Convexity, rearrangements and Brunn-Minkowski inequalities in PDE's

SALANI PAOLO

Università di Firenze

Introduction

We will deal with general (possibly fully nonlinear) elliptic Dirichlet problems

$$
\begin{cases}F\left(x, u, D u, D^{2} u\right)=0 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Introduction

We will deal with general (possibly fully nonlinear) elliptic Dirichlet problems

$$
\begin{cases}F\left(x, u, D u, D^{2} u\right)=0 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Ω is a convex set

Introduction

We will deal with general (possibly fully nonlinear) elliptic Dirichlet problems

$$
\begin{cases}F\left(x, u, D u, D^{2} u\right)=0 & \text { in } \Omega \tag{0.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Ω is a convex set
$F: \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \times \mathcal{S}_{n} \rightarrow \mathbb{R}$ is a continuous proper degenerate elliptic operator:

$$
\text { proper: } F(x, u, p, A) \geq F(x, v, p, A) \text { if } u \leq v,
$$

(degenerate) elliptic: $\quad F(x, u, p, A) \geq F(x, u, p, B) \quad$ if $A \geq B$.

Convexity of solutions

Convexity properties of solutions to partial differential equations are an interesting issue of investigations since many years and to compile an exhaustive bibliography is almost impossible.

Convexity of solutions

Convexity properties of solutions to partial differential equations are an interesting issue of investigations since many years and to compile an exhaustive bibliography is almost impossible. A good reference book has been for a long time the monograph by Kawohl (1985), but a quarter of a century has now passed since its publication and new techniques and results appeared along these years. In particular....

Convexity of solutions

Convexity properties of solutions to partial differential equations are an interesting issue of investigations since many years and to compile an exhaustive bibliography is almost impossible.
A good reference book has been for a long time the monograph by Kawohl (1985), but a quarter of a century has now passed since its publication and new techniques and results appeared along these years. In particular....

- A microscopic technique

Based on the strong maximum principle and in particular on a smart combination of the so called constant rank theorems and continuity method.

Starting with Caffarelli-Friedman (1985), then Korevaar, Korevaar-Lewis, Caffarelli-Guan-Ma, Bian-Ma, etc.

Convexity of solutions

Convexity properties of solutions to partial differential equations are an interesting issue of investigations since many years and to compile an exhaustive bibliography is almost impossible.
A good reference book has been for a long time the monograph by Kawohl (1985), but a quarter of a century has now passed since its publication and new techniques and results appeared along these years. In particular....

- A microscopic technique

Based on the strong maximum principle and in particular on a smart combination of the so called constant rank theorems and continuity method.

Starting with Caffarelli-Friedman (1985), then Korevaar, Korevaar-Lewis, Caffarelli-Guan-Ma, Bian-Ma, etc.
-A new macroscopic techniques: based on the comparison principle and on the convex envelope of the solution.

Convexity of solutions

Convexity properties of solutions to partial differential equations are an interesting issue of investigations since many years and to compile an exhaustive bibliography is almost impossible.
A good reference book has been for a long time the monograph by Kawohl (1985), but a quarter of a century has now passed since its publication and new techniques and results appeared along these years. In particular....

- A microscopic technique

Based on the strong maximum principle and in particular on a smart combination of the so called constant rank theorems and continuity method.

Starting with Caffarelli-Friedman (1985), then Korevaar, Korevaar-Lewis, Caffarelli-Guan-Ma, Bian-Ma, etc.
-A new macroscopic techniques: based on the comparison principle and on the convex envelope of the solution.
G. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. 76 (1997), 265-288.

The method of the convex envelope by ALL

Let u be a solution of our problem and define its convex envelope $u_{* *}$ as the largest convex function $\leq u$ in the strictly convex set Ω. More precisely we have:

$$
u_{* *}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

where

$$
\Lambda_{n}=\left\{t=\left(t_{1}, \ldots, t_{n+1}\right): t_{i} \geq 0, \sum_{i} t_{i}=1\right\}
$$

The method of the convex envelope by ALL

Let u be a solution of our problem and define its convex envelope $u_{* *}$ as the largest convex function $\leq u$ in the strictly convex set Ω. More precisely we have:

$$
u_{* *}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

where

$$
\Lambda_{n}=\left\{t=\left(t_{1}, \ldots, t_{n+1}\right): t_{i} \geq 0, \sum_{i} t_{i}=1\right\}
$$

By definition it trivially holds $u_{* *} \leq u$ in Ω and $u_{* *}=u$ on $\partial \Omega$.

