up−1γn(u)φ.

Now, noticing that γn(t) → ts and γ�
n(t) → sts−1 as n → +∞, g ≥ 0 and A ·∇Lu ≥ 0,

by Beppo Levi theorem we obtain
�

Ω

gusφ+ c1s

�

Ω

A(x, u,∇Lu) ·∇Lu us−1φ ≤ c2s
1−p

�

Ω

us+p−1 |∇Lφ|p

φp−1
+

�

Ω

V us+p−1φ.

This completes the proof. ✷

Remark 10.3 i) The above lemma holds for s > 0. Indeed if 0 < s < 1 the proof follows
the same arguments as above. To this end in (97) it is enough to choose γ := γn(u + δ)
where γn is defined by (98).

ii) If V ≤ 0, then the assumption us+p−1 ∈ L1
loc(Ω), is not needed for the validity of

(95). Indeed what that really matters is us+p−1 ∈ L1
loc(S) where S is the support of ∇Lφ.

This remark will be useful when dealing with inequalities on unbounded set.
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Let a : Ω → R be a nonnegative measurable function. Let u be weak solution of

divL (A(x, u,∇Lu)) + V up−1 ≥ a(x) uq, u ≥ 0, on Ω. (99)

The main strategy to obtain a priori estimates is to use the family of test functions

uαφ where α > 0 is a suitable constant that will be chosen according to our needs. See

[31]. However, a priori it is not clear why, after multiplying the inequality by uαφ, this
family is admissible, i.e. why uq+α ∈ L1

loc(Ω). A sufficient condition for the admissibility

of the family uαφ is contained in the following.

Lemma 10.4 Let u be a weak solution of (99) with q > p− 1. Assume that there exists

α > 1 such that a−
α+p−1
q−p+1 ∈ L1

loc(Ω).
If 1 ≤ α < α , then

a uq+α, uα+p−1 ∈ L1
loc(Ω), (100)

and for any nonnegative φ ∈ C 1
0 (Ω), the following inequalities hold

�

Ω

a uq+αφ+ c1α

�

Ω

A(x, u,∇Lu) ·∇Lu uα−1φ ≤ c2α
1−p

�

Ω

uα+p−1 |∇Lφ|p

φp−1
+

�

Ω

V uα+p−1φ,

(101)
�

Ω

a uq+αφ+ c1α

�

Ω

A(x, u,∇Lu) ·∇Lu uα−1φ ≤

c2α
1−p

��

S

a uq+αφ

�1/χ
��

S

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1

�1/χ�

+

�

Ω

V uα+p−1φ, (102)

where χ :=
q+α

α+p−1 , χ
�
:=

q+α
q−p+1 and S is the support of ∇Lφ.

In particular if
for any C ⊂⊂ Ω : ess inf

C
a > 0,

then for any α > 0, we have a uq+α ∈ L1
loc(Ω).

Proof. It is enough to prove that uα+p−1 ∈ L1
loc(Ω). Knowing this, an application of

Lemma 10.1 with g := a uq
yields the claim. To this end we shall use a recursion/bootstrap

procedure.

Assume that us+p−1 ∈ L1
loc(Ω) for some s ≥ 1. From Lemma 10.1 we know that

a uq+s ∈ L1
loc(Ω) and�

Ω

a uq+sφ ≤ c2s
1−p

�

S

us+p−1 |∇Lφ|p

φp−1
+

�

Ω

V us+p−1φ. (103)

Set β := (q + s)p−1+α
q+α . By Hölder’s inequality with exponent y :=

q+s
β =

q+α
p−1+α > 1, we

have

�

Ω

uβφ ≤
��

Ω

a uq+sφ

�1/y ��

Ω

a−
β

q+s−βφ

�1/y�

(104)

≤
�
c3

�

S

us+p−1 |∇Lφ|p

φp−1
+

�

Ω

V us+p−1φ

�1/y ��

Ω

a−
β

q+s−βφ

�1/y�

. (105)
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Since by assumption a−
α+p−1
q−p+1 ∈ L1

loc(Ω), and us+p−1 ∈ L1
loc(Ω) with

β
q+s−β =

α+p−1
q−p+1 , it

follows that the integrals in the right hand side of (105) are finite.

