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The papers by V. Maz’ya, M. Mitrea, and T. Shaposhnikova

The inhomogeneous Dirichlet problem for the Stokes system in
Lipschitz domains with unit normal close to VMO,

Journal of Functional Analysis and its Applications, 28, 2009

and

The Dirichlet problem in Lipschitz domains with boundary data in
Besov spaces for higher order elliptic systems with rough
coefficients,

Journal d’Analyse Mathématique, 110, 2010.
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By B l
p,q(Rn) we denote the space of functions in Rn having the

finite norm

‖u‖B l
p,q(Rn) =

(∫
Rn

‖∆h∇[l ]u‖
q
Lp(Rn)|h|

−n−q{l} dh
)1/q

+ ‖u‖
W

[l ]
p (Rn)

where {l} > 0, p, q ≥ 1, ∆hv = v(·+ h)− v(·), and ∇[l ] is the
vector of all derivatives of order [l ].
There are other ways of characterization of B l

p,q(Rn) with
equivalent norm given in terms of dyadic decompositions of unity
(see for example the book by T. Runst and W. Sickel “Sobolev
Spaces of Fractional Order, Nemytzkij Operators and Nonlinear
PDEs”, 1996.

The Besov spaces B l
p,q(Ω) (and later Triebel-Lizorkin spaces) are

defined by restricting the distributions from the corresponding
spaces in Rn to the open set Ω and B l

p,q(∂Ω) stands for the Besov
class on the Lipschitz manifold ∂Ω obtained by tranporting(via a
partition of unity and pull-back) the standard class B l

p,q(Rn−1).
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Stokes system

Consider the Stokes system in an arbitrary bounded Lipschitz
domain Ω ⊆ Rn, n ≥ 2,

∆~u −∇π = ~f ∈ B
s+ 1

p
−2

p,q (Ω), div~u = g ∈ B
s+ 1

p
−1

p,q (Ω),

~u ∈ B
s+ 1

p
p,q (Ω), π ∈ B

s+ 1
p
−1

p,q (Ω), Tr~u = ~h ∈ Bs
p,q(∂Ω),

(1)

subject to the (necessary) compatibility condition∫
∂O
〈ν,~h〉 dσ =

∫
O

g(X ) dX , for every component O of Ω. (2)
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Related works

• ∂Ω is sufficiently smooth (at least C 2): Cattabriga (1961),
Solonnikov (1966), Temam (1977), Giga (1981), Dautray & J.-L.
Lions (1993), Varnhorn (1994).

• ∂Ω ∈ C 1,1: Amrouche & Girault (1991)

• Lipschitz ∂Ω with small Lipschitz constant: Galdi, Simader &
Sohr (1994)

• polygon in R2 or polyhedron in R3: Kozlov, Maz’ya & Rossmann
(2001), Maz’ya & Rossmann (2009)

• Lipschitz ∂Ω, p ∼ 2: Mitrea & Wright (2008)
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The main hypothesis requires that, at small scales, the so called
local mean oscillations of the unit normal to ∂Ω are not too large,
relative to the Lipschitz constant of the domain Ω, and the indices
of the corresponding Besov space.
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Local mean oscillation

By the local mean oscillation of F ∈ L1(Ω) we understand

{F}Osc(Ω) :=

lim
ε→0

(
sup
{Bε}Ω

∫
−
Bε∩Ω

∫
−
Bε∩Ω

∣∣∣F (x)− F (x)
∣∣∣dxdy

)
,

where {Bε}Ω stands for the family of balls of radius ε centered at
points of Ω. Similarly, the local mean oscillation of f ∈ L1(∂Ω) is

{f }Osc(∂Ω) :=

lim
ε→0

(
sup
{Bε}∂Ω

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ f (x)− f (y)
∣∣∣dsxdsy

)
,

where {Bε}∂Ω is the collection of n-dimensional balls of radius ε
with centers on ∂Ω.
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A locally integrable function g in Rn belongs to the space
BMO(Rn) if

‖g‖BMO(Rn) := sup
B

∫
−
B

∣∣g(x)−
∫
−
B

g(y)dy
∣∣ dx

is finite, where the supremum is taken over all balls B in Rn. The
above supremum defines a seminorm in BMO(Rn).
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Remark

Smallness of the local mean oscillation {ν}Osc(∂Ω) does not imply
smallness of the Lipschitz constant.

Let
Ω = {(x , y) ∈ R2, y > ϕε(x)},

where
ϕε(x) = x sin(ε log |x |−1).

Then ‖ϕ′ε‖L∞(R) ∼ 1, while ‖ϕ′ε‖BMO(R) ≤ C ε.
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Main theorem

Theorem
Assume that n−1

n < p ≤ ∞, 0 < q ≤ ∞, (n− 1)
(

1
p − 1

)
+
< s < 1.

