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Mathematical model

System of three ordinary/partial differential equations:

ut =
( av
u+ v

− dc

)
u, 0 < x < 1, t > 0,

vt = −dbv+ u2w− dv, 0 < x < 1, t > 0, (RD)

wt =
1
γ

wxx− dgw− u2w+ dv+ κ0, 0 < x < 1, t > 0,

with Neumann boundary conditions for the function w = w(x, t)

wx(0, t) = wx(1, t) = 0 for all t > 0.

• This is a model of early carcinogenesis proposed by A.
Marciniak-Czochra and M. Kimmel (2006, 2007, 2008).

• This is called Receptor-based model.
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Idea 2: Diffusion-driven instability

.

.

We need an idea to understand the invasion of tumor cells into
tissue.

Example: Bronchoalveolar Carcinoma (BAC)

In a very early stage of BAC,
lumps appear along the walls of
alveoli.

To explain how tumor cells can generate patterns observed at the
macroscopic scale,

Receptor-based model + Diffusion-driven instability
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Mathematical problem

System of three ordinary/partial differential equations which
exhibits the diffusion-driven instability:

ut =
( av
u+ v

− dc

)
u, 0 < x < 1, t > 0,

vt = −dbv+ u2w− dv, 0 < x < 1, t > 0, (RD)

wt =
1
γ

wxx− dgw− u2w+ dv+ κ0, 0 < x < 1, t > 0,

with Neumann boundary conditions for the function w = w(x, t)

wx(0, t) = wx(1, t) = 0 for all t > 0.

Study the existence of spatial patterns and its stability
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Preliminaries

ut =
( av
u+ v

− dc

)
u, 0 < x < 1, t > 0,

vt = −dbv+ u2w− dv, 0 < x < 1, t > 0, (RD)

wt =
1
γ

wxx− dgw− u2w+ dv+ κ0, 0 < x < 1, t > 0,

Assume a > dc and κ2
0 ≥ Θ, where Θ = 4dgdb

d2
c(db + d)

(a− dc)2
. Then, the

kinetic system corresponding (RD) has two positive constant
stationary solutions, one is stable and another is unstable.

Diffusion-driven instability: stable constant steady state becomes
unstable in (RD).
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Preliminaries

.

.

Let A be the Jacobian matrix at a positive spatially homogeneous
steady state.
Diffusion-driven instabilities in the model with one-diffusion
operator (A. Marciniak-Czochra and M. Kimmel)

• the kinetics system is asymptotically stable:

−tr(A) > 0, −tr(A)
∑
i<j

|Aij | + |A| > 0, −|A| > 0,

• the complete system is unstable for spatially
non-homogeneous perturbations:

|A12| < 0,

where Aij is a submatrix of A consisting of the i-th and j-th column
and i-th and j-th row, and | · | denotes the determinants.
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Results

Study the existence of spatial patterns and its stability

Assume a > dc and κ2
0 > Θ.

• Existence of spatial patterns
• for all γ ∈ (0, γ0], the system has only constant stationary

solutions,
• for all γ > γ0, we describe all positive nonconstant stationary

solutions.

• Stability for nonconstant stationary solutions
• they appear to be unstable solution of the reaction-diffusion

equations (RD).

Kanako Suzuki Patterns in a reaction-diffusion model



. . .

. .

Introduction

.

Main results

. . . . . .

. . . . . . .

Idea for proofs Conclusion

Results

Study the existence of spatial patterns and its stability

Assume a > dc and κ2
0 > Θ.

• Existence of spatial patterns
• for all γ ∈ (0, γ0], the system has only constant stationary

solutions,
• for all γ > γ0, we describe all positive nonconstant stationary

solutions.

• Stability for nonconstant stationary solutions
• they appear to be unstable solution of the reaction-diffusion

equations (RD).

Kanako Suzuki Patterns in a reaction-diffusion model



. . .

. .

Introduction

.