It is easy to check that if α > s then β > s+ p− 1.

Thus the recursion argument assures that if us+p−1 ∈ L1
loc(Ω) for some α > s ≥ 1,

then we gain summability with exponent β = (q + s)σ, where σ :=
p−1+α
q+α .

Now we begin bootstrapping. Since up ∈ L1
loc(Ω), we choose s = β0 = 1 in the

recursion argument, obtaining that uβ1 ∈ L1
loc(Ω) with β1 := (q + 1)σ.

Iterating this procedure we see that, if uβn ∈ L1
loc(Ω), then by recursion with s =

βn − p+ 1, it follows that uβn+1 ∈ L1
loc(Ω) with

βn+1 = σβn + σ(q − p+ 1).

Solving this difference equation we have

βn = σn
(q + 1) + σ(q − p+ 1)(1 + σ + σ2

+ · · ·+ σn−2
).

Since σ < 1, by letting n → ∞, we obtain

βn � α + p− 1.

Now, if α < α, for n large enough we deduce that α + p − 1 < βn. Hence uα+p−1 ∈
L1
loc(Ω). This completes the proof of (101).

Inequality (102) follows from (101) by applying Hölder’s inequality with exponent

χ =:=
q+α

α+p−1 . ✷

Theorem 10.5 Let u be a weak solution of (99) with q > p− 1 and V ≤ 0. Assume that

there exists α > 1 such that a−
α+p−1
q−p+1 ∈ L1

loc(Ω).
Then

a uq+α, uα+p−1 ∈ L1
loc(Ω),

and for any 1 ≤ α ≤ α and for any nonnegative φ ∈ C 1
0 (Ω) the inequalities (101), (102)

hold and �

Ω

a uq+αφ ≤ (c2α
1−p

)
χ�
�

Ω

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1 , (106)

where χ�
:=

q+α
q−p+1 .

Proof. From Lemma 10.4, for any 1 < α < α we have

�

Ω

a uq+αφ ≤ c2α
1−p

��

S

a uq+αφ

�1/χ
��

S

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1

�1/χ�

,

which in turns implies

�

Ω

a uq+αφ ≤ (c2α
1−p

)
χ�
�

S

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1 . (107)
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By Lebesgue’s dominated convergence theorem we obtain

lim
α→α

�

S

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1 =

�

S

|∇Lφ|pχ
�

φpχ�−1
a−

α+p−1
q−p+1 ,

where χ� := q+α
q−p+1 . Now, by applying Fatou’s Lemma to (107) (if necessary, by passing

to a subsequence), we get �

Ω

a uq+αφ →
�

Ω

a uq+αφ.

Using this information in (104) and letting s → α, it follows that uα−p+1 ∈ L1
loc(Ω).

Finally an application of Lemma 10.1 completes the proof. ✷

Remark 10.6 1. If u ∈ W 1,p
loc (Ω) ∩ L∞

loc(Ω) is a weak solution of (99) then, it is easy

to check that all the results of this section hold assuming only that a, V ∈ L1
loc(Ω),

without any further assumption on a and V .

2. If ∇L is the horizontal vector field on a Carnot group then the the results of this

section hold for weak solution belonging to the wider space W 1,p
L,loc(Ω).

3. We emphasize that if V ≤ 0 and the differential operator satisfies a S-p-C condition,

then from Harnack’s inequality (see [9]) it follows that the solutions of (99) belong

L∞
loc(Ω).

11 Universal a priori estimates

In this section Ω ⊂ RN is an open set, ∇L is the horizontal gradient on a Carnot group
G and A is S-p-C (see Definition 1.1). We shall denote with |·|L a homogeneous norm on
G.

