000

Main results

0

Idea for proofs

Conclusion

Patterns in systems of a single reaction-diffusion equation coupled with ODE equations

Kanako Suzuki

Graduate School of Information Scienses, Tohoku University

Joint work with Anna Marciniak-Czochra (University of Heidelberg) and Grzegorz Karch (University of Wroclaw)

Cortona, 21 June 2011

Main result

0

Idea for proofs

Conclusion

Introduction

Mathematical problem Preliminaries

Main results Results

Idea for proofs

Existence of patterns Instability of patterns

Conclusion

Idea for proofs

Conclusion

Mathematical model

System of three ordinary/partial differential equations:

$$u_{t} = \left(\frac{av}{u+v} - d_{c}\right)u, \quad 0 < x < 1, \ t > 0,$$

$$v_{t} = -d_{b}v + u^{2}w - dv, \quad 0 < x < 1, \ t > 0,$$

$$w_{t} = \frac{1}{\gamma}w_{xx} - d_{g}w - u^{2}w + dv + \kappa_{0}, \quad 0 < x < 1, \ t > 0,$$

(RD)

with Neumann boundary conditions for the function w = w(x, t)

$$w_x(0, t) = w_x(1, t) = 0$$
 for all $t > 0$.

- This is a model of early carcinogenesis proposed by A. Marciniak-Czochra and M. Kimmel (2006, 2007, 2008).
- This is called Receptor-based model.

Idea for proofs

Idea 2: Diffusion-driven instability

We need an idea to understand the invasion of tumor cells into tissue.

Example: Bronchoalveolar Carcinoma (BAC)

In a very early stage of BAC, lumps appear along the walls of alveoli.

To explain how tumor cells can generate patterns observed at the macroscopic scale,

Receptor-based model + Diffusion-driven instability

Idea for proofs

Idea 2: Diffusion-driven instability

We need an idea to understand the invasion of tumor cells into tissue.

Example: Bronchoalveolar Carcinoma (BAC)

In a very early stage of BAC, lumps appear along the walls of alveoli.

To explain how tumor cells can generate patterns observed at the macroscopic scale,

Receptor-based model + Diffusion-driven instability

Idea for proofs

Conclusion

Mathematical problem

System of three ordinary/partial differential equations which exhibits the diffusion-driven instability:

$$u_{t} = \left(\frac{av}{u+v} - d_{c}\right)u, \quad 0 < x < 1, \ t > 0,$$

$$v_{t} = -d_{b}v + u^{2}w - dv, \quad 0 < x < 1, \ t > 0,$$

$$w_{t} = \frac{1}{\gamma}w_{xx} - d_{g}w - u^{2}w + dv + \kappa_{0}, \quad 0 < x < 1, \ t > 0,$$

(RD)

with Neumann boundary conditions for the function w = w(x, t)

$$w_x(0,t) = w_x(1,t) = 0$$
 for all $t > 0$.

Study the existence of spatial patterns and its stability

Introduction Main results Main results Main results Main results Main results Preliminaries

$$u_{t} = \left(\frac{av}{u+v} - d_{c}\right)u, \quad 0 < x < 1, \ t > 0,$$

$$v_{t} = -d_{b}v + u^{2}w - dv, \quad 0 < x < 1, \ t > 0,$$

$$w_{t} = \frac{1}{\gamma}w_{xx} - d_{g}w - u^{2}w + dv + \kappa_{0}, \quad 0 < x < 1, \ t > 0,$$

(RD)

Assume $a > d_c$ and $\kappa_0^2 \ge \Theta$, where $\Theta = 4d_g d_b \frac{d_c^2(d_b + d)}{(a - d_c)^2}$. Then, the kinetic system corresponding (RD) has two positive constant stationary solutions, one is stable and another is unstable.

Diffusion-driven instability: stable constant steady state becomes unstable in (RD).

Idea for proofs

Preliminaries

Let *A* be the Jacobian matrix at a positive spatially homogeneous steady state.