Main results

. . . . . .

. . . . . . .

Idea for proofs Conclusion

Results

Study the existence of spatial patterns and its stability

Assume a > dc and κ2
0 > Θ.

• Existence of spatial patterns
• for all γ ∈ (0, γ0], the system has only constant stationary

solutions,
• for all γ > γ0, we describe all positive nonconstant stationary

solutions.

• Stability for nonconstant stationary solutions
• they appear to be unstable solution of the reaction-diffusion

equations (RD).

Kanako Suzuki Patterns in a reaction-diffusion model



. . .

. .

Introduction

.

Main results

. . . . . .

. . . . . . .

Idea for proofs Conclusion

Existence of spatial patterns of (RD)
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Construction of patterns

( aV
U + V

− dc

)
U = 0, (1)

− dbV + U2W− dV = 0, (2)

1
γ

Wxx− dgW− U2W+ dV+ κ0 = 0 (3)

and the boundary condition Wx(0) =Wx(1) = 0.

• We interested only in U(x) > 0 and V(x) > 0,

• Let a > dc, κ2
0 > Θ.

From (1) and (2),

U(x) =
a− dc

dc
V(x) and V(x) =

d2
c(db + d)

(a− dc)2

1
W(x)

. (4)
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Construction of patterns

The boundary value problem for W(x)

1
γ

W′′ − dgW− db
d2

c(db + d)

(a− dc)2

1
W
+ κ0 = 0, (5)

Wx(0) =Wx(1) = 0. (6)

By the change of variables

x 7→ Tx, where T =
√
γ,

the boundary value problem becomes

W′′ + h(W) = 0 x ∈ (0,T), (7)

W′(0) =W′(T) = 0. (8)

A solution W =W(x) to problem (7)–(8) satisfies the differential
equation:

Kanako Suzuki Patterns in a reaction-diffusion model
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Construction of patterns
Idea

.

.

Z

W

E

H( ¹w+)

H( ¹w¡)

¹w+¹w¡w1;E w2;E

H =H(w)

z =§
p
2(E ¡H(w))

W′(x) = ±
√

2(E− H(W(x)))

for E ∈ R. Here H′ = h.

All patterns are constructed by us-
ing the well-known method from
the classical mechanics. E is
called the total energy, H corre-
sponds to the potential energy.
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Construction of patterns

Definition
Let k ∈ N and k ≥ 2. We call a function W ∈ C([0, 1]) a periodic
function on [0, 1] with k modes if W =W(x) is monotone on

[
0, 1

k

]
and if

W(x) =


W

(
x− 2j

k

)
for x ∈

[
2j
k ,

2j+1
k

]
W

(
2j+2

k − x
)

for x ∈
[

2j+1
k ,

2j+2
k

]
for every j ∈ {0,1,2,3, ...} such that 2j + 2 ≤ k.
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Construction of patterns

Theorem
Assume that a > dc and κ0 > Θ. Fix γ > γ0 and consider the
biggest n ∈ N such that γ > n2γ0. Then, problem (5)–(6) has the
following solutions:

• a unique strictly increasing solution and a unique strictly
decreasing solution,

• for each k ∈ {2, ..., n}, a unique periodic solution Wk with k
modes that is increasing on [0, 1

k ] as well as its symmetric

counterpart: W̃k(x) ≡Wk(1− x),

• the constant steady states w±.

There are no other positive solutions of problem (5)–(6).
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Stability of spatial patterns
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Instability of patterns

Let W(x) be one of the functions from the previous theorem, and
(U(x),V(x),W(x)) be a stationary solution of our system, where

U(x) =
a− dc

dc
V(x) and V(x) =

d2
c(db + d)

(a− dc)2

1
W(x)

.

This stationary solution appears to be unstable solution of the
reaction-diffusion equations (RD).

Let us be more precise.
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Instability of patterns
Linearized operator

.

.

