Existence and uniqueness of the n-dimensional Helfrich flow

Takeyuki Nagasawa

(Saitama University)

§ 1 The Helfrich Variational Problen

$\Sigma \subset \mathbb{R}^{n+1}:$ Hypersurface

$$
\begin{gathered}
A(\Sigma)=\text { Area } \\
V(\Sigma)=-\frac{1}{n+1} \int_{\Sigma} f \cdot \boldsymbol{\nu} d S([\text { Enclosed }] \text { Volume })
\end{gathered}
$$

§ 1 The Helfrich Variational Problen

$\Sigma \subset \mathbb{R}^{n+1}:$ Hypersurface

$$
\begin{gathered}
A(\Sigma)=\text { Area } \\
V(\Sigma)=-\frac{1}{n+1} \int_{\Sigma} f \cdot \boldsymbol{\nu} d S([\text { Enclosed }] \text { Volume })
\end{gathered}
$$

$H=$ Mean curvature,$\quad c_{0}=$ constant

$$
W(\Sigma)=\frac{n}{2} \int_{\Sigma}\left(H-c_{0}\right)^{2} d S
$$

The Helfrich Variational Problem

For given constants c_{0}, A_{0}, and V_{0}, find critical points of W under the constraints

$$
A(\Sigma)=A_{0}, \quad V(\Sigma)=V_{0} .
$$

Backgrounds

- $n=2$

A model of shape transformation of human red blood cell (Helfrich, 1973)
(c_{0} : spontaneous curvature of cell membrane)

Backgrounds

- $n=2$

A model of shape transformation of human red blood cell (Helfrich, 1973)
(c_{0} : spontaneous curvature of cell membrane)

- $n=1, c_{0}=0$

A model of shape transformation of a closed loop of plastic tape between two parallel flat plates (Brailsford, 1983)

- $n=1, c_{0}=0$

Trace formula of heat kernel $(\Sigma=\partial \Omega)$
As $t \rightarrow+0$,
$\int_{\Omega} G(x, x, t) d x=\frac{1}{4 \pi t}\left(a_{0}+a_{1} t^{1 / 2}+a_{2} t+a_{3} t^{3 / 2}+\cdots\right)$
$a_{0}=V, \quad a_{1}=-\frac{\sqrt{\pi}}{2} A, \quad a_{2}=\frac{1}{3} \int_{\Sigma} H d S, \quad a_{3}=\frac{\sqrt{\pi}}{64} \int_{\Sigma} H^{2} d S$
For given a_{0}, a_{1}, and a_{2}, find Ω which minimizes a_{3} (Watanabe, 2000/2002).

Note. When $n=1$, we may assume $c_{0}=0$.

Note. When $n=1$, we may assume $c_{0}=0$.

$$
W(\Sigma)=\frac{1}{2} \int_{\Sigma} H^{2} d S-c_{0} \int_{\Sigma} H d S+\frac{1}{2} c_{0}^{2} \int_{\Sigma} d S
$$

Note. When $n=1$, we may assume $c_{0}=0$.

$$
W(\Sigma)=\frac{1}{2} \int_{\Sigma} H^{2} d S-c_{0} \int_{\Sigma} H d S+\frac{1}{2} c_{0}^{2} \int_{\Sigma} d S
$$

The 2nd term is a topologically invariant.
The 3rd term is constant because of constraint
$A=A_{0}$.

§ 2 Known results $(n=2)$

- Spheres are critical points.

§ 2 Known results $(n=2)$

- Spheres are critical points.
- Bifurcating solutions from spheres and their stability/instability
(Jenkins (1977), Peterson (1985),
Ou-Yang-Helfrich (1989))
... numerical and/or formal calculus (N.-Takagi (2003))

§ 2 Known results $(n=2)$

- Spheres are critical points.
- Bifurcating solutions from spheres and their stability/instability
(Jenkins (1977), Peterson (1985),
Ou-Yang-Helfrich (1989))
... numerical and/or formal calculus (N.-Takagi (2003))
- Critical points far from spheres (Au-Wan (2003))

§ 2 Known results $(n=2)$

- Spheres are critical points.
- Bifurcating solutions from spheres and their stability/instability
(Jenkins (1977), Peterson (1985),
Ou-Yang-Helfrich (1989))
... numerical and/or formal calculus (N.-Takagi (2003))
- Critical points far from spheres (Au-Wan (2003))
- Critical points without rotational symmerty (N.-Takagi, unpublished)