Diffusion-driven instabilities in the model with one-diffusion operator (A. Marciniak-Czochra and M. Kimmel)

• the kinetics system is asymptotically stable:

$$-tr(A) > 0, \quad -tr(A) \sum_{i < j} |A_{ij}| + |A| > 0, \quad -|A| > 0,$$

 the complete system is unstable for spatially non-homogeneous perturbations:

$$|A_{12}| < 0,$$

where A_{ij} is a submatrix of A consisting of the *i*-th and *j*-th column and *i*-th and *j*-th row, and $|\cdot|$ denotes the determinants.

Study the existence of spatial patterns and its stability

Assume $a > d_c$ and $\kappa_0^2 > \Theta$.

- Existence of spatial patterns
 - for all γ ∈ (0, γ₀), the system has only constant stationary solutions,
 - for all γ > γ₀, we describe all positive nonconstant stationary solutions.
 - Stability for nonconstant stationary solutions
 - they appear to be unstable solution of the reaction-diffusion equations (RD).

Study the existence of spatial patterns and its stability

Assume $a > d_c$ and $\kappa_0^2 > \Theta$.

- Existence of spatial patterns
 - for all $\gamma \in (0,\gamma_0],$ the system has only constant stationary solutions,
 - for all γ > γ₀, we describe all positive nonconstant stationary solutions.
- Stability for nonconstant stationary solutions
 - they appear to be unstable solution of the reaction-diffusion equations (RD).

Study the existence of spatial patterns and its stability

Assume $a > d_c$ and $\kappa_0^2 > \Theta$.

- Existence of spatial patterns
 - for all $\gamma \in (0,\gamma_0],$ the system has only constant stationary solutions,
 - for all γ > γ₀, we describe all positive nonconstant stationary solutions.
- Stability for nonconstant stationary solutions
 - they appear to be unstable solution of the reaction-diffusion equations (RD).

000

Main results

0

Idea for proofs

Conclusion

Existence of spatial patterns of (RD)

Kanako Suzuki Patterns in a reaction-diffusion model

000

Main results

)

Idea for proofs

Conclusion

Construction of patterns

$$\left(\frac{aV}{U+V} - d_c\right)U = 0,\tag{1}$$

$$-d_b V + U^2 W - dV = 0,$$
 (2)

$$\frac{1}{\gamma}W_{xx} - d_gW - U^2W + dV + \kappa_0 = 0 \tag{3}$$

and the boundary condition $W_x(0) = W_x(1) = 0$.

- We interested only in U(x) > 0 and V(x) > 0,
- Let $a > d_c$, $\kappa_0^2 > \Theta$.

From (1) and (2),

$$U(x) = \frac{a - d_c}{d_c} V(x) \quad \text{and} \quad V(x) = \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W(x)}.$$
 (4)

Main results

Idea for proofs

Conclusion

Construction of patterns

The boundary value problem for W(x)

$$\frac{1}{\gamma}W'' - d_g W - d_b \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W} + \kappa_0 = 0,$$
(5)

$$W_x(0) = W_x(1) = 0.$$
 (6)

By the change of variables

 $x \mapsto Tx$, where $T = \sqrt{\gamma}$,

the boundary value problem becomes

$$W'' + h(W) = 0 x \in (0, T), (7)$$

$$W'(0) = W'(T) = 0 (8)$$

A solution W = W(x) to problem (7)–(8) satisfies the differential equation:

Kanako Suzuki

Patterns in a reaction-diffusion model

Idea for proofs

Construction of patterns

The boundary value problem for W(x)

$$\frac{1}{\gamma}W'' - d_g W - d_b \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W} + \kappa_0 = 0,$$
(5)

$$W_x(0) = W_x(1) = 0.$$
 (6)

By the change of variables

$$x \mapsto Tx$$
, where $T = \sqrt{\gamma}$,

the boundary value problem becomes

$$W'' + h(W) = 0 x \in (0, T), (7)$$

W'(0) = W'(T) = 0. (8)

A solution W = W(x) to problem (7)–(8) satisfies the differential equation:

000

Main results

Idea for proofs

Conclusion

Construction of patterns

$$W'(x) = \pm \sqrt{2(E - H(W(x)))}$$

for $E \in \mathbb{R}$. Here H' = h.

