A global bifurcation result for a second order singular equation

A.C., W. Dambrosio and D. Papini

Dipartimento di Matematica - Università di Torino
Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche - Università di Siena

Rend. Istit. Mat. Univ. Trieste, Volume in honour of F. Zanolin’s 60th birthday

Topological and Variational Methods for ODEs
Dedicated to Massimo Furi Professor Emeritus at the University of Florence
Firenze, Dipartimento di Matematica e Informatica ”U. Dini”, June 3 - 4, 2014
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1])\) satisfies

\[\lim_{x \to 0^+} q(x) = 1\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\), and \(g \in C([0, 1] \times \mathbb{R})\) is such that

\[\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1).\]

We will look for solutions \(u\) such that \(u \in H^2_0(0, 1)\).

In what follows, we set

\[\tau u = -u'' + q(\cdot)u.\]

The constant \(5/4\) arises in the study of the differential operator \(\tau\).

We develop a global bifurcation approach.
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1],\]

where \(q \in C((0, 1])\) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{x^\alpha} = 1
\]

for some \(l > 0\) and \(\alpha \in (0, 5/4),\)

In what follows, we set \(\tau_u = -u'' + q(\cdot)u\).

The constant \(5/4\) arises in the study of the differential operator \(\tau_u\).

We develop a global bifurcation approach.
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1),\]

where \(q \in C((0, 1]) \) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{l x^\alpha} = 1
\]

for some \(l > 0 \) and \(\alpha \in (0, 5/4) \), and \(g \in C([0, 1] \times \mathbb{R}) \) is such that

\[
\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1).
\]
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1]) \) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{\frac{l}{x^\alpha}} = 1
\]

for some \(l > 0 \) and \(\alpha \in (0, 5/4) \), and \(g \in C([0, 1] \times \mathbb{R}) \) is such that

\[
\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in} \ x \in (0, 1].
\]

We will look for solutions \(u \) such that \(u \in H^2_0(0, 1) \).
We are concerned with a second order ODE of the form

$$-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1],$$

where $q \in C((0, 1])$ satisfies

$$\lim_{x \to 0^+} \frac{q(x)}{l x^\alpha} = 1$$

for some $l > 0$ and $\alpha \in (0, 5/4)$, and $g \in C([0, 1] \times \mathbb{R})$ is such that

$$\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1].$$

We will look for solutions u such that $u \in H^2_0(0, 1)$. In what follows, we set $\tau u = -u'' + q(\cdot)u.$
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1),\]

where \(q \in C((0, 1])\) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{x^\alpha} = 1
\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\), and \(g \in C([0, 1] \times \mathbb{R})\) is such that

\[
\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1].
\]

We will look for solutions \(u\) such that \(u \in H^2_0(0, 1)\).

In what follows, we set \(\tau u = -u'' + q(\cdot)u\). The constant 5/4 arises in the study of the differential operator \(\tau\).
We are concerned with a second order ODE of the form

\[-u'' + q(x)u = \lambda u + g(x, u)u, \ \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1]) \) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{\frac{l}{x^\alpha}} = 1
\]

for some \(l > 0 \) and \(\alpha \in (0, 5/4) \), and \(g \in C([0, 1] \times \mathbb{R}) \) is such that

\[
\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1].
\]

We will look for solutions \(u \) such that \(u \in H^2_0(0, 1) \).

In what follows, we set \(\tau u = -u'' + q(\cdot)u \). The constant \(5/4 \) arises in the study of the differential operator \(\tau \).

