Asymptotic Behavior of Singular Solutions for

 a Semilinear Parabolic EquationEiji Yanagida (Tokyo Institute of Technology) with Shota Sato

We consider singular solutions of the Fujita equation

$$
u_{t}=\Delta u+u^{p} \quad \text { in } \mathbf{R}^{N}
$$

where $N>2$ and $p>1$.

1. Singular steady states
2. Time-dependent singular solutions
3. Asymptotic behavior of singular solutions
4. Singular steady states

It has been known that if $N>2$ and $p>p_{s g}:=\frac{N}{N-2}$, then the equation

$$
u_{t}=\Delta u+u^{p}, \quad x \in \mathbf{R}^{N}
$$

has a singular steady state

$$
u=\varphi_{\infty}(r):=L r^{-m}, \quad r:=\left|x-\xi_{0}\right|
$$

where $\xi_{0} \in \mathbf{R}^{N}$ is arbitrary and

$$
m:=\frac{2}{p-1}, \quad L:=\{m(N-m-2)\}^{\frac{1}{p-1}}
$$

Singular steady state

Concerning other singular solutions, the exponents

$$
p_{*}:=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}, \quad N>2
$$

and

$$
p_{S}:=\frac{N+2}{N-2}, \quad N>2
$$

play crucial role.
(i) If $p_{s g}<p<p_{S}$, then for any $\alpha>0$, the solution φ_{α} of

$$
\left\{\begin{array}{l}
\varphi_{r r}+\frac{n-1}{r} \varphi_{r}+\varphi^{p}=0, \quad r>0 \\
\lim _{r \rightarrow \infty} r^{N-2} \varphi(r)=\alpha
\end{array}\right.
$$

is positive for all $r>0$ and $\varphi(r) \rightarrow \infty$ as $r \rightarrow 0$. Then $u=\varphi_{\alpha}(|x|)$ is a singular steady state.
(ii) It was shown by Chen-Lin (1999) that for $p_{s g}<p<p_{*},\left\{\varphi_{\alpha}\right\}$ the set of singular steady states $\left\{\varphi_{\alpha}\right\}$ has ordered structure (or separation property) : $0<\varphi_{\alpha_{1}}(r)<\varphi_{\alpha_{2}}(r)<\varphi_{\infty}(r)$ for all $0<\alpha_{1}<\alpha_{2}$ and $r>0$. Moreover φ_{α} satisfies

$$
\varphi_{\alpha}(r)=L r^{-m}-a_{\alpha} r^{-\lambda_{2}}+o\left(r^{-\lambda_{2}}\right) \quad \text { as } r \rightarrow 0
$$

where

$$
\begin{aligned}
& \lambda_{1}:=\frac{N-2-\sqrt{(N-2)^{2}-4 p L^{p-1}}}{2} \\
& \lambda_{2}:=\frac{N-2+\sqrt{(N-2)^{2}-4 p L^{p-1}}}{2}
\end{aligned}
$$

and $0<\lambda_{1}<\lambda_{2}<m$. The constant a_{α} is positive and monotone decreasing in α and satisfies $a_{\alpha} \rightarrow 0$ as $\alpha \rightarrow \infty$. We note that $u=\varphi_{\infty}(|x|)$ and $u=\varphi_{\alpha}(|x|)$ satisfy the Fujita equation in the distribution sense.

Structure of the singular steady states
2. Time-dependent singular solutions

The singularity of $u=\varphi_{\alpha}$ and $u=\varphi_{\infty}$ persists for all $t>0$, but it does not move in time.

We define a solution with a (moving) singularity as follows.

Definition 1. $u(x, t)$ is a solution of the Fujita equation with a singularity at $\xi(t) \in \mathbf{R}^{N}$ if the following conditions are satisfied for some $T \in(0, \infty]:$
(i) $u(x, t)$ satisfies the equation in the distribution sense.
(ii) $u(x, t)$ is defined for $(x, t) \in \mathrm{R}^{N} \backslash\{\xi(t)\} \times[0, T), C^{2}$ with respect to x, and C^{1} with respect to t.
(iii) $u(x, t) \rightarrow \infty$ as $x \rightarrow \xi(t)$ for every $t \in[0, T)$.

Solution with a moving singularity

Consider the initial value problem
(P) $\quad \begin{cases}u_{t}=\Delta u+u^{p}, & x \in \mathbf{R}^{N} \backslash\{\xi(t)\}, \quad t>0, \\ u(x, 0)=u_{0}(x) \geq 0, & x \in \mathbf{R}^{N} \backslash\{\xi(0)\},\end{cases}$
where $\xi(t):[0, \infty) \rightarrow R^{N}$ is prescribed.
[Assumptions]
(A1) $\quad N \geq 3$ and $\frac{N}{N-2}<p<p_{*}:=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}$.
(A2) $\boldsymbol{\xi}(t)$ is sufficiently smooth.
(A3) $u_{0}(x)$ is nonnegative and continuous in $x \in R^{N} \backslash \xi(0)$, and is uniformly bounded for $|x-\xi(0)| \geq 1$.
(A4) $u_{0}(x)=L r^{-m}+o\left(r^{-m}\right)$ as $r=|x-\xi(0)| \rightarrow 0$.