All patterns are constructed by using the well-known method from the classical mechanics. *E* is called the *total energy*, *H* corresponds to the *potential energy*.

Kanako Suzuki

Idea for proofs

Conclusion

Construction of patterns

Definition

Let $k \in \mathbb{N}$ and $k \ge 2$. We call a function $W \in C([0, 1])$ a periodic function on [0, 1] with k modes if W = W(x) is monotone on $\left[0, \frac{1}{k}\right]$ and if

$$W(x) = \begin{cases} W\left(x - \frac{2j}{k}\right) & \text{for} \quad x \in \left[\frac{2j}{k}, \frac{2j+1}{k}\right] \\ W\left(\frac{2j+2}{k} - x\right) & \text{for} \quad x \in \left[\frac{2j+1}{k}, \frac{2j+2}{k}\right] \end{cases}$$

for every $j \in \{0, 1, 2, 3, ...\}$ such that $2j + 2 \le k$.

Idea for proofs ○○○○○● ○○○○○○○

Construction of patterns

Theorem

Assume that $a > d_c$ and $\kappa_0 > \Theta$. Fix $\gamma > \gamma_0$ and consider the biggest $n \in \mathbb{N}$ such that $\gamma > n^2 \gamma_0$. Then, problem (5)–(6) has the following solutions:

- a unique strictly increasing solution and a unique strictly decreasing solution,
- for each k ∈ {2, ..., n}, a unique periodic solution W_k with k modes that is increasing on [0, ¹/_k] as well as its symmetric counterpart: W
 _k(x) ≡ W_k(1 − x),
- the constant steady states \overline{w}_{\pm} .

There are no other positive solutions of problem (5)-(6).

000

Main results

0

Idea for proofs

Conclusion

Stability of spatial patterns

Kanako Suzuki Patterns in a reaction-diffusion model

Main result

Idea for proofs

Conclusion

Instability of patterns

Let W(x) be one of the functions from the previous theorem, and (U(x), V(x), W(x)) be a stationary solution of our system, where

$$U(x) = \frac{a - d_c}{d_c} V(x)$$
 and $V(x) = \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W(x)}$.

This stationary solution appears to be unstable solution of the reaction-diffusion equations (RD).

Let us be more precise.

Idea for proofs

Instability of patterns

Let W(x) be one of the functions from the previous theorem, and (U(x), V(x), W(x)) be a stationary solution of our system, where

$$U(x) = \frac{a - d_c}{d_c} V(x)$$
 and $V(x) = \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W(x)}$.

This stationary solution appears to be unstable solution of the reaction-diffusion equations (RD).

Let us be more precise.

Idea for proofs

Conclusion

Instability of patterns

Let W(x) be one of the functions from the previous theorem, and (U(x), V(x), W(x)) be a stationary solution of our system, where

$$U(x) = \frac{a - d_c}{d_c} V(x)$$
 and $V(x) = \frac{d_c^2(d_b + d)}{(a - d_c)^2} \frac{1}{W(x)}$.

This stationary solution appears to be unstable solution of the reaction-diffusion equations (RD).

Let us be more precise.

Idea for proofs

Conclusion

Instability of patterns Linearized operator

The linearization of system (RD) at the steady state (U, V, W) contains the linear operator

$$\mathcal{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\gamma} \partial_x^2 \end{pmatrix} + \mathcal{A}(x),$$

where

$$\mathcal{A}(x) = (a_{ij})_{i,j=1,2,3} \equiv \begin{pmatrix} d_c \left(\frac{d_c}{a} - 1\right) & \frac{(a - d_c)^2}{a} & 0\\ 2K & -d_b - d & \frac{K^2}{W^2(x)}\\ -2K & d & -d_g - \frac{K^2}{W^2(x)} \end{pmatrix},$$

with the constant $K = U(x)W(x) = \frac{d_c(d_b+d)}{a-d_c}$.