We develop a global bifurcation approach.
Literature

For the linear problem

Weidmann, "Linear Operators in Hilbert Spaces", 1980

For the spectral properties of the Schrödinger operator

Pearson, "Quantum scattering and spectral theory", 1988
Reed-Simon, "Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators", 1978

For singular problems

Curgus-Read, "Discreteness of the spectrum of second-order differential operators and associated embedding theorems", J. Differential Equations, 2002
Sim-Kajikiya-Lee, "On a criterion for discrete or continuous spectrum of \(p \)-Laplace eigenvalue problems with singular sign-changing weights", Nonlinear Anal., 2010
Literature
For the linear problem
CODDINGTON-LEVINSON, "Theory of ordinary differential equations", 1955
WEIDMANN, "Linear Operators in Hilbert Spaces", 1980

For the spectral properties of the Schrödinger operator
PEARSON, "Quantum scattering and spectral theory", 1988

For singular problems
CURGUS-READ, Discreteness of the spectrum of second-order differential operators and associated embedding theorems, J. Differential Equations, 2002
SIM-KAJIKIYA-LEE, On a criterion for discrete or continuous spectrum of \(p \)-Laplace eigenvalue problems with singular sign-changing weights, Nonlinear Anal., 2010
Literature

For the linear problem

CODDINGTON-LEVINSON, "Theory of ordinary differential equations", 1955
WEIDMANN, "Linear Operators in Hilbert Spaces", 1980

For the spectral properties of the Schrödinger operator

PEARSON, "Quantum scattering and spectral theory", 1988
Literature

For the linear problem

Coddington-Levinson, ”Theory of ordinary differential equations”, 1955
Weidmann, ”Linear Operators in Hilbert Spaces”, 1980
Weidmann, ”Spectral theory of ordinary differential equations”, 1987

For the spectral properties of the Schrödinger operator

Pearson, ”Quantum scattering and spectral theory”, 1988
Reed-Simon, ”Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators”, 1978

For singular problems

Curgus-Read, Discreteness of the spectrum of second-order differential operators and associated embedding theorems, J. Differential Equations, 2002
Sim-Kajikiya-Lee, On a criterion for discrete or continuous spectrum of p-Laplace eigenvalue problems with singular sign-changing weights, Nonlinear Anal., 2010
A global bifurcation result for the a second order BVP in $[0, \pi]$ (Rabinowitz, *J. Funct. Anal.*, 1971)
A global bifurcation result for the a second order BVP in \([0, \pi]\)
(Rabinowitz, *J. Funct. Anal.*, 1971)

THEOREM.

Assume \(b \in C\) and non-negative and
\[
f(t, \xi, \eta, \lambda) = \lambda a(t)\xi + h(t, \xi, \eta, \lambda)\] (being a continuous and positive and \(h(t, \xi, \eta, \lambda) = o(\sqrt{\xi^2 + \eta^2}), (\xi, \eta) \to (0, 0))\).
A global bifurcation result for the a second order BVP in $[0, \pi]$
(Rabinowitz, *J. Funct. Anal.*, 1971)

THEOREM.

Assume $b \in C$ and non-negative and

$$f(t, \xi, \eta, \lambda) = \lambda a(t)\xi + h(t, \xi, \eta, \lambda) \text{(being a continuous and positive and) \ h(t, \xi, \eta, \lambda) = o}\left(\sqrt{\xi^2 + \eta^2}\right), \ (\xi, \eta) \to (0,0)).$$

Then for every k, $(\lambda_k, 0)$ is a bifurcation point for the nonlinear BVP

$$\begin{cases}
-u'' + b(t)u = f(t, u, u', \lambda), & t \in [0, \pi], \\
u(0) = 0 = u(\pi).
\end{cases}$$
A global bifurcation result for the second order BVP in $[0, \pi]$ (Rabinowitz, *J. Funct. Anal.*, 1971)

THEOREM.

