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Introduction

We will deal with general (possibly fully nonlinear) elliptic Dirichlet problems F (x ,u,Du,D2u) = 0 in Ω ,

u = 0 on ∂Ω .
(0.1)

Ω is a convex set

F : Rn × R× Rn × Sn → R is a continuous proper degenerate elliptic operator:

proper: F (x ,u,p,A) ≥ F (x , v ,p,A) if u ≤ v ,

(degenerate) elliptic: F (x ,u,p,A) ≥ F (x ,u,p,B) if A ≥ B .
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Convexity of solutions

Convexity properties of solutions to partial differential equations are an
interesting issue of investigations since many years and to compile an
exhaustive bibliography is almost impossible.

A good reference book has been for a long time the monograph by Kawohl
(1985), but a quarter of a century has now passed since its publication and
new techniques and results appeared along these years. In particular....
- A microscopic technique
Based on the strong maximum principle and in particular on a smart
combination of the so called constant rank theorems and continuity method.

Starting with Caffarelli-Friedman (1985), then Korevaar, Korevaar-Lewis,
Caffarelli-Guan-Ma, Bian-Ma, etc.

-A new macroscopic techniques: based on the comparison principle and on
the convex envelope of the solution.

G. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state
constraints, J. Math. Pures Appl. 76 (1997), 265-288.
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The method of the convex envelope by ALL
Let u be a solution of our problem and define its convex envelope u∗∗ as the
largest convex function ≤ u in the strictly convex set Ω. More precisely we
have:

u∗∗(x) = inf{
n+1∑
i=1

tiu(xi ) : xi ∈ Ω, t ∈ Λn,
∑

i

tixi = x}

where
Λn = {t = (t1, . . . , tn+1) : ti ≥ 0,

∑
i

ti = 1} .

By definition it trivially holds u∗∗ ≤ u in Ω and u∗∗ = u on ∂Ω .
The method of ALL essentially amounts to find suitable conditions on the
operator F such that u∗∗ must be a supersolution of the same equation.
Coupling this with a comparison principle yields u = u∗∗.

They prove that this actually happens under the following simple assumption

(x ,u,A)→ F (x ,u,p,A−1) is convex for (x ,u,A) ∈ Ω× R× S++
n (0.2)

for every fixed p ∈ Rn.
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Not only convexity....

I want to present a refinement of the convex envelope technique by
Alvarez-Lasry-Lions which permits to obtain some general convexity property
of solutions of nonlinear elliptic equations, so that the convexity of solutions in
convex sets is just one of a series of interesting consequences.

In particular we will obtain:
(1) convexity of solutions under suitable assumption on the operator F ;
(2) comparison results between solutions of (0.1) in a generic bounded
convex Ω domain and the corresponding solution in a ball Ω? with the same
mean width of Ω, through an ad hoc rearrangement technique;
(3) Brunn-Minkowski type inequalities for functionals related to (0.1) and
consequent Urysohn’s type inequalities for the same functionals.

Everything is based on the notion of Minkowski addition of convex sets and
the corresponding functional notion of infimal convolution, that allow to
compare the solutions in two different convex sets Ω0 and Ω1 with the solution
in the convex set Ωt = (1− t)Ω0 + t Ω1.
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Minkowski addition and the convex hull
Let t ∈ [0,1] and let Ω0 and Ω1 be two (not necessarily convex) subsets of Rn.
The Minkowski linear combination of Ω0 and Ω1 wit ratio t is simply defined as

Ωt = (1− t)Ω0 + tΩ1 = {(1− t)x0 + t x1 : xi ∈ Ωi , i = 0,1} .

Properties and BM inequality.... blackboard!

The convex hull of a set A in Rn is defined as the smallest convex set
containing A, more precisely:

conv(A) = {
n+1∑
i=1

tixi : xi ∈ A, ti ≥ 0,
∑

i

ti = 1} .

The possibility to refine the method of ALL is based on the following simple
geometric observation:

conv(A) =
⋃

t∈Λn

At ,

where

At =
n+1∑
i=1

tiA .
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Infimal convolution and convex envelope

Minkowski combination of sets has a functional equivalent: the so called
infimal convolution.
Let t ∈ Λm and let u1, . . . ,um be functions (defined in Ω1, . . . ,Ωm).
The infimal convolution of u1, . . . ,um with ratio t is defined (in Ωt ) as follows:

u∗t (x) = inf{
n+1∑
i=1

tiu(xi ) : xi ∈ Ωi , t ∈ Λn,
∑

i

tixi = x} .

It is easily seen that it corresponds to make the Minkowski linear combination
of the epigraphs of the functions ui , that is

Kt =
m∑

i=1

tiKi ,

where
Kj = {(x , z) : uj (x) ≤ z ≤ 0, x ∈ Ωj} , j = 1, . . . ,m, t .
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Infimal convolution and convex envelope
When the involved functions are strictly convex and sufficiently regular (say
C2

+ for simplicity), we have that the infimum in the definition is a minimum.
Then, for every point x ∈ Ωt , there exist x1 ∈ Ω1, . . . , xm ∈ Ωm such that∑

i

tixi = x and u∗t (x) =
∑

i

tiui (xi ) .

Moreover, if
Du1(Ω1) = Du2(Ω2) = · · · = Dum(Ωm) ,

then u∗t ∈ C2
+(Ωt ) and the following differential relations hold:

Du1(x1) = Du2(x2) = · · · = Dum(xm) = Du∗t (x)

and

D2u∗t (x) =

(∑
i

D2ui (xi )
−1

)−1

.