Theorem 11.1 Let q > p − 1 and c > 0. Assume that f ∈ C(R) satisfies f(t) ≥ ctq for

t > 0. Then there exists a constant C = C(f,G,A) > 0 such that if u is a weak solution

of

divL (A(x, u,∇Lu)) + B(x, u,∇Lu) ≥ f(u) on Ω, (108)

with B(x, t, ξ) ≤ 0 for t ≥ 0, then

u(x) ≤ Cdist(x, ∂Ω)−
p

q−p+1 a.e. x ∈ Ω. (109)

In particular if u is a weak solution of

divL (A(x, u,∇Lu)) + B(x, u,∇Lu) = f(u), on Ω. (110)

with B(x, t, ξ)t ≤ 0 and f(t)t ≥ ctq+1
for t ∈ R, then

|u(x)| ≤ Cdist(x, ∂Ω)−
p

q−p+1 a.e. x ∈ Ω. (111)
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Proof. Let u be a weak solution of (108). If u(x) ≤ 0, then (109) is obviously satisfied.

Therefore it is enough to show that (109) holds for u+
. To this end by applying Kato’s

inequality (19) to (108) we obtain

divL

�
A(x, u+,∇Lu

+
)
�
≥ (u+

)
q on Ω. (112)

For simplicity assume that x = 0. Set R0 := dist(x, ∂Ω)/2. Let φ0 ∈ C 1
0 (R) be a

standard cut off function and define φ(x) := φ0(
��δ1/Rx

��
L
). Clearly if R < R0, the function

φ ∈ C 1
0 (Ω). From (106) of Theorem 10.5 applied to (112), it follows that for any α > 1

we have �

BR

uq+α ≤ C1R
Q−p

q+α
q−p+1 ,

where C1 = C1(p, q,α,A). In other words

��
−

BR

uq+α

� 1
q+α

≤ C2R
− p

q−p+1 .

Next by Harnack’s inequality (see [9]) we get

sup
BR/2

u ≤ CH

��
−

BR

uq+α

� 1
q+α

≤ CHC2R
− p

q−p+1 . (113)

Letting R → R0 in (113) we obtain (109).

Now, if u is a solution of (110), then arguing with v := −u and A (x, v,∇Lv) :=

−A(x, u,∇Lu) (see (41)), we obtain that −u satisfies (109). This conclude the proof. ✷

Remark 11.2 In general, inequality (109) is sharp as the following examples show.

For q > N

N−2 the function u(x) := c |x|−
2

q−1 , for a suitable c > 0, is a solution of

∆u = uq on RN \ {0}.

For q > 1 the function u(x) := cx1
− 2

q−1 , for a suitable c > 0 is a solution of

∆u = uq on ]0,+∞[×RN−1.

12 Some Liouville theorems for coercive inequalities

In this section we study Liouville theorems for a class of quasilinear elliptic inequalities

on RN .
Recently, a wide class of weakly elliptic quasilinear problems were also considered

by Farina and Serrin [18]and Pucci and Serrin [38], where sharp interesting cases were

handled. The main technique we use throughout this section, is a combination of three
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ingredients: the Kato inequalities (16) and (18), a slight modification of the test functions
method together with an idea introduced in [31].

More precisely, we shall consider problems of the type

divL (A(x, u,∇Lu)) + V (x) |u|p−2 u = a(x)f(u) on RN , (114)

where V ≤ 0 and a : RN → R is a nonnegative measurable function. The proof or our
main results will be organized in two steps. The first is to apply Kato’s inequality (16)
and (18) to (114) reducing the problem to the study of the nonnegative solutions of

divL (A(x, u,∇Lu)) ≥ a(x) uq, u ≥ 0, on RN . (115)

A second one will be the application of a priori estimates proved in Section 10 to (115).
These estimates depend on two parameters α and R. By using an idea first introduced in
[31, see proof of Theorem 4.1], we can choose α large enough and then by letting R → +∞
we conclude.

We point out that when dealing with equations or inequalities other fine techniques
based on Keller and Osserman ideas ([26] and [36] respectively) are available. However,
the application of these later ideas need special stronger assumptions on the differential
operator and on the nonlinearity. For recent contribution see [33, 20, 28].

Throughout this section we shall assume that A is W-p-C with p > 1, the vector field
∇L satisfies (6) (that is ∇L is homogeneous of degree one with respect to a dilation δR as
specified in Section 1) and |·|L stands for a homogeneous norm.