§ 3 The Helfrich flow

The Helfrich flow:
Gradient Flow associated to the Helfrich Variational Problem

$$
v=-P(\Sigma) \delta W(\Sigma)
$$

§ 3 The Helfrich flow

The Helfrich flow:
Gradient Flow associated to the Helfrich Variational Problem

$$
v=-P(\Sigma) \delta W(\Sigma)
$$

v : normal velocity, δ : the first variation,
$P: L^{2}(\Sigma) \rightarrow(\operatorname{span}\{\delta A, \delta V\})^{\perp}:$ projection

$$
\begin{gathered}
v=-\Delta_{g} H-\left(H-c_{0}\right)\left\{\frac{n^{2}}{2} H\left(H+c_{0}\right)+R\right\} \\
+\lambda_{1} n H+\lambda_{2}
\end{gathered}
$$

$$
\begin{gathered}
v=-\Delta_{g} H-\left(H-c_{0}\right)\left\{\frac{n^{2}}{2} H\left(H+c_{0}\right)+R\right\} \\
+\lambda_{1} n H+\lambda_{2} \\
\Delta_{g}: \text { Laplace-Beltrami operator, } \\
R: \text { scalar curvature } \\
\lambda_{i}: \text { Lagrange multipliers }
\end{gathered}
$$

λ_{1} 's are determined by

$$
0=\frac{d}{d t} A(\Sigma)=\langle\delta A(\Sigma), v\rangle, \quad 0=\frac{d}{d t} V(\Sigma)=\langle\delta V(\Sigma), v\rangle
$$

λ_{1} 's are determined by

$$
0=\frac{d}{d t} A(\Sigma)=\langle\delta A(\Sigma), v\rangle, \quad 0=\frac{d}{d t} V(\Sigma)=\langle\delta V(\Sigma), v\rangle
$$

It follows from equation that

$$
\begin{aligned}
& 0=-\left\langle\delta A(\Sigma), \delta W(\Sigma)+\lambda_{1} \delta A(\Sigma)+\lambda_{2} \delta V(\Sigma)\right\rangle, \\
& 0=-\left\langle\delta V(\Sigma), \delta W(\Sigma)+\lambda_{1} \delta A(\Sigma)+\lambda_{2} \delta V(\Sigma)\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\langle\delta A(\Sigma), \delta A(\Sigma)\rangle & \langle\delta A(\Sigma), \delta V(\Sigma)\rangle \\
\langle\delta V(\Sigma), \delta A(\Sigma)\rangle & \langle\delta V(\Sigma), \delta V(\Sigma)\rangle
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}} \\
& =-\binom{\langle\delta A(\Sigma), \delta W(\Sigma)\rangle}{\langle\delta V(\Sigma), \delta W(\Sigma)\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\langle\delta A(\Sigma), \delta A(\Sigma)\rangle & \langle\delta A(\Sigma), \delta V(\Sigma)\rangle \\
\langle\delta V(\Sigma), \delta A(\Sigma)\rangle & \langle\delta V(\Sigma), \delta V(\Sigma)\rangle
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}} \\
& =-\binom{\langle\delta A(\Sigma), \delta W(\Sigma)\rangle}{\langle\delta V(\Sigma), \delta W(\Sigma)\rangle}
\end{aligned}
$$

Gramian $:=\operatorname{det}\left(\begin{array}{cc}\langle\delta A(\Sigma), \delta A(\Sigma)\rangle & \langle\delta A(\Sigma), \delta V(\Sigma)\rangle \\ \langle\delta V(\Sigma), \delta A(\Sigma)\rangle & \langle\delta V(\Sigma), \delta V(\Sigma)\rangle\end{array}\right)$

- If Gramian $\neq 0$, then λ_{i} 's are uniquely determined from Σ.
- If Gramian $\neq 0$, then λ_{i} 's are uniquely determined from Σ.
- If Gramian $=0$, then λ_{i} 's are not uniquely determined,
- If Gramian $\neq 0$, then λ_{i} 's are uniquely determined from Σ.
- If Gramian $=0$, then λ_{i} 's are not uniquely determined, but uniquely determined

$$
\lambda_{1} \delta A(\Sigma)+\lambda_{2} \delta V(\Sigma)
$$

from Σ.

Theorem 1.