Main results

Idea for proofs

Conclusion

Instability of patterns Linearized operator

We consider \mathcal{L} as an operator in the Hilbert space

$$\mathcal{H} = L^2(0,1) \oplus L^2(0,1) \oplus L^2(0,1)$$

with the domain

$$D(\mathcal{L}) = L^2(0,1) \oplus L^2(0,1) \oplus W^{2,2}(0,1).$$

We prove the $\mathcal L$ has infinitely many positive eigenvalues.

Main results

Idea for proofs

Conclusion

Instability of patterns Linearized operator

We consider \mathcal{L} as an operator in the Hilbert space

$$\mathcal{H} = L^2(0,1) \oplus L^2(0,1) \oplus L^2(0,1)$$

with the domain

$$D(\mathcal{L}) = L^2(0,1) \oplus L^2(0,1) \oplus W^{2,2}(0,1).$$

We prove the $\boldsymbol{\mathcal{L}}$ has infinitely many positive eigenvalues.

000

Idea for proofs

Conclusion

Instability of patterns

Spectrum of $\mathcal L$

$$\mathcal{A}(x) = (a_{ij})_{i,j=1,2,3} = \begin{pmatrix} d_c \left(\frac{d_c}{a} - 1\right) & \frac{(a-d_c)^2}{a} & 0\\ 2K & -d_b - d & \frac{K^2}{W^2(x)}\\ -2K & d & -d_g - \frac{K^2}{W^2(x)} \end{pmatrix},$$

Together the matrix above, we consider its sub-matrix

$$\mathcal{A}_{12} \equiv \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right).$$

Assumption: $|\mathcal{A}_{12}| < 0 \implies \mathcal{A}_{12}$ has a positive eigenvalue λ_0 .

Lemma

Let λ be an eigenvalue of the matrix \mathcal{A}_{12} . Then λ belongs to the continuous spectrum of the operator \mathcal{L} .

000

Main results

Idea for proofs

Conclusion

Instability of patterns

Spectrum of $\mathcal L$

$$\mathcal{A}(x) = (a_{ij})_{i,j=1,2,3} = \begin{pmatrix} d_c \left(\frac{d_c}{a} - 1\right) & \frac{(a-d_c)^2}{a} & 0\\ 2K & -d_b - d & \frac{K^2}{W^2(x)}\\ -2K & d & -d_g - \frac{K^2}{W^2(x)} \end{pmatrix},$$

Together the matrix above, we consider its sub-matrix

$$\mathcal{A}_{12} \equiv \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right).$$

Assumption: $|\mathcal{A}_{12}| < 0 \implies \mathcal{A}_{12}$ has a positive eigenvalue λ_0 .

Lemma

Let λ be an eigenvalue of the matrix \mathcal{A}_{12} . Then λ belongs to the continuous spectrum of the operator \mathcal{L} .

Idea for proofs

Instability of patterns Spectrum of *L* - the crucial lemma

Lemma

A complex number λ is an eigenvalue of the operator \mathcal{L} if and only if the following two conditions are satisfied

- λ is not an eigenvalue of the matrix \mathcal{R}_{12} ,
- the boundary value problem has a nontrivial solution:

$$\begin{split} &\frac{1}{\gamma}\eta'' + \frac{\det(\mathcal{A} - \lambda I)}{\det(\mathcal{A}_{12} - \lambda I)}\eta = 0, \quad x \in (0, 1) \\ &\eta'(0) = \eta'(1) = 0. \end{split}$$