Under the assumptions (A1) - (A4), the following results are obtained by Sato-Y (2009, 2010, 2011):
(i) (Time-local existence) For some time interval [0,T), there exists a solution u of (P) with a singularity at $\xi(t)$ such that

$$
u(x, t)=L r^{-m}+o\left(r^{-\lambda_{2}}\right)
$$

as $r=|x-\xi(t)| \rightarrow 0$ for all $t \in[0, T)$.
(ii) (Uniqueness) If u_{1} and u_{2} are two solutions of (P) such that

$$
\left|u_{1}(x, t)-u_{2}(x, t)\right|=o\left(r^{-\lambda_{2}}\right)
$$

as $r=|x-\xi(t)| \rightarrow 0$, then $u_{1} \equiv u_{2}$.
(iii) (Comparison principle) If $u_{1} \leq u_{2}$ at $t=t_{0}$, then $u_{1} \leq u_{2}$ for $t>t_{0}$.
(iv) (Time-global existence) For some $\xi(t) \not \equiv$ Const. and $u_{0}(x)$, the solution exists globally in time and is asymptotically radially symmetric as $t \rightarrow \infty$.
(v) (Appearance of anomalous singularities) At some $\boldsymbol{t}=\boldsymbol{T}<\infty$, the leading term of u at $\xi(t)$ may become different from $L r^{-m}$:

$$
\begin{array}{ll}
u(x, t) \simeq L|x-\xi(t)|^{-m} & \text { for } t \in(0, T) \\
u(x, t) \nsucceq L|x-\xi(t)|^{-m} & \text { at } t=T
\end{array}
$$

$$
\text { Why } \frac{N}{N-2}<p<p_{*} ?
$$

Assume that a solution $u(x, t)$ with a singularity at $\xi(t)$ is close to the singular steady state $u=L|x-\xi(t)|^{-m}$, and formally expand the solution $u(x, t)$ at $r=0$ as follows:

$$
u(x, t)=L r^{-m}+\sum_{i=1}^{[m]} b_{i}(\omega, t) r^{-m+i}+v(y, t)
$$

where

$$
m=\frac{2}{p-1}, \quad y=x-\xi(t), \quad r=|y|, \quad \omega=\frac{1}{|y|} y \in S^{N-1}
$$

Substitute this expansion into the equation and equate each power of r to obtain a system of equations for $b_{i}(\omega, t)$.

These equations are solvable and the remainder term $v(y, t)$ must satisfy

$$
v_{t}=\Delta v+\xi_{t} \cdot \nabla v+\frac{p L^{p-1}}{|y|^{2}} v+o\left(|y|^{-2}\right)
$$

This equation is well-posed if and only if

$$
0<p L^{p-1}<\frac{(N-2)^{2}}{4}
$$

These inequalities hold if

$$
N>2 \text { and } \frac{N}{N-2}<p<p_{*}=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}
$$

$$
L:=\left\{\frac{2}{p-1}\left(N-\frac{2}{p-1}-2\right)\right\}^{\frac{1}{p-1}}
$$

3. Asymptotic behavior of singular solutions

Next, we investigate the asymptotic behavior of singular solutions that are time-dependent but the singular point is fixed to the origin (i.e., $\boldsymbol{\xi}(t) \equiv 0$).
(P) $\quad \begin{cases}u_{t}=\Delta u+u^{p}, & x \in \mathbf{R}^{N} \backslash\{0\}, \quad t>0, \\ u(x, 0)=u_{0}(x) \geq 0, & x \in \mathbf{R}^{N} \backslash\{0\} .\end{cases}$

We shall show
(i) More precise results for the time-local existence.
(ii) Convergence to a singular steady state φ_{α}.
(iii) Convergence to the singular steady state φ_{∞}.
[Existence of a singular solution]
Theorem 1. Let $N>2, p_{s g}<p<p_{*}$ and $a(t) \in C^{1}([0, \infty))$ be given.
Assume that
$u_{0}(x)$ is continuous and positive for $x \neq 0$,
$u_{0}(x)$ is uniformly bounded for $|x|>1$,

$$
u_{0}(x)=L|x|^{-m}+O\left(|x|^{-\lambda}\right) \text { as }|x| \rightarrow 0 \text { for }{ }^{\exists} \lambda<\min \left\{m, \lambda_{2}+2\right\} .
$$