The method of the convex envelope by ALL

Let u be a solution of our problem and define its convex envelope $u_{* *}$ as the largest convex function $\leq u$ in the strictly convex set Ω. More precisely we have:

$$
u_{* *}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

where

$$
\Lambda_{n}=\left\{t=\left(t_{1}, \ldots, t_{n+1}\right): t_{i} \geq 0, \sum_{i} t_{i}=1\right\} .
$$

By definition it trivially holds $u_{* *} \leq u$ in Ω and $u_{* *}=u$ on $\partial \Omega$. The method of ALL essentially amounts to find suitable conditions on the operator F such that $u_{* *}$ must be a supersolution of the same equation. Coupling this with a comparison principle yields $u=u_{* *}$.

The method of the convex envelope by ALL

Let u be a solution of our problem and define its convex envelope $u_{* *}$ as the largest convex function $\leq u$ in the strictly convex set Ω. More precisely we have:

$$
u_{* *}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

where

$$
\Lambda_{n}=\left\{t=\left(t_{1}, \ldots, t_{n+1}\right): t_{i} \geq 0, \sum_{i} t_{i}=1\right\} .
$$

By definition it trivially holds $u_{* *} \leq u$ in Ω and $u_{* *}=u$ on $\partial \Omega$. The method of ALL essentially amounts to find suitable conditions on the operator F such that $u_{* *}$ must be a supersolution of the same equation. Coupling this with a comparison principle yields $u=u_{* *}$.

They prove that this actually happens under the following simple assumption

$$
\begin{equation*}
(x, u, A) \rightarrow F\left(x, u, p, A^{-1}\right) \quad \text { is convex for }(x, u, A) \in \Omega \times \mathbb{R} \times \mathcal{S}_{n}^{++} \tag{0.2}
\end{equation*}
$$

for every fixed $p \in \mathbb{R}^{n}$.

Not only convexity....

I want to present a refinement of the convex envelope technique by Alvarez-Lasry-Lions which permits to obtain some general convexity property of solutions of nonlinear elliptic equations, so that the convexity of solutions in convex sets is just one of a series of interesting consequences.

Not only convexity....

I want to present a refinement of the convex envelope technique by Alvarez-Lasry-Lions which permits to obtain some general convexity property of solutions of nonlinear elliptic equations, so that the convexity of solutions in convex sets is just one of a series of interesting consequences.
In particular we will obtain:
(1) convexity of solutions under suitable assumption on the operator F;

Not only convexity....

I want to present a refinement of the convex envelope technique by Alvarez-Lasry-Lions which permits to obtain some general convexity property of solutions of nonlinear elliptic equations, so that the convexity of solutions in convex sets is just one of a series of interesting consequences. In particular we will obtain:
(1) convexity of solutions under suitable assumption on the operator F;
(2) comparison results between solutions of (0.1) in a generic bounded convex Ω domain and the corresponding solution in a ball Ω^{\star} with the same mean width of Ω, through an ad hoc rearrangement technique;

Not only convexity....

I want to present a refinement of the convex envelope technique by Alvarez-Lasry-Lions which permits to obtain some general convexity property of solutions of nonlinear elliptic equations, so that the convexity of solutions in convex sets is just one of a series of interesting consequences. In particular we will obtain:
(1) convexity of solutions under suitable assumption on the operator F;
(2) comparison results between solutions of (0.1) in a generic bounded convex Ω domain and the corresponding solution in a ball Ω^{\star} with the same mean width of Ω, through an ad hoc rearrangement technique;
(3) Brunn-Minkowski type inequalities for functionals related to (0.1) and consequent Urysohn's type inequalities for the same functionals.

Not only convexity....