Let $P(\Sigma)$ be the projection

$$
L^{2}(\Sigma) \rightarrow(\operatorname{span}\{\delta A(\Sigma), \delta V(\Sigma)\})^{\perp}
$$

Consider the equation

$$
v=-P(\Sigma) \delta W(\Sigma)
$$

Solutions, if exist, satisfy

$$
\frac{d}{d t} W(\Sigma)=-\|v\|_{L^{2}}^{2}, \quad \frac{d}{d t} A(\Sigma) \equiv 0, \quad \frac{d}{d t} V(\Sigma) \equiv 0 .
$$

Ref. Shikhman, V. \& O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl. 140 (1) (2009), 117-130.

Ref. Shikhman, V. \& O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl. 140 (1) (2009), 117-130.

(\Uparrow Gereral theory in case with Gramian $\neq 0$)

Ref. Shikhman, V. \& O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl. 140 (1) (2009), 117-130.
(\Uparrow Gereral theory in case with Gramian $\neq 0$)
If Gramian $\neq 0$, then it is not so difficult to deal with.

Ref. Shikhman, V. \& O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl. 140 (1) (2009), 117-130.
(\Uparrow Gereral theory in case with Gramian $\neq 0$)
If Gramian $\neq 0$, then it is not so difficult to deal with.

This is not our case!

Difficulty to deal with the projected gradient flow:

Difficulty to deal with the projected gradient flow:

- Assume
- Gramian $(t)>0$ for $t \in\left[0, T_{*}\right)$,
- Gramian $\left(T_{*}\right)=0$,
$\Longrightarrow P(\Sigma(t))$ may be discontinuous at $t=T_{*}$.

Difficulty to deal with the projected gradient flow:

- Assume
- Gramian $(t)>0$ for $t \in\left[0, T_{*}\right)$,
- Gramian $\left(T_{*}\right)=0$,
$\Longrightarrow P(\Sigma(t))$ may be discontinuous at $t=T_{*}$.
- The condition Gramian $\neq 0$ is a posteriori.

For an integrable function f on Σ :

$$
\begin{gathered}
\bar{f}=\frac{1}{A} \int_{\Sigma} f d S \\
\tilde{f}=f-\bar{f}
\end{gathered}
$$

For an integrable function f on Σ :

$$
\begin{gathered}
\bar{f}=\frac{1}{A} \int_{\Sigma} f d S \\
\tilde{f}=f-\bar{f}
\end{gathered}
$$

For a mathematical object F on $\Sigma(t) \times[0, T)$:

$$
F_{0}=\left.F\right|_{t=0}
$$

Theorem 2 (N.-Yi).

Assume $\Sigma_{0} \in h^{3+\alpha} \quad$ (the little Hölder space) $(0<\alpha<1)$.

Theorem 2 (N.-Yi).

Assume $\Sigma_{0} \in h^{3+\alpha} \quad$ (the little Hölder space) $(0<\alpha<1)$.

- If Gramian $\neq 0$ at $t=0$, then ${ }^{\exists 1}$ local Helfrich flow with $\Sigma(0)=\Sigma_{0}$.

Theorem 2 (N.-Yi).

Assume $\Sigma_{0} \in h^{3+\alpha} \quad$ (the little Hölder space) $(0<\alpha<1)$.

- If Gramian $\neq 0$ at $t=0$, then ${ }^{\exists 1}$ local Helfrich flow with $\Sigma(0)=\Sigma_{0}$.
- Assume Gramian $=0$ at $t=0$.
- If $\left(\bar{H}_{0}-c_{0}\right) \tilde{R}_{0} \equiv 0$, then ${ }^{\exists}$ global Helfrich flow with $\Sigma(0)=\Sigma_{0}$ (the uniqueness is uncertain expect one-dimensional case).
- Assume Gramian $\neq 0$ at $t \neq 0$.
- Assume Gramian $\neq 0$ at $t \neq 0$.

May assume $\operatorname{Gramian}(t) \neq 0$ for small $t>0$. \Longrightarrow The equation is quasilinear parabolic of 4th order with non-local terms.

- Assume Gramian $\neq 0$ at $t \neq 0$.

May assume $\operatorname{Gramian}(t) \neq 0$ for small $t>0$.
\Longrightarrow The equation is quasilinear parabolic of 4th order with non-local terms.
\Longrightarrow Gerenal theory (eg. Amann) is applicable.