Then there exist $T>0$ and a positive solution $u(x, t)$ of (P) defined on $R^{N} \backslash\{0\} \times(0, T)$ with the following properties:
(i) $u(x, t)$ satisfies the equation in the distribution sense.
(ii) $u(x, t)$ is C^{2} with respect to x and C^{1} with respect to t.
(iii) $u(x, t)=L|x|^{-m}-a(t)|x|^{-\lambda_{2}}+o\left(|x|^{-\lambda_{2}}\right)$ as $|x| \rightarrow 0$.
(iv) If u_{1} and u_{2} are solutions of (P) satisfying (i)-(iii) and $u_{1}-u_{2}=o\left(|x|^{-\lambda_{2}}\right)$ as $|x| \rightarrow 0$, then $u_{1} \equiv u_{2}$.
(iv) More general comparison principle holds:

If $u_{1} \geq u_{2}$ at $t=0$ and $a_{1}(t) \leq a_{2}(t)$ for $t>0$, then $u_{1} \geq u_{2}$ for $t>0$.

Remark. $a(t)$ can be regarded as Dirichlet data. For solutions with a moving singularity, we only considered the case $a(t) \equiv 0$.

Outline of the proof
[Step 1] Find a supersolution and a subsolution that are suitable for our purpose.
[Step 2] Construct a sequence of approximate solutions between the supersolution and the subsolution by solving an initial-boundary value problem on an annular domain

$$
D_{n}:=\left\{x \in \mathbf{R}^{N}: \frac{1}{n}<|x|<n\right\} .
$$

[Step 3] Extract a convergent subsequence by the Ascoli-Arzelà theorem. (The supersolution and the subsolution give an a priori bound of the approximate solutions.)
[Step 4] Show that the limiting function becomes a solution of (P) with desired properties.
[Convergence to the singular steady state φ_{α}]

Theorem 2. Let $N \geq 3$ and $p_{s g}<p<p_{*}$. Assume that the initial value $u_{0}(x) \in C\left(R^{N} \backslash\{0\}\right)$ satisfies

$$
\begin{aligned}
& 0 \leq u_{0}(x) \leq \varphi_{\infty}(|x|) \text { for } x \in R^{N} \backslash\{0\} \\
& u_{0}(x)=L|x|^{-m}-a_{\alpha}|x|^{-\lambda_{2}}+O\left(|x|^{-\lambda}\right) \text { as }|x| \rightarrow 0 \text { for } \\
& \text { some } \lambda<\lambda_{2} \text { and } \alpha>0
\end{aligned}
$$

Then the singular solution $u(x, t)$ of (P) with $a(t) \equiv a_{\alpha}$ exists globally in time and has the following properties:
(i) $0<u(x, t)<\varphi_{\infty}(|x|)$ for all $(x, t) \in R^{N} \backslash\{0\} \times(0, \infty)$.
(ii) $u(x, t) \rightarrow \varphi_{\alpha}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$.

Proof. The proof is based on the comparison method. We look for a supersolution and a subsolution of the form

$$
u^{+}(x, t):=\min \left\{\varphi_{\alpha}(r)+C U(r, t), \varphi_{\infty}(r)\right\}
$$

and

$$
u^{-}(x, t):=\max \left\{\varphi_{\alpha}(r)-C U(r, t), 0\right\}
$$

respectively, with some constant $C>0$. Then the linearized equation at φ_{α} will appear naturally, and it turns out to be sufficient if U satisfies

$$
U_{t}=U_{r r}+\frac{N-1}{r} U_{r}+\frac{l}{r^{2}} U, \quad r>0, t>0
$$

with some $0<l<p L^{p-1}$. (Note that $l=p L^{p-1}$ corresponds to the linearized equation at φ_{∞}.)

Structure of the singular steady states

Let $\lambda_{1}(l)$ and $\lambda_{2}(l)$ be defined by

$$
\lambda_{1}(l):=\frac{N-2-\sqrt{(N-2)^{2}-4 l}}{2}, \quad \lambda_{2}(l):=\frac{N-2+\sqrt{(N-2)^{2}-4 l}}{2}
$$

Setting $U(r, t):=r^{-\lambda_{1}(l)} V(r, t)$, the equation

$$
U_{t}=U_{r r}+\frac{N-1}{r} U_{r}+\frac{l}{r^{2}} U, \quad r>0, t>0
$$

is rewritten as a generalized radial heat equation

$$
V_{t}=V_{r r}+\frac{d-1}{r} V_{r}, \quad r>0, t>0
$$

where

$$
d:=N-2 \lambda_{1}(l)=\lambda_{2}(l)-\lambda_{1}(l)+2>2 .
$$

The generalized radial heat equation has been extensively studied in 1960's. Among others, we use a result by Bragg (1966).

