




























Theorem 2.1 Suppose that u has two station-
ary level surfaces Γ1 and Γ2 in Ω. Then f is
affine and ∂Ω must be a hyperplane if f sat-
isfies

sup
|x−y|≤1

|f(x) − f(y)| ≤ C (1)

for some constant C > 0.



Proof. Let Γ1 be nearer to ∂Ω. Then, the
existence of Γ2 gives us the uniform exterior
sphere condition for Γ1. So, case (iii) of The-
orem 2 works.

Remark. The uniform continuity is weakened,
but two stationary level surfaces are strong.
Only under (1), one wants the same conclu-
sion.



























Another role of condition (1).
Another proof of Theorem 2 (iii) and The-

orem 2.1 is as follows: By Theorem A, there
exist g ∈ C2(RN) and R > 0 such that

Γ = {(x, g(x)) : x ∈ RN} and

g(x) = sup
|x−y|≤R

{f(y) +
√

R2 − |x − y|2}.

Then (1) implies that g(x)−f(x) is bounded.
As in Lemma 2 in Theorem 3, we have

Mf ≤ 0 ≤ Mg ≡ div

(
∇g√

1 + |∇g|2

)
in RN .



Let Bn ⊂ RN be a ball with center 0 and
radius n ∈ N, and let fn, gn satisfy

Mfn = Mgn = 0 in Bn

fn = f and gn = g on ∂Bn.

Then, by maximum principle,

fn ≤ f < g ≤ gn in Bn,

∃zn ∈ ∂Bn with gn−fn ≤ g(zn)−f(zn) in Bn.



By monotonicity, boundedness of g − f , (1),
and Moser’s theorem,

fn, gn converge to affine functions f∞, g∞, resp.

Hence, f∞ and g∞ are parallel,

f∞ ≤ f < g ≤ g∞, and

g∞(zn)−g(zn), f(zn)−f∞(zn) → 0 as n → ∞.

Finally, by using uniform continuity of f, g
and the strong comparison principle as in [S,
2011]

f ≡ f∞ and g ≡ g∞.
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