The linearization of system (RD) at the steady state (U,V,W)
contains the linear operator

L =


0 0 0
0 0 0
0 0 1

γ∂
2
x

 +A(x),

where

A(x) = (aij )i,j=1,2,3 ≡


dc

(
dc
a − 1

)
(a−dc)2

a 0

2K −db − d K2

W2(x)

−2K d −dg − K2

W2(x)

 ,
with the constant K = U(x)W(x) = dc(db+d)

a−dc
.
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Instability of patterns
Linearized operator

.

.

We consider L as an operator in the Hilbert space

H = L2(0, 1)⊕ L2(0,1)⊕ L2(0,1)

with the domain

D(L) = L2(0,1)⊕ L2(0,1)⊕W2,2(0,1).

We prove the L has infinitely many positive eigenvalues.
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Instability of patterns
Spectrum of L

.

.

A(x) = (aij )i,j=1,2,3 =


dc

(
dc
a − 1

)
(a−dc)2

a 0

2K −db − d K2

W2(x)

−2K d −dg − K2

W2(x)

 ,
Together the matrix above, we consider its sub-matrix

A12 ≡
(

a11 a12

a21 a22

)
.

Assumption: |A12| < 0 ⇒ A12 has a positive eigenvalue λ0.

Lemma
Let λ be an eigenvalue of the matrix A12. Then λ belongs to the
continuous spectrum of the operator L.
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Instability of patterns
Spectrum of L - the crucial lemma

Lemma
A complex number λ is an eigenvalue of the operator L if and only if the following
two conditions are satisfied

• λ is not an eigenvalue of the matrix A12,

• the boundary value problem has a nontrivial solution:

1
γ
η′′ +

det(A− λI )
det(A12 − λI )

η = 0, x ∈ (0, 1)

η′(0) = η′(1) = 0.

Proof. Study the system

(a11 − λ)ϕ + a12ψ = 0
a21ϕ + (a22 − λ)ψ + a23η = 0

1
γ
∂2

xη + a31ϕ + a32ψ + (a33 − λ)η = 0,

supplemented with the boundary condition ηx(0) = ηx(1) = 0 �
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Instability of patterns
Spectrum of L - main result

Theorem
Denote by λ0 the positive eigenvalue of the matrix A12. There exists a sequence
{λn}n∈N of positive eigenvalues of the operator L that satisfy λn → λ0 as n→ ∞.

Recall that λ0 belongs to the continuous spectrum of the operator L.

Idea of the proof. Analysis of solutions of the generalized Sturm-Liouville
problem

1
γ
η′′ + q(x, λ)η = 0, x ∈ (0,1)

η′(0) = η′(1) = 0,

where

q(x, λ) =
det(A(x) − λI )
det(A12 − λI )

.

�
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Conclusion

We consider a system of two ordinary differential equations and
one nonlinear parabolic equation with non-flux boundary
conditions.

• all possible nonhomogeneous stationary solutions were
described,

• those stationary solutions are unstable,

What are the patterns which we see in numerical simulations?

There are singular patterns which cannot be handled by a classical
theory.

Works in progress.

Kanako Suzuki Patterns in a reaction-diffusion model



. . .

. .

Introduction

.

Main results

. . . . . .

. . . . . . .

Idea for proofs Conclusion

Conclusion

We consider a system of two ordinary differential equations and
one nonlinear parabolic equation with non-flux boundary
conditions.

• all possible nonhomogeneous stationary solutions were
described,

• those stationary solutions are unstable,

What are the patterns which we see in numerical simulations?

There are singular patterns which cannot be handled by a classical
theory.

Works in progress.

Kanako Suzuki Patterns in a reaction-diffusion model



. . .

. .

Introduction

.

Main results

. . . . . .

. . . . . . .

Idea for proofs Conclusion

Numerical simulations

Spike-type spatially patterns obtained by A. Marciniak-Czochra
and M. Kimmel (2006, 2007, 2008).
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