I want to present a refinement of the convex envelope technique by Alvarez-Lasry-Lions which permits to obtain some general convexity property of solutions of nonlinear elliptic equations, so that the convexity of solutions in convex sets is just one of a series of interesting consequences. In particular we will obtain:
(1) convexity of solutions under suitable assumption on the operator F;
(2) comparison results between solutions of (0.1) in a generic bounded convex Ω domain and the corresponding solution in a ball Ω^{\star} with the same mean width of Ω, through an ad hoc rearrangement technique;
(3) Brunn-Minkowski type inequalities for functionals related to (0.1) and consequent Urysohn's type inequalities for the same functionals.

Everything is based on the notion of Minkowski addition of convex sets and the corresponding functional notion of infimal convolution, that allow to compare the solutions in two different convex sets Ω_{0} and Ω_{1} with the solution in the convex set $\Omega_{t}=(1-t) \Omega_{0}+t \Omega_{1}$.

Minkowski addition and the convex hull

Let $t \in[0,1]$ and let Ω_{0} and Ω_{1} be two (not necessarily convex) subsets of \mathbb{R}^{n}. The Minkowski linear combination of Ω_{0} and Ω_{1} wit ratio t is simply defined as

$$
\Omega_{t}=(1-t) \Omega_{0}+t \Omega_{1}=\left\{(1-t) x_{0}+t x_{1}: x_{i} \in \Omega_{i}, i=0,1\right\} .
$$

Minkowski addition and the convex hull

Let $t \in[0,1]$ and let Ω_{0} and Ω_{1} be two (not necessarily convex) subsets of \mathbb{R}^{n}. The Minkowski linear combination of Ω_{0} and Ω_{1} wit ratio t is simply defined as

$$
\Omega_{t}=(1-t) \Omega_{0}+t \Omega_{1}=\left\{(1-t) x_{0}+t x_{1}: x_{i} \in \Omega_{i}, i=0,1\right\} .
$$

Properties and BM inequality.... blackboard!

Minkowski addition and the convex hull

Let $t \in[0,1]$ and let Ω_{0} and Ω_{1} be two (not necessarily convex) subsets of \mathbb{R}^{n}. The Minkowski linear combination of Ω_{0} and Ω_{1} wit ratio t is simply defined as

$$
\Omega_{t}=(1-t) \Omega_{0}+t \Omega_{1}=\left\{(1-t) x_{0}+t x_{1}: x_{i} \in \Omega_{i}, i=0,1\right\} .
$$

Properties and BM inequality.... blackboard!
The convex hull of a set A in \mathbb{R}^{n} is defined as the smallest convex set containing A, more precisely:

$$
\operatorname{conv}(A)=\left\{\sum_{i=1}^{n+1} t_{i} x_{i}: x_{i} \in A, t_{i} \geq 0, \sum_{i} t_{i}=1\right\}
$$

Minkowski addition and the convex hull

Let $t \in[0,1]$ and let Ω_{0} and Ω_{1} be two (not necessarily convex) subsets of \mathbb{R}^{n}. The Minkowski linear combination of Ω_{0} and Ω_{1} wit ratio t is simply defined as

$$
\Omega_{t}=(1-t) \Omega_{0}+t \Omega_{1}=\left\{(1-t) x_{0}+t x_{1}: x_{i} \in \Omega_{i}, i=0,1\right\} .
$$

Properties and BM inequality.... blackboard!
The convex hull of a set A in \mathbb{R}^{n} is defined as the smallest convex set containing A, more precisely:

$$
\operatorname{conv}(A)=\left\{\sum_{i=1}^{n+1} t_{i} x_{i}: x_{i} \in A, t_{i} \geq 0, \sum_{i} t_{i}=1\right\}
$$

The possibility to refine the method of ALL is based on the following simple geometric observation:

$$
\operatorname{conv}(A)=\bigcup_{t \in \Lambda_{n}} A_{t},
$$

where

$$
A_{t}=\sum_{i=1}^{n+1} t_{i} A
$$

Infimal convolution and convex envelope

Minkowski combination of sets has a functional equivalent: the so called infimal convolution.
Let $t \in \Lambda_{m}$ and let u_{1}, \ldots, u_{m} be functions (defined in $\Omega_{1}, \ldots, \Omega_{m}$). The infimal convolution of u_{1}, \ldots, u_{m} with ratio t is defined (in Ω_{t}) as follows:

$$
u_{* t}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega_{i}, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

