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Setting of the problem

We study retarded functional differential equations (RFDE)

on M of the type:

x′(t) = λF (t, xt) (1)

where:

• M ⊆ Rk is a smooth manifold (possibly noncompact),

• λ ≥ 0 is a parameter,

• F is a functional vector field on M .

Notation: xt(θ) = x(t+ θ), θ ∈ (−∞,0].
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Functional vector fields

The map F : R×BU((−∞,0],M)→ Rk is continuous, T -periodic

in the first variable and such that

F (t, ϕ) ∈ Tϕ(0)M , ∀ (t, ϕ) ∈ R×BU((−∞,0],M)

where TpM ⊆ Rk denotes the tangent space of M at p.

3



Remark: We work in the space BU((−∞,0],M) of the bounded,

uniformly continuous maps

ϕ : (−∞,0]→M.

- BU((−∞,0],M) is a subset of the Banach space BU((−∞,0],Rk)

with the supremum norm;

- the topology in the space BU((−∞,0],M) is stronger than the

compact-open topology of C((−∞,0],M);

- if x : J →M is a solution of (1),

then the curve t 7→ xt ∈ BU((−∞,0],M), t ∈ J, is continuous.
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Goal: to prove global continuation results for T -periodic

solutions of equation (1).

Tools:

- Fixed Point Index theory for locally compact maps on ANRs

(ANRs = absolute neighborhood retracts)

References: Granas, Nussbaum, Eells–Fournier.

- Degree of a tangent vector field

(Euler characteristic, rotation number).
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Application: Retarded spherical pendulum

Consider the following second order equation on a boundaryless

manifold N ⊆ Rs:

x′′π(t) = G(t, xt), (2)

where (regarding (2) as a motion equation)

• x′′π(t) is the tangential part of the acceleration x′′(t),

• the applied force G is a T -periodic functional vector field.
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Equivalently (2) can be written as

x′′(t) = r(x(t), x′(t)) +G(t, xt),

where r(q, v) is the reactive force.

A forced oscillation of (2) is a solution which is T -periodic and

globally defined on R.

Problem: to prove the existence of forced oscillations of (2).
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Continuation results for ODEs on manifolds

Consider the parametrized ODE on M ⊆ Rk

x′(t) = λf(t, x(t)) (3)

where f : R×M → Rk is a T -periodic tangent vector field on M .

Furi and Pera (1986) have obtained global continuation results

for equation (3) by means of topological methods.
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Applications to the spherical pendulum

Consider the following second order ODE on a boundaryless

manifold N ⊆ Rs:

x′′π(t) = g(t, x(t)) (4)

Furi and Pera (1990) proved that equation (4) has forced oscilla-

tions in the case N = S2 (the spherical pendulum) and N = S2n.

Conjecture: Equation (4) has forced oscillations if χ(N) 6= 0

(Euler–Poincaré characteristic).
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– Motivation: Poincaré–Hopf Theorem.

– Difficulty: they use in a crucial way the geometry of the sphere.

The case of the ellipsoid is still open!

Related works:

- Capietto, Mawhin and Zanolin (1990);

- Benci and Degiovanni (1990).
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Delay differential equations: some references

General reference: Hale and Verduyn Lunel (1993).

• in Euclidean spaces: Gaines and Mawhin (1977);

Nussbaum and Mallet-Paret (1994); Krisztin and Walter (1999).

• equations on manifolds: Oliva (1976).
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Equations with infinite delay, or Retarded Functional

Differential Equations (RFDEs)

• in Euclidean spaces: Hale and Kato (1978);

Hino, Murakami and Naito (1991); Novo, Obaya and Sanz (2007).