Proof. Study the system

$$\begin{aligned} (a_{11} - \lambda)\varphi &+ a_{12}\psi &= 0\\ a_{21}\varphi &+ (a_{22} - \lambda)\psi &+ a_{23}\eta &= 0\\ a_{31}\varphi &+ a_{32}\psi &+ (a_{33} - \lambda)\eta &= 0 \end{aligned}$$

supplemented with the boundary condition $\eta_x(0) = \eta_x(1) = 0$

Kanako Suzuki

Patterns in a reaction-diffusion model

Idea for proofs

Instability of patterns Spectrum of *L* - the crucial lemma

Lemma

A complex number λ is an eigenvalue of the operator \pounds if and only if the following two conditions are satisfied

- λ is not an eigenvalue of the matrix \mathcal{R}_{12} ,
- the boundary value problem has a nontrivial solution:

$$\begin{split} &\frac{1}{\gamma}\eta'' + \frac{\det(\mathcal{A} - \lambda I)}{\det(\mathcal{A}_{12} - \lambda I)}\eta = 0, \quad x \in (0, 1) \\ &\eta'(0) = \eta'(1) = 0. \end{split}$$

Proof. Study the system

$$(a_{11} - \lambda)\varphi + a_{12}\psi = 0$$

$$a_{21}\varphi + (a_{22} - \lambda)\psi + a_{23}\eta = 0$$

$$\frac{1}{\gamma}\partial_x^2\eta + a_{31}\varphi + a_{32}\psi + (a_{33}-\lambda)\eta = 0,$$

supplemented with the boundary condition $\eta_x(0) = \eta_x(1) = 0$

Idea for proofs

Instability of patterns Spectrum of \mathcal{L} - main result

Theorem

Denote by λ_0 the positive eigenvalue of the matrix \mathcal{A}_{12} . There exists a sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ of positive eigenvalues of the operator \mathcal{L} that satisfy $\lambda_n \to \lambda_0$ as $n \to \infty$.

Recall that λ_0 belongs to the continuous spectrum of the operator \mathcal{L} .

Idea of the proof. Analysis of solutions of the generalized Sturm-Liouville problem

$$\frac{1}{\gamma}\eta'' + q(x,\lambda)\eta = 0, \quad x \in (0,1)$$

$$\eta'(0) = \eta'(1) = 0,$$

where

$$q(x, \lambda) = rac{\det(\mathcal{A}(x) - \lambda I)}{\det(\mathcal{A}_{12} - \lambda I)}.$$

Kanako Suzuki

Patterns in a reacti

Idea for proofs

Instability of patterns Spectrum of \mathcal{L} - main result

Theorem

Denote by λ_0 the positive eigenvalue of the matrix \mathcal{R}_{12} . There exists a sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ of positive eigenvalues of the operator \mathcal{L} that satisfy $\lambda_n \to \lambda_0$ as $n \to \infty$.

Recall that λ_0 belongs to the continuous spectrum of the operator \mathcal{L} .

Idea of the proof. Analysis of solutions of the generalized Sturm-Liouville problem

$$\frac{1}{\gamma}\eta'' + q(x,\lambda)\eta = 0, \quad x \in (0,1)$$

$$\eta'(0) = \eta'(1) = 0,$$

where

$$q(x,\lambda) = \frac{\det(\mathcal{A}(x) - \lambda I)}{\det(\mathcal{A}_{12} - \lambda I)}.$$

Conclusion

We consider a system of two ordinary differential equations and one nonlinear parabolic equation with non-flux boundary conditions.

- all possible nonhomogeneous stationary solutions were described,
- those stationary solutions are unstable,

What are the patterns which we see in numerical simulations?

There are singular patterns which cannot be handled by a classical theory.

Works in progress.

Conclusion

We consider a system of two ordinary differential equations and one nonlinear parabolic equation with non-flux boundary conditions.

- all possible nonhomogeneous stationary solutions were described,
- those stationary solutions are unstable,

What are the patterns which we see in numerical simulations?

There are singular patterns which cannot be handled by a classical theory.

Works in progress.

Main result

Idea for proofs

Conclusion

Numerical simulations

Spike-type spatially patterns obtained by A. Marciniak-Czochra and M. Kimmel (2006, 2007, 2008).

Kanako Suzuki Patterns in a react