Infimal convolution and convex envelope

Minkowski combination of sets has a functional equivalent: the so called infimal convolution.
Let $t \in \Lambda_{m}$ and let u_{1}, \ldots, u_{m} be functions (defined in $\Omega_{1}, \ldots, \Omega_{m}$).
The infimal convolution of u_{1}, \ldots, u_{m} with ratio t is defined (in Ω_{t}) as follows:

$$
u_{* t}(x)=\inf \left\{\sum_{i=1}^{n+1} t_{i} u\left(x_{i}\right): x_{i} \in \Omega_{i}, t \in \Lambda_{n}, \sum_{i} t_{i} x_{i}=x\right\}
$$

It is easily seen that it corresponds to make the Minkowski linear combination of the epigraphs of the functions u_{i}, that is

$$
K_{t}=\sum_{i=1}^{m} t_{i} K_{i}
$$

where

$$
K_{j}=\left\{(x, z): u_{j}(x) \leq z \leq 0, x \in \Omega_{j}\right\}, \quad j=1, \ldots, m, t .
$$

Infimal convolution and convex envelope

When the involved functions are strictly convex and sufficiently regular (say C_{+}^{2} for simplicity), we have that the infimum in the definition is a minimum. Then, for every point $x \in \Omega_{t}$, there exist $x_{1} \in \Omega_{1}, \ldots, x_{m} \in \Omega_{m}$ such that

$$
\sum_{i} t_{i} x_{i}=x \quad \text { and } \quad u_{* t}(x)=\sum_{i} t_{i} u_{i}\left(x_{i}\right)
$$

Infimal convolution and convex envelope

When the involved functions are strictly convex and sufficiently regular (say C_{+}^{2} for simplicity), we have that the infimum in the definition is a minimum. Then, for every point $x \in \Omega_{t}$, there exist $x_{1} \in \Omega_{1}, \ldots, x_{m} \in \Omega_{m}$ such that

$$
\sum_{i} t_{i} x_{i}=x \quad \text { and } \quad u_{* t}(x)=\sum_{i} t_{i} u_{i}\left(x_{i}\right)
$$

Moreover, if

$$
D u_{1}\left(\Omega_{1}\right)=\operatorname{Du_{2}}\left(\Omega_{2}\right)=\cdots=\operatorname{Du} u_{m}\left(\Omega_{m}\right),
$$

then $u_{* t} \in C_{+}^{2}\left(\Omega_{t}\right)$ and the following differential relations hold:

$$
D u_{1}\left(x_{1}\right)=D u_{2}\left(x_{2}\right)=\cdots=D u_{m}\left(x_{m}\right)=D u_{* t}(x)
$$

and

$$
D^{2} u_{* t}(x)=\left(\sum_{i} D^{2} u_{i}\left(x_{i}\right)^{-1}\right)^{-1}
$$

Infimal convolution and convex envelope

When the involved functions are strictly convex and sufficiently regular (say C_{+}^{2} for simplicity), we have that the infimum in the definition is a minimum. Then, for every point $x \in \Omega_{t}$, there exist $x_{1} \in \Omega_{1}, \ldots, x_{m} \in \Omega_{m}$ such that

$$
\sum_{i} t_{i} x_{i}=x \quad \text { and } \quad u_{* t}(x)=\sum_{i} t_{i} u_{i}\left(x_{i}\right)
$$

Moreover, if

$$
D u_{1}\left(\Omega_{1}\right)=D u_{2}\left(\Omega_{2}\right)=\cdots=\operatorname{Du} u_{m}\left(\Omega_{m}\right),
$$

then $u_{* t} \in C_{+}^{2}\left(\Omega_{t}\right)$ and the following differential relations hold:

$$
D u_{1}\left(x_{1}\right)=D u_{2}\left(x_{2}\right)=\cdots=D u_{m}\left(x_{m}\right)=D u_{* t}(x)
$$

and

$$
D^{2} u_{* t}(x)=\left(\sum_{i} D^{2} u_{i}\left(x_{i}\right)^{-1}\right)^{-1}
$$