• equations on manifolds: no general results were available!
Benevieri, C., Furi, Pera (2013) Discrete Contin. Dyn. Syst.
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Delay differential equations on manifolds (finite delay)

We study the parametrized delay differential equation on M

x′(t) = λf(t, x(t), x(t− τ)) (5)

where τ > 0 is the delay, and f : R×M ×M → Rk is continuous,

T -periodic in the first variable and tangent to M in the second

one; i.e.,

f(t+ T, p, q) = f(t, p, q) ∈ TpM , ∀ (t, p, q) ∈ R×M ×M.

We call f a (generalized) vector field on M .
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Remark. When ∂M 6= ∅ we require f to be inward along ∂M ;

i.e.,

f(t, p, q) ∈ CpM , ∀ (t, p, q) ∈ R× ∂M ×M.

(CpM ⊆ Rk is the tangent cone of M at p)

Goal: to obtain global continuation results for T -periodic

solutions.

Main difficulty: we work in an infinite-dimensional setting.
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Let CT (M) be the metric space of the continuous, T -periodic

M-valued maps.

Definition. (λ, x) in [0,+∞)× CT (M) is a T -periodic pair

if x : R→M is a T -periodic solution of (5) corresponding to λ.

A T -periodic pair of the type (0, p0), with p0 ∈ M , is said to be

trivial.

Remark. C([−τ,0],M) and CT (M) are ANRs.

(when M is boundaryless ⇒ Banach manifolds)
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Fixed Point Index on ANRs (Granas, 1972)

X a metric ANR (Borsuk, 1930),

k : D(k) ⊆ X → X locally compact,

U ⊆ X open, contained in D(k).

If Fix(k, U) = {x ∈ U : x = k(x)} is compact, the pair (k, U) is

called admissible

→ fixed point index of k in U :

indX(k, U) ∈ Z.
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Properties:

analogous to those of the classical Leray–Schauder degree

(Normalization, Additivity, Homotopy invariance...)

• Existence Property:

indX(k, U) 6= 0 ⇒ Fix(k, U) nonempty.

• Strong Normalization Property:

M a compact manifold ⇒ indM(I,M) = χ(M)

(the Euler–Poincaré characteristic of M).
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Bifurcation points: necessary condition.

Definition. p0 ∈M is a bifurcation point (of equation (5))

if every neighborhood of (0, p0) in [0,+∞) × CT (M) contains a

nontrivial T -periodic pair (i.e., with λ > 0).

Proposition. p0 ∈M bifurcation point ⇒ the mean value

tangent vector field w : M → Rk, defined by

w(p) =
1

T

∫ T

0
f(t, p, p) dt,

vanishes at p0.
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Global continuation result

Theorem 1. Benevieri, C., Furi, Pera (2009) Z. Anal. Anwend.

• M is closed in Rk (possibly noncompact)

• U ⊆M open such that deg(w,U) is defined and nonzero

⇒ there exists in [0,+∞)× CT (M) a connected branch

of nontrivial T -periodic pairs of (5) whose closure meets the set

{(0, p) : p ∈ U,w(p) = 0} and satisfies at least one of the following

properties:

(i) it is unbounded;

(ii) it contains a pair (0, p0), where p0 ∈ M \ U is a bifurcation

point.

19



Theorem 2.

• M is compact, possibly with boundary, with χ(M) 6= 0,

• f inward along ∂M

⇒ there exists in [0,+∞)× CT (M) an unbounded (w.r.t. λ)

connected branch of nontrivial T -periodic pairs of (5), whose

closure intersects the set of the trivial T -periodic pairs.
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Sketch of the proof (finite delay, M compact)

• First we assume f of class C1 and consider the delayed IVP{
x′(t) = λf(t, x(t), x(t− τ)), t > 0,

x(t) = ϕ(t), t ∈ [−τ,0].
(6)

• x(λ,ϕ) : [−τ,∞)→M the unique solution of (6).

Given λ ∈ [0,+∞), we define the Poincaré-type operator

Pλ : C([−τ,0],M)→ C([−τ,0],M)

Pλ(ϕ)(s) = x(λ,ϕ)(s+ T ) s ∈ [−τ,0].
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Poincaré-type operator

• The fixed points of Pλ correspond to the T -periodic solutions

of the equation (5); i.e., ϕ is a fixed point of Pλ if and only if it

is the restriction to [−τ,0] of a T -periodic solution.