- Assume Gramian $=0$ at $t=0$ and $\left(\bar{H}_{0}-c_{0}\right) \tilde{R}_{0} \equiv 0$.
- Assume Gramian $=0$ at $t=0$

$$
\text { and }\left(\bar{H}_{0}-c_{0}\right) \tilde{R}_{0} \equiv 0
$$

$\Longrightarrow \Sigma(t) \equiv \Sigma_{0}$ is a stationary solution.

Comparison with a known result (1)

Kohsaka-N. (2006) $n=2$
Analysis of

$$
v=-\delta W-\lambda_{1} \delta A-\lambda_{2} \delta V
$$

for given constants λ_{i}

Comparison with a known result (1)

Kohsaka-N. (2006) $n=2$
Analysis of

$$
v=-\delta W-\lambda_{1} \delta A-\lambda_{2} \delta V
$$

for given constants λ_{i}

- Local existence and uniqueness under $\Sigma_{0} \in h^{2+\alpha}(0<\alpha<1)$.

Comparison with a known result (1)

Kohsaka-N. (2006) $n=2$
Analysis of

$$
v=-\delta W-\lambda_{1} \delta A-\lambda_{2} \delta V
$$

for given constants λ_{i}

- Local existence and uniqueness under $\Sigma_{0} \in h^{2+\alpha}(0<\alpha<1)$.
- The global existence cannot be expected. ${ }^{\exists}$ solutions blowing up in finite/infinite time).

Comparison with a known result (1)

Kohsaka-N. (2006) $n=2$
Analysis of

$$
v=-\delta W-\lambda_{1} \delta A-\lambda_{2} \delta V
$$

for given constants λ_{i}

- Local existence and uniqueness under $\Sigma_{0} \in h^{2+\alpha}(0<\alpha<1)$.
- The global existence cannot be expected. (${ }^{\exists}$ solutions blowing up in finite/infinite time).
- Existence of center manifold near sphere
and an upper estimate of its dimension.

Comparison with a known result (2)

Kurihara-N. (2006/2007) $n=1$

Comparison with a known result (2)

Kurihara-N. (2006/2007) $n=1$
In the case $n=1$: Global existence

Comparison with a known result (2)

Kurihara-N. (2006/2007) $n=1$
In the case $n=1$: Global existence

- By penalty method: Construct solutions to

$$
v=-\delta W-\frac{1}{2 \varepsilon} \delta\left(A-A_{0}\right)^{2}-\frac{1}{2 \varepsilon} \delta\left(V-V_{0}\right)^{2},
$$

and then take the limit as $\varepsilon \downarrow 0$.

Comparison with a known result (2)

Kurihara-N. (2006/2007) $n=1$
In the case $n=1$: Global existence

- By penalty method: Construct solutions to

$$
v=-\delta W-\frac{1}{2 \varepsilon} \delta\left(A-A_{0}\right)^{2}-\frac{1}{2 \varepsilon} \delta\left(V-V_{0}\right)^{2},
$$

and then take the limit as $\varepsilon \downarrow 0$.

- $\Sigma_{0} \in C^{\infty}$

Comparison with a known result (2)

Kurihara-N. (2006/2007) $n=1$
In the case $n=1$: Global existence

- By penalty method: Construct solutions to

$$
v=-\delta W-\frac{1}{2 \varepsilon} \delta\left(A-A_{0}\right)^{2}-\frac{1}{2 \varepsilon} \delta\left(V-V_{0}\right)^{2},
$$

and then take the limit as $\varepsilon \downarrow 0$.

- $\Sigma_{0} \in C^{\infty}$
- The uniqueness is uncertain.

§ 4. A Gramian estimate

- $\Sigma(t) \hookrightarrow \mathbb{R}^{n+1}$: continuous w. r. t. t then $\operatorname{Gramian}(0)>0 \Longrightarrow \operatorname{Gramian}(t)>0$. (the isoperimetric inequality)

§ 4. A Gramian estimate

- $\Sigma(t) \hookrightarrow \mathbb{R}^{n+1}$: continuous w. r. t. t then $\operatorname{Gramian}(0)>0 \Longrightarrow \operatorname{Gramian}(t)>0$. (the isoperimetric inequality)
- Non-embedding case ?

§ 4. A Gramian estimate

- $\Sigma(t) \hookrightarrow \mathbb{R}^{n+1}$: continuous w. r. t. t then $\operatorname{Gramian}(0)>0 \Longrightarrow \operatorname{Gramian}(t)>0$. (the isoperimetric inequality)
- Non-embedding case ?
- Continuity w. r. t. t ?
(If $\operatorname{Gramian}(t) \rightarrow+0$ as $t \rightarrow T_{*}-0$,
then $P(\Sigma(t))$ may be discontinuous.)