As for sets, we have that the convex envelope of a function can be seen as the infimum of all the possible infimal convolution of $n+1$ copies of the same function. Precisely

$$
u_{* *}(x)=\inf \left\{u_{* t}(x): t \in \Lambda_{n}\right\}
$$

Application 1: the main theorem

Theorem 1

Let Ω_{0} and Ω_{1} be two strictly convex sets and assume u_{i} is a C_{+}^{2} solution of (0.1) in Ω_{i}, for $i=0,1$. Let $t \in(0,1)$ and set Ω_{t} and $u_{* t}$ as above. Then, if (F) $\left\{(x, u, A) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathcal{S}_{n}^{++}: F\left(x, u, p, A^{-1}\right) \leq 0\right\}$ is convex $\forall p \in \mathbb{R}^{n}$, then $u_{* t}$ is a supersolution of (0.1) in Ω_{t}.

Application 1: the main theorem

Theorem 1

Let Ω_{0} and Ω_{1} be two strictly convex sets and assume u_{i} is a C_{+}^{2} solution of (0.1) in Ω_{i}, for $i=0,1$. Let $t \in(0,1)$ and set Ω_{t} and $u_{* t}$ as above. Then, if (F) $\quad\left\{(x, u, A) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathcal{S}_{n}^{++}: F\left(x, u, p, A^{-1}\right) \leq 0\right\}$ is convex $\forall p \in \mathbb{R}^{n}$, then $u_{* t}$ is a supersolution of (0.1) in Ω_{t}.

Notice that assumption (F) is weaker than the assumption by ALL.

Application 1: the main theorem

Theorem 1

Let Ω_{0} and Ω_{1} be two strictly convex sets and assume u_{i} is a C_{+}^{2} solution of (0.1) in Ω_{i}, for $i=0,1$. Let $t \in(0,1)$ and set Ω_{t} and $u_{* t}$ as above. Then, if
(F) $\quad\left\{(x, u, A) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathcal{S}_{n}^{++}: F\left(x, u, p, A^{-1}\right) \leq 0\right\}$ is convex $\forall p \in \mathbb{R}^{n}$,
then $u_{* t}$ is a supersolution of (0.1) in Ω_{t}.
Notice that assumption (F) is weaker than the assumption by ALL.

Corollary

In the same assumption of the previous theorem, if u_{t} is the solution of (0.1) in Ω_{t} and a comparison principle holds, then $u_{t} \leq u_{* t}$ in Ω_{t}.

The way to rearrangements: Hadwiger's Theorem!

By Hadwiger's Theorem there exists a sequence of rotations $\left\{\rho_{N}\right\}$ such that

$$
\Omega_{N}=\frac{1}{N+1}\left(\rho_{0} \Omega+\ldots+\rho_{N} \Omega\right)
$$

converges in Hausdorff metric to the ball Ω^{\star} which has the same mean-width as Ω.

The way to rearrangements: Hadwiger's Theorem!

By Hadwiger's Theorem there exists a sequence of rotations $\left\{\rho_{N}\right\}$ such that

$$
\Omega_{N}=\frac{1}{N+1}\left(\rho_{0} \Omega+\ldots+\rho_{N} \Omega\right)
$$

converges in Hausdorff metric to the ball Ω^{\star} which has the same mean-width as Ω.

Denote by u_{N} the solution of problem (0.1) in Ω_{N} and for every $N \in \mathbb{N}$, let \tilde{u}_{N} be the Minkowski combination of the functions

$$
u_{0}(x)=u\left(\rho_{0}^{-1} x\right), \ldots, u_{N}(x)=v\left(\rho_{N}^{-1} x\right)
$$

with ratio

$$
t=(1 /(N+1), \ldots, 1 /(N+1)) \in \Lambda_{N} .
$$

By Theorem 1, \tilde{u}_{N} is a supersolution of the problem solved by u_{N} and it holds

$$
\left|u_{N}\right| \geq\left|\tilde{u}_{N}\right| \quad \text { in } \Omega_{N} .
$$