Assume $b \in C$ and non-negative and $f(t, \xi, \eta, \lambda) = \lambda a(t)\xi + h(t, \xi, \eta, \lambda)$ (being a continuous and positive and $h(t, \xi, \eta, \lambda) = o(\sqrt{\xi^2 + \eta^2})$, $(\xi, \eta) \to (0, 0)$). Then for every k, $(\lambda_k, 0)$ is a bifurcation point for the nonlinear BVP

$$\begin{cases} -u'' + b(t)u = f(t, u, u', \lambda), & t \in [0, \pi], \\ u(0) = 0 = u(\pi). \end{cases}$$

The bifurcating branches $C_k \subset \mathbb{R} \times C^1([0, \pi], \mathbb{R})$ are unbounded in $\mathbb{R} \times C^1([0, \pi], \mathbb{R})$;
A global bifurcation result for the a second order BVP in \([0, \pi]\)
(Rabinowitz, *J. Funct. Anal.*, 1971)

THEOREM.

Assume \(b \in C\) and non-negative and
\[f(t, \xi, \eta, \lambda) = \lambda a(t)\xi + h(t, \xi, \eta, \lambda) \]
(being a continuous and positive and \(h(t, \xi, \eta, \lambda) = o(\sqrt{\xi^2 + \eta^2}), (\xi, \eta) \to (0, 0)\)). Then for every \(k\), \((\lambda_k, 0)\) is a bifurcation point for the nonlinear BVP

\[
\begin{cases}
-u'' + b(t)u = f(t, u, u', \lambda), & t \in [0, \pi], \\

u(0) = 0 = u(\pi).
\end{cases}
\]

The bifurcating branches \(C_k \subset \mathbb{R} \times C^1([0, \pi], \mathbb{R})\) are unbounded in \(\mathbb{R} \times C^1([0, \pi], \mathbb{R})\); moreover, if \((\lambda, u) \in C_k\) and \(u \neq 0\), then \(u\) has \((k - 1)\) simple zeros in \((0, \pi)\).
When passing to the case of an open interval many problems arise.
When passing to the case of an **open interval** many problems arise.

- It is necessary to deal with the problem of the **existence of a** self-adjoint realization of \(\tau \).
When passing to the case of an open interval many problems arise.

- It is necessary to deal with the problem of the existence of a self-adjoint realization of τ.

- It is necessary to know the properties of point spectrum and of the essential spectrum (according to the behaviour of q in a right neighbourhood of zero).
When passing to the case of an open interval many problems arise.

• It is necessary to deal with the problem of the existence of a self-adjoint realization of τ.

•• It is necessary to know the properties of point spectrum and of the essential spectrum (according to the behaviour of q in a right neighbourhood of zero).
• The existence of a self-adjoint realization of τ is treated in the framework of the linear spectral theory for singular problems.
• The existence of a self-adjoint realization of τ is treated in the framework of the linear spectral theory for singular problems. We use the above cited monographs of Coddington-Levinson and Weidmann.
• The existence of a self-adjoint realization of τ is treated in the framework of the linear spectral theory for singular problems. We use the above cited monographs of Coddington-Levinson and Weidmann. The former focuses on a generalization of the so-called ”expansion theorem” valid for functions in $L^2([0, 1])$ and, by doing this, a sort of ”generalized shooting method” is performed.
The existence of a self-adjoint realization of τ is treated in the framework of the linear spectral theory for singular problems. We use the above cited monographs of Coddington-Levinson and Weidmann. The former focuses on a generalization of the so-called ”expansion theorem” valid for functions in $L^2([0, 1])$ and, by doing this, a sort of ”generalized shooting method” is performed. Indeed, one may deal with the well-known problem in the closed interval $[b, 1]$, and then discuss $\lim_{b \to 0^+}$.
• The existence of a self-adjoint realization of τ is treated in the framework of the linear spectral theory for singular problems. We use the above cited monographs of Coddington-Levinson and Weidmann. The former focuses on a generalization of the so-called ”expansion theorem” valid for functions in $L^2([0, 1])$ and, by doing this, a sort of ”generalized shooting method” is performed. Indeed, one may deal with the well-known problem in the closed interval $[b, 1]$, and then discuss $\lim_{b \to 0^+}$. This leads to the important concepts of ”limit point case” and ”limit circle case”; one or the other property is implied by suitable assumptions on the coefficient q.
On the other hand, in Weidmann’s book the existence of a self-adjoint realization of the formal differential expression $\tau u = -u'' + q(\cdot)u$ is tackled from an abstract point of view.
On the other hand, in Weidmann’s book the existence of a self-adjoint realization of the formal differential expression \(\tau u = -u'' + q(\cdot)u \) is tackled from an abstract point of view. It is interesting to observe that both the approach by Coddington-Levinson (based on more elementary ODE techniques) and the one in Weidmann’s book lead in different ways to the important concepts of ”limit point case” and ”limit circle case”.