Theorem 12.1 Let V ∈ L∞
loc(RN) be such that V ≤ 0. Suppose that f ∈ C(R) satisfies

f(t) ≥ c tq, for t > 0,

where q > p− 1 and c > 0. Assume that there exists α > 1 such that a−
α+p−1
q−p+1 ∈ L1

loc(RN)
and

lim inf
R→+∞

R−p q+α
q−p+1

�

AR

a−
α+p−1
q−p+1 < +∞. (116)

Let u be a weak solution of

divL (A(x, u,∇Lu)) + V (x) |u|p−2 u ≥ a(x) f(u) on RN . (117)

Then u ≤ 0 a.e. on RN .
Moreover if

f(t) t ≥ c |t|q+1 t ∈ R,
and u is a weak solution of the equation

divL (A(x, u,∇Lu)) + V (x) |u|p−2 u = a(x) f(u) on RN , (118)

then u ≡ 0 a.e. on RN .
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Remark 12.2 Nonexistence results related to W-p-C operators with p = 1 have been
studied in [16]. Notice that the mean curvature operator can be viewed as a W-p-C
operators with p = 1.

Remark 12.3 The assumption a−
α+p−1
q−p+1 ∈ L1

loc(RN) implies that a(x) > 0 a.e. on RN .
We note that if (47) is satisfied then Theorem 12.1 still holds without the positivity property
on a and the assumption that the solutions belong to L∞

loc(RN). For this purpose, it is
enough that (116) is satisfied. Indeed, arguing as above we get that a uq+α ≡ 0 a.e. Hence
there exists R0 > 0 such that u(x) ≡ 0. a.e. on RN \ BR0. Therefore inequality (115)
becomes

divL (A(x, u,∇Lu)) ≥ 0 on BR0 , u ≥ 0, u = 0 on ∂BR0 .

On the other hand, by the maximum principle 5.7 it follows that u ≡ 0 a.e. on BR0. We
leave the remaining details to the interested reader.

Theorem 12.4 Let A = A(x,∇Lu) and let V ∈ L∞
loc(RN) be such that V ≤ 0. Assume

that there exist q > p − 1 and α > 1 such that a−
α+p−1
q−p+1 ∈ L1

loc(RN) and (116) holds.
Suppose that f ∈ C(R) satisfies

lim inf
t→+∞

f(t)

tq
> 0. (120)

Then,

1. If u is a weak solution of inequality (117), then u ≤ max(Z(f) ∪ {0})7 a.e. on RN .

2. If V ≡ 0 and u is a weak solution of inequality (117), then u ≤ maxZ(f) a.e. on
RN .

3. If V ≡ 0 and f is positive, then inequality (117) has no weak solutions.

4. If V ≡ 0 and u is a weak solution of equation (118) with f satisfying

lim inf
t→+∞

f(t)

|t|q > 0, lim sup
t→−∞

f(t)

|t|q < 0, (121)

then,
minZ(f) ≤ u ≤ maxZ(f) a.e. on RN .

Proof. First we prove case 2. and 3. If u is a weak solution of (117), then u satisfies

divL (A(x,∇Lu)) ≥ a(x)f(u), on RN . (122)

Now it is enough to apply Corollary 6.2 with b(t) := tq and g(x, ξ) := a(x). Indeed,
from Theorem 12.1 it follows that the inequality (115) has only the trivial solution. This
completes the proof of cases 2 and 3.

7We recall that we have denoted by Z(f) the set of the zeros of f .
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Proof of case 4. In order to prove that minZ(f) ≤ u a.e. we argue as in the case 2.
Indeed the function w := −u satisfies the equation

divL
�
A (x,∇Lw)

�
= a(x)f̄(w),

where f̄(t) := −f(−t). Since f̄ satisfies (120) and A is W-p-C, from 2. we get w ≤
maxZ(f̄) a.e. completing the proof.

The proof of case 1. can be obtained as the proof of cases 2. 3. and 4. together with
an application of Theorem 6.1. ✷

Remark 12.5 Condition (116) can be equivalently reformulated as

lim inf
R→+∞

R
Q−p
β

��
−

AR

(|x|pL a(x))
−β

�1/β

< +∞

for β > p
q−p+1 .