The way to rearrangements 2

Notice that the functions \tilde{u}_{N} are uniformly bounded convex functions, then, possibly up to a subsequence, they converge uniformly to function ũ which is a viscosity supersolution of problem (0.1) in Ω^{\star}, thanks to the stability of viscosity solution under uniform convergence. Hence

$$
\left|u^{\star}\right| \geq|\tilde{u}| \quad \text { in } \Omega^{\star},
$$

whence

$$
\begin{equation*}
\left\|u^{\star}\right\|_{L^{p}\left(\Omega^{\star}\right)} \geq\|\tilde{u}\|_{L^{p}\left(\Omega^{\star}\right)} \quad \text { for every } p \in(0,+\infty] . \tag{0.3}
\end{equation*}
$$

On the other hand, by the definition of \tilde{v}_{N} and \tilde{u}_{N}, it holds

$$
\left|\tilde{u}_{N}\left(\frac{1}{N+1} \sum_{i=0}^{N} x_{i}\right)\right| \geq \frac{1}{N+1} \sum_{i=0}^{N}\left|u\left(\rho_{i}^{-1} x_{i}\right)\right|
$$

for every $x_{i} \in \rho_{i} \Omega, i=0, \ldots, N$. This yields

$$
\left|\tilde{u}_{N}(x)\right| \geq \prod_{i=0}^{N}\left|u\left(\rho_{i}^{-1} x_{i}\right)\right|^{\frac{1}{N+1}}
$$

for every $x_{0}, \ldots, x_{N} \in \mathbb{R}^{3}$ such that $x=\frac{1}{N+1} \sum_{i=0}^{N} x_{i}$, once we extend u_{N} and u as zero outside of Ω_{N} and Ω, respectively.

The way to rearrangements 3

Then the Prékopa-Leindler inequality implies

$$
\begin{equation*}
\left\|\tilde{u}_{N}\right\|_{L^{p}\left(\Omega_{N}\right)}^{p} \geq \prod_{i=0}^{N}\left(\int_{\rho_{i} \Omega}\left|u\left(\rho_{i}^{-1} \xi\right)\right|^{p} d \xi\right)^{\frac{1}{N+1}}=\|u\|_{L^{p}(\Omega)}^{p} \quad \text { for every } p \in(0,+\infty] . \tag{0.4}
\end{equation*}
$$

Passing to the limit as $N \rightarrow \infty$, this yields

$$
\|\tilde{u}\|_{L^{p}\left(\Omega^{\star}\right)} \geq\|u\|_{L^{p}(\Omega)}
$$

which jointly with (0.3) gives the following result.

The way to rearrangements 3

Then the Prékopa-Leindler inequality implies

$$
\begin{equation*}
\left\|\tilde{u}_{N}\right\|_{L^{p}\left(\Omega_{N}\right)}^{p} \geq \prod_{i=0}^{N}\left(\int_{\rho_{i} \Omega}\left|u\left(\rho_{i}^{-1} \xi\right)\right|^{p} d \xi\right)^{\frac{1}{N+1}}=\|u\|_{L^{p}(\Omega)}^{p} \quad \text { for every } p \in(0,+\infty] . \tag{0.4}
\end{equation*}
$$

Passing to the limit as $N \rightarrow \infty$, this yields

$$
\|\tilde{u}\|_{L^{p}\left(\Omega^{\star}\right)} \geq\|u\|_{L^{p}(\Omega)}
$$

which jointly with (0.3) gives the following result.

Theorem 2

Let $\Omega \subset \mathbb{R}^{3}$ be a C_{+}^{2} set and let Ω^{\star} be a ball with the same mean-width of Ω. Denote by u the solution of (0.1) in Ω and by u^{\star} the solution in Ω^{\star}. Then, in the same assumption of Theorem $1+$ Comparison Pple,

$$
\begin{equation*}
\|u\|_{L^{p}(\Omega)} \leq\left\|u^{\star}\right\|_{L^{p}\left(\Omega^{\star}\right)} \quad \text { for every } p \in(0,+\infty] . \tag{0.5}
\end{equation*}
$$

Moreover, equality holds for any $p \in(0,+\infty)$ if and only if Ω is a ball.

Convexity of solutions

Essentially with the same proof as above, and taking in account that the convex envelope is just the infimum of all the possible infimal convolution of $n+1$ copies of the function u, we obtain the following.