\[w_1(x) = x, \quad x \sim 0, \]
\[w_2(x) = \int_0^x \int_1^t q(s) \, ds \, dt - 1, \quad x \sim 0. \]
On the other hand, in Weidmann’s book the existence of a self-adjoint realization of the formal differential expression \(\tau u = -u'' + q(\cdot)u \) is tackled from an abstract point of view. It is interesting to observe that both the approach by Coddington-Levinson (based on more elementary ODE techniques) and the one in Weidmann’s book lead in different ways to the important concepts of ”limit point case” and ”limit circle case”. The knowledge of one (or the other) case leads then to information on the boundary conditions to be added to in order to have a self-adjoint realization of \(\tau \).
On the other hand, in Weidmann’s book the existence of a self-adjoint realization of the formal differential expression \(\tau u = -u'' + q(\cdot)u \) is tackled from an abstract point of view. It is interesting to observe that both the approach by Coddington-Levinson (based on more elementary ODE techniques) and the one in Weidmann’s book lead in different ways to the important concepts of ”limit point case” and ”limit circle case”. The knowledge of one (or the other) case leads then to information on the boundary conditions to be added to in order to have a self-adjoint realization of \(\tau \). More specifically, we are led to consider the functions

\[
\begin{align*}
 w_1(x) &= x, \quad x \sim 0, \\
 w_2(x) &= \int_0^x \int_t^1 q(s)dsdt - 1, \quad x \sim 0.
\end{align*}
\]
From the abstract spectral theory, we learn that a self-adjoint extension is obtained by means of the boundary condition

$$\lim_{x \to 0} \left(w_\alpha(x)u'(x) - w'_\alpha(x)u(x) \right) = 0,$$

where $w_\alpha := \cos \alpha w_1 + \sin \alpha w_2$, $\alpha \in [0, 2\pi)$, must be such that the function

$$W_\alpha(x) := \frac{1}{|x|} w_\alpha(|x|) =$$

$$\cos \alpha + \frac{1}{|x|} \left(-\sin \alpha + \sin \alpha \int_0^{|x|} \int_t^1 q(s) ds dt \right), \quad x \sim 0$$

is of class $C_0^\infty((0, 1])$.
From the abstract spectral theory, we learn that a self-adjoint extension is obtained by means of the boundary condition

$$\lim_{x \to 0} (w_\alpha(x)u'(x) - w'_\alpha(x)u(x)) = 0,$$

where $w_\alpha := \cos \alpha w_1 + \sin \alpha w_2$, $\alpha \in [0, 2\pi)$, must be such that the function

$$W_\alpha(x) := \frac{1}{|x|} w_\alpha(|x|) =$$

$$= \cos \alpha + \frac{1}{|x|}(-\sin \alpha + \sin \alpha \int_0^{|x|} \int_t^1 q(s)dsdt), \quad x \sim 0$$

is of class $C^\infty_0((0, 1])$. This happens if and only if $\sin \alpha = 0$, i.e. if $w_\alpha(x) = w_1(x) = x$.
From the abstract spectral theory, we learn that a self-adjoint extension is obtained by means of the boundary condition