Assume $\operatorname{Gramian}(0)>0$, and define

$$
T_{*}=\sup \{t>0 \mid \operatorname{Gramian}(\tau)>0 \text { for } \tau \in[0, t)\}
$$

Assume Gramian $(0)>0$, and define

$$
T_{*}=\sup \{t>0 \mid \operatorname{Gramian}(\tau)>0 \text { for } \tau \in[0, t)\}
$$

- Do solutions exist with $T_{*}<\infty$?
- If exists, what happens at $t=T_{*}$?

Because $\delta A=-n H$ and $\delta V=-1$,

Gramian $=\operatorname{det}\left(\begin{array}{cc}\langle\delta A(\Sigma), \delta A(\Sigma)\rangle & \langle\delta A(\Sigma), \delta V(\Sigma)\rangle \\ \langle\delta V(\Sigma), \delta A(\Sigma)\rangle & \langle\delta V(\Sigma), \delta V(\Sigma)\rangle\end{array}\right)$

$$
\begin{aligned}
& =\int_{\Sigma} n^{2} H^{2} d S \int_{\Sigma} d S-\left(\int_{\Sigma} n H d S\right)^{2} \\
& =n^{2} A \int_{\Sigma} \tilde{H}^{2} d S
\end{aligned}
$$

Because $\delta A=-n H$ and $\delta V=-1$,
Gramian $=\operatorname{det}\left(\begin{array}{cc}\langle\delta A(\Sigma), \delta A(\Sigma)\rangle & \langle\delta A(\Sigma), \delta V(\Sigma)\rangle \\ \langle\delta V(\Sigma), \delta A(\Sigma)\rangle & \langle\delta V(\Sigma), \delta V(\Sigma)\rangle\end{array}\right)$

$$
\begin{aligned}
& =\int_{\Sigma} n^{2} H^{2} d S \int_{\Sigma} d S-\left(\int_{\Sigma} n H d S\right)^{2} \\
& =n^{2} A \int_{\Sigma} \tilde{H}^{2} d S
\end{aligned}
$$

Let consider the time evolution of $\|\tilde{H}\|_{L^{2}}^{2}$.

$$
\begin{aligned}
W= & \frac{n}{2}\left\|H-c_{0}\right\|_{L^{2}}^{2} \\
= & \frac{n}{2}\left\{\|\tilde{H}\|_{L^{2}}^{2}+A\left(\int_{\Sigma} H d S\right)^{2}\right. \\
& \left.\quad-2 c_{0} \int_{\Sigma} H d S+c_{0}^{2} A\right\}
\end{aligned}
$$

$$
\begin{aligned}
W= & \frac{n}{2}\left\|H-c_{0}\right\|_{L^{2}}^{2} \\
= & \frac{n}{2}\left\{\|\tilde{H}\|_{L^{2}}^{2}+A\left(\int_{\Sigma} H d S\right)^{2}\right. \\
& \left.\quad-2 c_{0} \int_{\Sigma} H d S+c_{0}^{2} A\right\} \\
& \frac{d}{d t}\|\tilde{H}\|_{L^{2}}^{2}=\frac{2}{n} \frac{d}{d t} W-\cdots .
\end{aligned}
$$

Gramian $=0 \Longleftrightarrow$ constant mean curvature \Longleftrightarrow Gauss map is harmonic.

Gramian $=0 \Longleftrightarrow$ constant mean curvature \Longleftrightarrow Gauss map is harmonic.

Gauss map $\nu: \Sigma \longrightarrow S^{n}$
The energy

$$
\begin{aligned}
E(\boldsymbol{\nu}) & =\frac{1}{2} \int_{\Sigma}\|\nabla \boldsymbol{\nu}\|_{g}^{2} d S \\
& =\frac{1}{2} \int_{\Sigma}\left(n^{2} H^{2}-R\right)=\frac{n^{2}}{2}\|\tilde{H}\|_{L^{2}}^{2}+\cdots
\end{aligned}
$$

$$
\frac{d}{d t}\|\tilde{H}\|^{2}=\frac{2}{n^{2}} \frac{d}{d t} E(\boldsymbol{\nu})+\cdots
$$

Fact. $\delta \nu[\phi]=-\nabla \phi$.