Corollary 12.6 Let A = A(x,∇Lu) and V ∈ L∞
loc(RN) be such that V ≤ 0. Let a be a

continuous positive function satisfying

a(x) ≥ c |x|−θ
L for |x|L large,

with θ < p. Let f ∈ C(R) be such that (120) holds for some q > p− 1. Then,

1. If u is a weak solution of inequality (117), then u ≤ max(Z(f) ∪ {0}) a.e. on RN .

2. If V ≡ 0 and u is a weak solution of inequality (117), then u ≤ maxZ(f) a.e. on
RN .

3. If V ≡ 0 and f is positive, then inequality (117) has no weak solutions.

4. If V ≡ 0 and u is a weak solution of equation (118) with f satisfying (121), then,

minZ(f) ≤ u ≤ maxZ(f) a.e. on RN .

Proof. For R large we have,

R
Q−p
β

��
−

AR

(|x|pL a(x))
−β

�1/β

≤ cR
Q−p
β +θ−p.

This implies that for β large enough the left hand side in the above inequality vanishes
when R → +∞. Therefore, form Remark 12.5 it follows that (116) holds and the hy-
potheses of Theorem 12.4 are fulfilled. ✷

By using the same computations made for the proof of Theorem 3.23 of [16] we see
that the following result holds. We leave to the interested reader the additional details
for completing the proof.
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Theorem 12.10 Assume that ∇L is the usual gradient ∇ on R
N
or the horizontal gradient

on the Heisenberg group H
n(= R

2n+1 = R
N). Let f ∈ C(R) be such that:

for some c > 0 f is nondecreasing, positive on [c,+∞[ and

� +∞

c

�� t

c

f(s) ds

�− 1
p

dt < +∞.

(124)
Assume that V ∈ L

∞
loc(R

N) satisfies V ≤ 0.
Then,

1. If u is a weak solution of

divL
�
|∇Lu|p−2 ∇Lu

�
+ V (x) |u|p−2

u ≥ f(u) on R
N
, (125)

then u ≤ max(Z(f) ∪ {0}) a.e. on R
N
.

2. If V ≡ 0 and u is a weak solution of (125), then u ≤ maxZ(f) a.e. on R
N
.

3. If V ≡ 0 and f is positive, then (125) has no weak solutions.

4. If u is a weak solution of

divL
�
|∇Lu|p−2 ∇Lu

�
= f(u) on R

N
, (126)

with f and f̄(t) := −f(−t) satisfying (124), then

minZ(f) ≤ u ≤ maxZ(f) a.e. on R
N
.

Remark 12.11 i) The above theorem is a generalization of some results proved in [14],

[15] and [16].

ii) Notice that the above result can be formulated for a general Carnot group for which

there exists a smooth homogeneous norm |·|L such that ∆p,G |x|
p−Q
p−1

L = c δ0. This can be

done also for a polarizable Carnot groups as the H-type groups (see [8, 12] and references

therein).

Proof of Theorem 12.10. Our main idea strategy is to apply Corollary (6.2).
Step 1. Let b : R+ → R+ be a positive increasing function such that b(0) = 0 and

b(t) = f(t) for t > c. Let c > 0 and w ∈ W
1,p
loc (R

N) be a nonnegative weak solution of

divL
�
|∇Lw|p−2 ∇Lw

�
≥ cb(w), w ≥ 0, on R

N
. (127)

We shall argue by contradiction assuming that w �≡ 0. Then there exists a constant
a > 0 and a set U of positive measure such that infU w > 2a > 0.

Let |·|L be the Euclidean norm or the canonical homogeneous norm in the Heisenberg
group, see Appendix A, and set ψ := |∇L |·|L|. In these cases it is known that ψ ≤ 1. Let
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Theorem 14.8 Let f ∈ C(R) be such that

lim inf
t→+∞

f(t)

tq
> 0, and lim sup

t→−∞

f(t)

|t|q < 0

for −∞ < q < p− 1.
Let u be a weak solution of

divL (A(x,∇Lu)) = f(u) on RN . (151)

Assume there exist σ, θ > 0 such that (149) and (148) hold. Then

minZ(f) ≤ u ≤ maxZ(f) a.e. RN .