As for sets, we have that the convex envelope of a function can be seen as
the infimum of all the possible infimal convolution of n + 1 copies of the same
function. Precisely

u∗∗(x) = inf{u∗t (x) : t ∈ Λn} .
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Application 1: the main theorem

Theorem 1
Let Ω0 and Ω1 be two strictly convex sets and assume ui is a C2

+ solution of
(0.1) in Ωi , for i = 0,1. Let t ∈ (0,1) and set Ωt and u∗t as above. Then, if

(F ) {(x ,u,A) ∈ Rn × R× S++
n : F (x ,u,p,A−1) ≤ 0} is convex ∀p ∈ Rn ,

then u∗t is a supersolution of (0.1) in Ωt .

Notice that assumption (F) is weaker than the assumption by ALL.

Corollary
In the same assumption of the previous theorem, if ut is the solution of (0.1)
in Ωt and a comparison principle holds, then ut ≤ u∗t in Ωt .
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The way to rearrangements: Hadwiger’s Theorem!

By Hadwiger’s Theorem there exists a sequence of rotations {ρN} such that

ΩN =
1

N + 1
(ρ0Ω + ...+ ρNΩ)

converges in Hausdorff metric to the ball Ω? which has the same mean-width
as Ω.

Denote by uN the solution of problem (0.1) in ΩN and for every N ∈ N, let ũN
be the Minkowski combination of the functions

u0(x) = u(ρ−1
0 x), . . . , uN(x) = v(ρ−1

N x)

with ratio
t = (1/(N + 1), . . . ,1/(N + 1)) ∈ ΛN .

By Theorem 1, ũN is a supersolution of the problem solved by uN and it holds

|uN | ≥ |ũN | in ΩN .
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The way to rearrangements 2
Notice that the functions ũN are uniformly bounded convex functions, then,
possibly up to a subsequence, they converge uniformly to function ũ which is
a viscosity supersolution of problem (0.1) in Ω?, thanks to the stability of
viscosity solution under uniform convergence. Hence

|u?| ≥ |ũ| in Ω? ,

whence
‖u?‖Lp(Ω?) ≥ ‖ũ‖Lp(Ω?) for every p ∈ (0,+∞] . (0.3)

On the other hand, by the definition of ṽN and ũN , it holds∣∣∣∣∣ũN

(
1

N + 1

N∑
i=0

xi

)∣∣∣∣∣ ≥ 1
N + 1

N∑
i=0

∣∣∣u(ρ−1
i xi )

∣∣∣ ,
for every xi ∈ ρi Ω, i = 0, . . . ,N. This yields

|ũN(x)| ≥
N∏

i=0

|u(ρ−1
i xi )|

1
N+1

for every x0, . . . , xN ∈ R3 such that x = 1
N+1

∑N
i=0 xi , once we extend uN and u

as zero outside of ΩN and Ω, respectively.
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The way to rearrangements 3
Then the Prékopa-Leindler inequality implies

‖ũN‖p
Lp(ΩN ) ≥

N∏
i=0

(∫
ρi Ω

|u(ρ−1
i ξ)|p dξ

) 1
N+1

= ‖u‖p
Lp(Ω) for every p ∈ (0,+∞] .

(0.4)
Passing to the limit as N →∞, this yields

‖ũ‖Lp(Ω?) ≥ ‖u‖Lp(Ω) ,

which jointly with (0.3) gives the following result.

Theorem 2
Let Ω ⊂ R3 be a C2

+ set and let Ω? be a ball with the same mean-width of Ω.
Denote by u the solution of (0.1) in Ω and by u? the solution in Ω?.
Then, in the same assumption of Theorem 1 + Comparison Pple,

‖u‖Lp(Ω) ≤ ‖u?‖Lp(Ω?) for every p ∈ (0,+∞] . (0.5)

Moreover, equality holds for any p ∈ (0,+∞) if and only if Ω is a ball.
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Convexity of solutions

Essentially with the same proof as above, and taking in account that the
convex envelope is just the infimum of all the possible infimal convolution of
n + 1 copies of the function u, we obtain the following.

Theorem 3
Let Ω ⊂ R3 be a convex set and u be a (viscosity) solution of (0.1) in Ω. If the
operator F satisfies assumption (F) and a comparison principle holds, then u
is convex.
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Examples
Example of new applications are given for instance by the following Dirichlet
problems for Hessian equations. Sk (D2u) = Λk (Ω)(−u)k in Ω ,

u = 0 on ∂Ω ,
u < 0 in Ω ,

(0.6)

and {
Sk (D2u) = 1 in Ω ,
u = 0 on ∂Ω ,

(0.7)

where Ω is a bounded convex domain of Rn and Sk (D2u) is the k -th
elementary symmetric function of the eigenvalues of D2u, k ∈ {1, . . . ,n}.

k = 2 and n = 3
If u solves (0.6), then − log(−u) is convex.

If u solves (0.7), then −
√
−u is convex.

P.S., Convexity of solutions and Brunn-Minkowski inequalities for Hessian
equations in R3, preprint 2010 (submitted).
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Brunn-Minkowski inequalities for variational functionals

When, as in the case of the previous examples, the involved equation is the
Euler equation of some variational functional, we can obtain a BM inequality
for such a functional.

For instance, Λk is homogeneous of degree −2k , then the BM inequality reads

Λk (Ωt )
−1/2k ≥ (1− t)Λk (Ω0)−1/2k + t Λk (Ω1)−1/2k

Notice that, thanks to the same procedure based on Hadwiger’s theorem, we
can obtain form any BM inequality a corresponding Urysohn’s inequality,
stating that the maximum (or minimum) of the functional among all the convex
sets with given mean width is attained when the domain is a ball.
Precisely, in this case,

Λk (Ω) ≥ Λk (Ω?)

with = if and only if Ω = Ω?
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