Fact. $\delta \boldsymbol{\nu}[\phi]=-\nabla \phi$.
Corollary.

$$
\frac{d}{d t} E(\boldsymbol{\nu})=\delta E(\boldsymbol{\nu})\left[\partial_{t} \boldsymbol{\nu}\right]=-\delta E(\boldsymbol{\nu})[\nabla v]
$$

Fact. $\delta \boldsymbol{\nu}[\phi]=-\nabla \phi$.
Corollary.

$$
\frac{d}{d t} E(\boldsymbol{\nu})=\delta E(\boldsymbol{\nu})\left[\partial_{t} \boldsymbol{\nu}\right]=-\delta E(\boldsymbol{\nu})[\nabla v]
$$

Corollary.

$$
\frac{1}{2} \frac{d}{d t} \int_{\Sigma}\left(n^{2} H^{2}-R\right) d S=-n\left\langle v, P \Delta_{g} H\right\rangle_{g}
$$

$$
0 \leqq n \frac{d}{d t}\|\tilde{H}\|_{L^{2}}^{2}
$$

$$
+\left\|P\left(\frac{n^{2}}{2} H^{3}-\bar{H} R\right)\right\|_{L^{2}}^{2}
$$

- Assume " $n=1$ ", or " $n=2$ and $c_{0}=0$ "
- Assume " $n=1$ ", or " $n=2$ and $c_{0}=0$ "

- Assume " $n=1$ ", or " $n=2$ and $c_{0}=0$ "

- Assume $\tilde{H} \in L^{\infty}, \tilde{R} \in L^{\infty}$.
- Assume " $n=1$ ", or " $n=2$ and $c_{0}=0$ "

- Assume $\tilde{H} \in L^{\infty}, \tilde{R} \in L^{\infty}$.

$$
\Longrightarrow \text { green part } \leqq C\|\tilde{H}\|_{L^{2}}^{2}
$$

- Assume " $n=1$ ", or " $n=2$ and $c_{0}=0$ "

- Assume $\tilde{H} \in L^{\infty}, \tilde{R} \in L^{\infty}$.
\Longrightarrow green part $\leqq C\|\tilde{H}\|_{L^{2}}^{2}$
$\therefore \quad 0 \leqq \frac{d}{d t}\|\tilde{H}\|_{L^{2}}^{2}+\lambda\|\tilde{H}\|_{L^{2}}^{2}$

Theorem 3.

Assume " $n=1$ " or " $n=2$ and $c_{0}=0$ ". Consider the Helfrich flow with Gramian $(0)>0$. If $T_{*}=\sup \{t \mid \operatorname{Gramian}(\tau)>0$ for $\tau \in[0, t)\}<\infty$, then

$$
\limsup _{t \rightarrow T_{*}-0} \text { osc } \tilde{H} \text { or } \limsup _{t \rightarrow T_{*}-0} \text { osc } \tilde{R} \text { blows up. }
$$

Corollary. When $n=1$ and $\Sigma_{0} \in C^{\infty}$,

$\operatorname{Gramian}(0)>0 \Longrightarrow \operatorname{Gramian}(t)>0$

Corollary. When $n=1$ and $\Sigma_{0} \in C^{\infty}$,

$\operatorname{Gramian}(0)>0 \Longrightarrow \operatorname{Gramian}(t)>0$

$\because \quad$ We have L^{∞}-estimate of H.

If $\operatorname{Gramian}(t) \rightarrow 0$ as $t \rightarrow T_{*}-0$, then (roughly speaking)

$$
\|\tilde{H}\|_{L^{2}} \rightarrow 0, \quad\|\tilde{H}\|_{L^{\infty}} \rightarrow \infty
$$

If $\operatorname{Gramian}(t) \rightarrow 0$ as $t \rightarrow T_{*}-0$, then (roughly speaking)

$$
\|\tilde{H}\|_{L^{2}} \rightarrow 0, \quad\|\tilde{H}\|_{L^{\infty}} \rightarrow \infty
$$

\Longrightarrow mean curvature concentrates on a \mathcal{H}^{n}-null set (blow-up set).

Conjecture

- $n \geqq 2 \Longrightarrow{ }^{\exists}$ blow-up solutions
- $\operatorname{dim}_{\mathcal{H}}($ blow-up set $) \leqq n-2$
- Energy gap $=\frac{n}{2} \times 4 \pi$
$\times \mathcal{H}^{n-2}$ (blow-up sets) \times multiplicity

Thank you very much for your attention.