Lemma. Let $d>2$. For $0<\gamma<1$,

$$
V(r, t)=\frac{(4 t)^{1-\frac{d}{2}-\gamma} \exp \left(-\frac{r^{2}}{4 t}\right)}{\Gamma\left(\frac{d}{2}+\gamma-1\right)} \int_{0}^{1} \sigma^{-\gamma}(1-\sigma)^{\frac{d}{2}+\gamma-2} \exp \left(\frac{r^{2}}{4 t} \sigma\right) d \sigma
$$

is a solution of the radial heat equation with the following properties :
(i) $V(r, t) \in C^{2,1}([0, \infty) \times(0, \infty))$.
(ii) $V_{r}(0, t)=0$ for all $t>0$.
(iii) $V(r, t) \rightarrow r^{2-d-2 \gamma}$ as $t \rightarrow 0$ locally uniformly in $r \in(0, \infty)$.
(iv) $r^{d+2 \gamma-2} V(r, t) \rightarrow 1$ as $r \rightarrow \infty$ locally uniformly in $t \in[0, \infty)$.
(v) There exists a constant $C_{1} \geq 1$ such that the inequalities $0<$ $V(r, t) \leq C_{1} \min \left\{r^{2-d-2 \gamma}, t^{1-\frac{d}{2}-\gamma}\right\}$ hold for all $r, t>0$.

Since

$$
U(r, t):=r^{-\lambda_{1}(l)} V(r, t) \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

the supersolution

$$
u^{+}(x, t):=\min \left\{\varphi_{\alpha}(r)+C U(r, t), \varphi_{\infty}(r)\right\}
$$

and the subsolution

$$
u^{-}(x, t):=\max \left\{\varphi_{\alpha}(r)-C U(r, t), 0\right\}
$$

converge to φ_{α} as $t \rightarrow \infty$. From the estimates for V, u^{+}and u^{-} have other desired properties.

Structure of the singular steady states
[Convergence from below to φ_{∞}]

Theorem 3. Let $N \geq 3$ and $p_{s g}<p<p_{*}$. Assume that the initial value $u_{0}(x) \in C\left(R^{N} \backslash\{0\}\right)$ satisfies

$$
0 \leq u_{0}(x) \leq \varphi_{\infty}(|x|) \quad \text { for } x \in R^{N} \backslash\{0\}
$$

and

$$
|x|^{\lambda_{2}}\left\{u_{0}(x)-L|x|^{-m}\right\} \rightarrow 0 \quad \text { as } \quad|x| \rightarrow 0
$$

Then the singular solution $u(x, t)$ of (P) with $a(t) \equiv 0$ satisfies $u(x, t) \rightarrow \varphi_{\infty}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$ 。

Proof. We can find a sequence of subsolutions $\left\{u_{i}^{-}(x, t)\right\}$ such that each $u_{i}^{-}(x, t)$ converges to $\varphi_{\alpha_{i}}$ as $t \rightarrow \infty$, and $\alpha_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Thus, the solution eventually becomes larger than any φ_{α}. Recalling that $\varphi_{\alpha} \uparrow \varphi_{\infty}$ as $\alpha \rightarrow \infty$, the solution must satisfy $u(x, t) \rightarrow \varphi_{\infty}(|x|)$ as $t \rightarrow \infty$.
[Convergence from above to φ_{∞}]
Theorem 4. Suppose that

$$
p_{s g}<p< \begin{cases}p_{*} & \text { for } 2<N \leq 10 \\ \frac{N+2}{N-1} & \text { for } N>10\end{cases}
$$

Then there exists $L_{1}>L$ such that if the initial value $u_{0}(x) \in$ $C\left(\mathbf{R}^{N} \backslash\{0\}\right)$ satisfies

$$
L|x|^{-m} \leq u_{0}(x) \leq L_{1}|x|^{-m} \quad \text { for } x \in \mathbf{R}^{N} \backslash\{0\}
$$

then the singular solution $u(x, t)$ of (P) with $a(t) \equiv 0$ exists globally in time and has the following properties:
(i) $L|x|^{-m} \leq u(x, t) \leq L_{1}|x|^{-m}$ for $(x, t) \in \mathrm{R}^{N} \backslash\{0\} \times(0, \infty)$.
(ii) $u(x, t) \rightarrow \varphi_{\infty}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$.

We construct a supersolution by using a forward self-similar solution with a singularity at the origin. We have found that such a solution exists above the singular steady state φ_{∞} if and only if

$$
p_{s g}<p< \begin{cases}p_{*} & \text { for } N \leq 10 \\ \frac{N+2}{N-1} & \text { for } N>10\end{cases}
$$

Future works:

Convergence rate
Behavior of solutions in the case $a(t) \not \equiv$ Const.
Asymptotic behavior in the case $\xi(t) \not \equiv$ Const.
Bounded domain

Grazie per l'attenzione.