Theorem 3

Let $\Omega \subset \mathbb{R}^{3}$ be a convex set and u be a (viscosity) solution of (0.1) in Ω. If the operator F satisfies assumption (F) and a comparison principle holds, then u is convex.

Examples

Example of new applications are given for instance by the following Dirichlet problems for Hessian equations.

$$
\begin{cases}S_{k}\left(D^{2} u\right)=\Lambda_{k}(\Omega)(-u)^{k} & \text { in } \Omega \tag{0.6}\\ u=0 & \text { on } \partial \Omega \\ u<0 & \text { in } \Omega\end{cases}
$$

and

$$
\begin{cases}S_{k}\left(D^{2} u\right)=1 & \text { in } \Omega \tag{0.7}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded convex domain of \mathbb{R}^{n} and $S_{k}\left(D^{2} u\right)$ is the k-th elementary symmetric function of the eigenvalues of $D^{2} u, k \in\{1, \ldots, n\}$.

Examples

Example of new applications are given for instance by the following Dirichlet problems for Hessian equations.

$$
\begin{cases}S_{k}\left(D^{2} u\right)=\Lambda_{k}(\Omega)(-u)^{k} & \text { in } \Omega, \tag{0.6}\\ u=0 & \text { on } \partial \Omega \\ u<0 & \text { in } \Omega\end{cases}
$$

and

$$
\begin{cases}S_{k}\left(D^{2} u\right)=1 & \text { in } \Omega \tag{0.7}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded convex domain of \mathbb{R}^{n} and $S_{k}\left(D^{2} u\right)$ is the k-th elementary symmetric function of the eigenvalues of $D^{2} u, k \in\{1, \ldots, n\}$.

$k=2$ and $n=3$

If u solves (0.6), then $-\log (-u)$ is convex.
If u solves (0.7), then $-\sqrt{-u}$ is convex.
P.S., Convexity of solutions and Brunn-Minkowski inequalities for Hessian equations in \mathbb{R}^{3}, preprint 2010 (submitted).

Brunn-Minkowski inequalities for variational functionals

When, as in the case of the previous examples, the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional.

Brunn-Minkowski inequalities for variational functionals

When, as in the case of the previous examples, the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional.
For instance, Λ_{k} is homogeneous of degree $-2 k$, then the BM inequality reads

$$
\Lambda_{k}\left(\Omega_{t}\right)^{-1 / 2 k} \geq(1-t) \Lambda_{k}\left(\Omega_{0}\right)^{-1 / 2 k}+t \Lambda_{k}\left(\Omega_{1}\right)^{-1 / 2 k}
$$

Brunn-Minkowski inequalities for variational functionals

When, as in the case of the previous examples, the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional.
For instance, Λ_{k} is homogeneous of degree $-2 k$, then the BM inequality reads

$$
\Lambda_{k}\left(\Omega_{t}\right)^{-1 / 2 k} \geq(1-t) \Lambda_{k}\left(\Omega_{0}\right)^{-1 / 2 k}+t \Lambda_{k}\left(\Omega_{1}\right)^{-1 / 2 k}
$$

Notice that, thanks to the same procedure based on Hadwiger's theorem, we can obtain form any BM inequality a corresponding Urysohn's inequality, stating that the maximum (or minimum) of the functional among all the convex sets with given mean width is attained when the domain is a ball.

Brunn-Minkowski inequalities for variational functionals

When, as in the case of the previous examples, the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional.
For instance, Λ_{k} is homogeneous of degree $-2 k$, then the BM inequality reads

$$
\Lambda_{k}\left(\Omega_{t}\right)^{-1 / 2 k} \geq(1-t) \Lambda_{k}\left(\Omega_{0}\right)^{-1 / 2 k}+t \Lambda_{k}\left(\Omega_{1}\right)^{-1 / 2 k}
$$

Notice that, thanks to the same procedure based on Hadwiger's theorem, we can obtain form any BM inequality a corresponding Urysohn's inequality, stating that the maximum (or minimum) of the functional among all the convex sets with given mean width is attained when the domain is a ball. Precisely, in this case,

$$
\Lambda_{k}(\Omega) \geq \Lambda_{k}\left(\Omega^{\star}\right)
$$

with $=$ if and only if $\Omega=\Omega^{\star}$