Then there exists δ > 0 which depends only on the Lipschitz
character of Ω and the exponent p, with the property that if
{ν}Osc(∂Ω) < δ, then the problem (1) is well-posed (with
uniqueness modulo locally constant functions in Ω for the
pressure). There exists a finite, positive constant
C = C (Ω, p, q, s, n) such that

‖~u‖
B

s+ 1
p

p,q (Ω)
+ inf

c
‖π − c‖

B
s+ 1

p−1

p,q (Ω)

≤ C‖~f ‖
B

s+ 1
p−2

p,q (Ω)
+ C‖g‖

B
s+ 1

p−1

p,q (Ω)
+ C‖~h‖Bs

p,q(∂Ω),

with the infimum taken over all locally constant functions c in Ω.
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Remark

The smallness condition in the Theorem

{ν}Osc(∂Ω) :=

lim
ε→0

(
sup
{Bε}∂Ω

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ ν(x)− ν(y)
∣∣∣dsxdsy

)
,

was first introduced by V. Maz’ya, M. Mitrea, and T.
Shaposhnikova in the paper

The Dirichlet problem in Lipschitz domains with boundary data in
Besov spaces for higher order elliptic systems with rough
coefficients

published in Journal d’Analyse Mathématique, 110, 2010.
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Let BMO and VMO stand, respectively, for the space of functions
of bounded mean oscillation and the space of functions of vanishing
mean oscillation (considered on ∂Ω). Recall that f ∈ VMO if∫

−
Br

∣∣f (x)−
∫
−
Br

f (y)dy
∣∣ dx → 0 as r → 0.

The space VMO is equivalently defined as the closure in BMO of
the space of uniformly continuous functions.
It can be proved that

{F}Osc ∼ dist (F ,VMO)

where the distance is taken in BMO. Thus the small oscillation
condition in the theorem holds if and only if

dist (ν,VMO) < δ.

This is trivially the case if ν ∈ VMO(∂Ω) irrespective of p and Ω.
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A class of domains satisfying the hypotheses of the main Theorem
is:

Lipschitz domains with a sufficiently small Lipschitz constant,
relatively to the exponent p.

In particular:

Lipschitz polyhedral domains with dihedral angles sufficiently close
to π, depending on p.
Polygonal domains with angles sufficiently close to π, depending
on p.
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The proof is based on the following mapping properties of the
hydrostatic layer potentials: single S and double D layer potentials
for the velocity and single Q and double P layer potentials for the
presure. These properties are of independent interest.

Recall that in the case n = 3 these potentials are:

Si (x , ~ψ) =
1

8π

∫
∂Ω

( δik
|x − y |

+
(xi − yi )(xk − yk)

|x − y |3
)
ψk(y)dσ(y),

Q(x , ~ψ) =
1

4π

∫
∂Ω

xk − yk
|x − y |3

ψk(y)dσ(y),

Dk(x , ~ϕ) = − 3

4π

∫
∂Ω

(xi − yi )(xj − yj)(xk − yk)

|x − y |5
ϕi (y)νj(y)dσ(y),

P(x , ~ϕ) =
1

2π

∂

∂xj

∫
∂Ω

xk − yk
|x − y |3

ϕk(y)νj(y)dσ(y),

where i , k = 1, 2, 3.
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Boundedness of layer potentials

Theorem
Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, and assume
that n−1

n < p ≤ ∞, (n − 1)( 1
p − 1)+ < s < 1, and 0 < q ≤ ∞.

Then

S : Bs−1
p,q (∂Ω) −→ B

s+ 1
p

p,q (Ω),

Q : Bs−1
p,q (∂Ω) −→ B

s+ 1
p
−1

p,q (Ω),

D : Bs
p,q(∂Ω) −→ B

s+ 1
p

p,q (Ω),

P : Bs
p,q(∂Ω) −→ B

s+ 1
p
−1

p,q (Ω),

are well-defined, bounded operators.
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Remark

If |p − 2| is small, 0 < q ≤ ∞, and 0 < s < 1, the Main Theorem
is valid in any Lipschitz domain without assumption on the size of
the oscillation of the outward unit normal. This follows from a
paper by E. Fabes, C. Kenig and G. Verchota of 1988, containing
Lp-estimates of the nontangential maximal function for solutions of
the Stokes system when p is close to 2 in any Lipschitz domain.
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A well-posedness result, analogous to the Main Theorem, holds on
the Triebel-Lizorkin scale, i.e. for the problem

∆~u −∇π = ~f ∈ F
s+ 1

p
−2

p,q (Ω), div~u = g ∈ F
s+ 1

p
−1

p,q (Ω),

~u ∈ F
s+ 1

p
p,q (Ω), π ∈ F

s+ 1
p
−1

p,q (Ω), Tr~u = ~h ∈ Bs
p,p(∂Ω),

(3)

This time, in addition to the previous conditions imposed on the
indices p, q, it is also assumed that p, q <∞.
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