• The map

P : [0,+∞)× C([−τ,0],M)→ C([−τ,0],M)

(λ, ϕ) 7→ Pλ(ϕ)

is continuous and “locally compact”.
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Proposition (M noncompact)

Let U be a relatively compact open subset of M such that there

are no zeros of w on ∂U .

⇒ there exists λ̄ > 0 such that, for any 0 < λ < λ̄

indM̃(P (λ, ·), Ũ) = deg(−w,U).

Notation: Ũ = C([−τ,0], U).
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RFDE on manifolds (infinite delay)

We study the RFDE (1) on M :

x′(t) = λF (t, xt)

Assumptions on the functional vector field F :

(H1) F is locally Lipschitz in the second variable;

(H2) F sends bounded subsets of R×BU((−∞,0],M)→ Rk into

bounded subsets of Rk.
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Examples.

1) The case of ODEs is obtained with

F (t, ϕ) := f(t, ϕ(0)).

2) The previous case (finite delay) is obtained with

F (t, ϕ) := f(t, ϕ(0), ϕ(−τ)).

3) Given h : R× Rk → Rk, define

F (t, ϕ) := h(t, ϕ(0)) +
∫ 0

−∞
eθϕ(θ) dθ.
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Goals: i) to extend to equation (1) the global continuation

results for T -periodic solutions,

ii) to give applications to second order equations.

Main difficulty: to study RFDEs requires much more effort than

delay equations.
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Initial value problem (general properties)

Consider the initial value problem{
x′(t) = λF (t, xt), t > 0

x(t) = η(t), t ≤ 0.

where η : (−∞,0]→M is a continuous map.

Proposition. If F is locally Lipschitz in the second variable

⇒ existence, uniqueness and continuous dependence.
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Global continuation result

Theorem 3. Benevieri, C., Furi, Pera (2013) Bound. Value Probl.

• M is closed in Rk (possibly noncompact)

• F verifies (H1)–(H2)

• U ⊆M open such that deg(w,U) is defined and nonzero

⇒ there exists in [0,+∞)× CT (M) a connected branch

of nontrivial T -periodic pairs of (1) whose closure meets the set

{(0, p) : p ∈ U,w(p) = 0} and

(i) either is unbounded;

(ii) or contains a pair (0, p0), where p0 ∈ M \ U is a bifurcation

point.
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Theorem 4.

• M is compact, possibly with boundary, with χ(M) 6= 0,

• F is inward and verifies (H1)–(H2)

⇒ there exists in [0,+∞)× CT (M) an unbounded (w.r.t. λ)

connected branch of nontrivial T -periodic pairs of (1), whose

closure intersects the set of the trivial T -periodic pairs.
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Applications to constrained motion problems

with infinite delay

Consider the following retarded functional motion equation

on a boundaryless manifold N ⊆ Rs:

x′′π(t) = G(t, xt)− εx′(t), (7)

where G is a functional vector field on N , and ε ≥ 0 is the

frictional coefficient.
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Theorem 5. Benevieri, C., Furi, Pera (2012) Rend. Trieste

• N is compact, boundaryless, with χ(N) 6= 0,

• G is T -periodic and verifies (H1)–(H2).

• Assume ε > 0

⇒ the equation

x′′π(t) = G(t, xt)− εx′(t)

admits a forced oscillation.
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“Retarded spherical pendulum”

Theorem 6. Benevieri, C., Furi, Pera (2011) J. Dynam. Diff. Eq.

Assume N = S2. Let G be a T -periodic functional vector field

on S2 which verifies (H1)–(H2)

⇒ the equation

x′′π(t) = G(t, xt)

admits a forced oscillation.
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Thank you for your attention!

33