15 Schrödinger’s equations and inequalities

In this section we shall study nonexistence of solutions of Schrödinger’s type equations of

the form

divL (A(x, u,∇Lu)) + λV (x)|u|p−2 u = a(x)|u|q−1 u on RN , (152)

where A is W-p-C and a, V and λ will be specified during the course.

Similar problems have been studied in the semilinear case in [7], where nonexistence

of solutions of the equation

∆u+ λV (x)u = f(x, u) on RN \ {0}, (153)

was proved by reducing to an o.d.e. inequality by applying the spherical mean operator

to (153) and using some convexity argument. For our problem (152), a radial reduction in

general is not applicable even if the differential operator is linear. So we need to proceed

differently.

Being interested in nonexistence theorem for (152), by reduction principles it is enough

to consider possible nonnegative solutions. Our results allow us to consider, as special

case in the Euclidean setting,

V (x) =
1

|x|p , a(x) =
c

|x|θ
for |x| large.

Considering a more general operator we shall require that

a(x) ≥ c
ψk

|x|θL
for |x|L large, (154)

C1
ψh

|x|νL
≥ V (x) ≥ C2

ψp

|x|pL
for |x|L large, (155)
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and a Hardy’s inequality holds for the weight V , that is there exists λH > 0 such that

�

RN
|∇Lφ|p ≥ λH

�

RN
V |φ|p for any φ ∈ C1

0(RN
). (156)

In what follows, for simplicity, we deal with locally bounded solutions in the setting of

Carnot groups. We note that if the function A is S-p-C and V belongs to LQ/p

loc
(RN

) or

to the Morrey space MQ/(p−�)
(RN

) then the positive solutions of (152) belongs L∞
loc
(RN

).

This is due to the fact that for S-p-C operator a weak Harnack inequality holds. See [29]

for the Euclidean case and [9] for the Carnot group setting.

In this section we endow RN
with a group law such that it becomes a Carnot group.

As usual, ∇L stands for the horizontal gradient as described in Appendix A.

The validity of (156) with V = ψp/ |·|p
L
is established among other Hardy inequalities

in [12].

We notice that in view of the reduction principles stated in Chapter II, it suffices to

study nonnegative solutions of the inequality related to (152). Notice that the case λ ≤ 0

has been considered in Section 12. Hence, in what follows we shall focus our attention to

the case λ > 0.

Theorem 15.1 Let Q > p > 1. Let A be S-p-C and let a, V ∈ L1
loc
(RN

) be nonnegative
functions satisfying (154) and (155) with p ≥ ν > θ and p ≥ h ≥ k ≥ 0. Assume that
(156) holds and let λ be such that 0 < λ ≤ λHk1 where λH is the best constant in (156)
and k1 is the constant structure appearing in the definition of S-p-C (see Definition 1.1).

Let u ∈ W 1,p
L,loc

(RN
) ∩ L∞

loc
(RN

) be a weak solution of

divL (A(x, u,∇Lu)) + λV (x)up−1 ≥ a(x)uq, u ≥ 0, on RN . (157)

If

p− 1 < q ≤ (Q− θ)(p− 1) + x0(p− θ)

Q− p
, (158)

where x0 ≥ 1 is the unique solution of the equation

(x− 1 + p)pλ = xλHk1p
p, x ≥ 1,

then au ≡ 0 a.e. on RN . Moreover, if a > 0 or if λ < λHk1, then u ≡ 0 a.e. on RN .

An interesting consequence of Theorem 5.1 is the following.

Corollary 15.2 Assume that A, a, V , λ and q satisfy the hypotheses of Theorem 15.1.
Let u ∈ W 1,p

L,loc
(RN

) ∩ L∞
loc
(RN

) be a weak solution of

divL (A(x, u,∇Lu)) + λV (x) |u|p−2 u ≥ a(x) |u|q−1 u, on RN . (159)

Then au ≤ 0 a.e. on RN . Moreover, if λ < λHk1, then u ≤ 0 a.e. on RN .
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