$$\lim_{x \to 0} (w_\alpha(x)u'(x) - w'_\alpha(x)u(x)) = 0,$$

where $w_\alpha := \cos \alpha w_1 + \sin \alpha w_2$, $\alpha \in [0, 2\pi)$, must be such that the function

$$W_\alpha(x) := \frac{1}{|x|} w_\alpha(|x|) =$$

$$\cos \alpha + \frac{1}{|x|}(- \sin \alpha + \sin \alpha \int_0^{|x|} \int_0^1 q(s)dsdt), \quad x \sim 0$$

is of class $C_0^\infty((0, 1])$. This happens if and only if $\sin \alpha = 0$, i.e. if $w_\alpha(x) = w_1(x) = x$. Hence, the correct boundary condition is

$$\lim_{x \to 0} (xu'(x) - u(x)) = 0.$$
From the abstract spectral theory, we learn that a self-adjoint extension is obtained by means of the boundary condition

$$\lim_{x \to 0} (w_\alpha(x)u'(x) - w'_\alpha(x)u(x)) = 0,$$

where $w_\alpha := \cos \alpha w_1 + \sin \alpha w_2, \alpha \in [0, 2\pi)$, must be such that the function

$$W_\alpha(x) := \frac{1}{|x|}w_\alpha(|x|) =$$

$$= \cos \alpha + \frac{1}{|x|}(-\sin \alpha + \sin \alpha \int_0^{|x|} \int_t^1 q(s)dsdt), \ x \sim 0$$

is of class $C_0^\infty((0, 1])$. This happens if and only if $\sin \alpha = 0$, i.e. if $w_\alpha(x) = w_1(x) = x$. Hence, the correct boundary condition is

$$\lim_{x \to 0} (xu'(x) - u(x)) = 0.$$

Notice that the condition $\alpha < 5/4$ guarantees that $\tau w_2 \in L^2((0, 1])$.
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty.
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty. This fact depends on the oscillatory properties of the linear equation.
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty. This fact depends on the oscillatory properties of the linear equation. More precisely, we shall show that the linear equation is non-oscillatory.
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty. This fact depends on the oscillatory properties of the linear equation. More precisely, we shall show that the linear equation is non-oscillatory. Moreover, this will enable us to learn that the spectrum of A is purely discrete and that, for every $n \in \mathbb{N}$, the eigenfunction associated to the eigenvalue λ_n has $(n - 1)$ simple zeros in $(0, 1)$.
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty. This fact depends on the oscillatory properties of the linear equation. More precisely, we shall show that the linear equation is non-oscillatory. Moreover, this will enable us to learn that the spectrum of A is purely discrete and that, for every $n \in \mathbb{N}$, the eigenfunction associated to the eigenvalue λ_n has $(n - 1)$ simple zeros in $(0, 1)$. To this end, for $[c, d] \subset (0, 1)$, define

$$M(c, d, \lambda) := \text{number of zeros in } (c, d) \text{ of the solution to } (\tau - \lambda)u = 0 \text{ satisfying } u(c) = 0 \text{ or } u(d) = 0$$
In our case, the spectrum consists only of the point spectrum, i.e. the essential spectrum is empty. This fact depends on the oscillatory properties of the linear equation. More precisely, we shall show that the linear equation is non-oscillatory. Moreover, this will enable us to learn that the spectrum of A is purely discrete and that, for every $n \in \mathbb{N}$, the eigenfunction associated to the eigenvalue λ_n has $(n - 1)$ simple zeros in $(0, 1)$. To this end, for $[c, d] \subset (0, 1)$, define

$$M(c, d, \lambda) := \text{number of zeros in } (c, d) \text{ of the solution to}$$

$$(\tau - \lambda)u = 0 \text{ satisfying } u(c) = 0 \text{ or } u(d) = 0$$

and

$$m(\mu, \lambda) = \liminf_{c \to 0^+, d \to 1^-} (M(c, d, \lambda) - M(c, d, \mu)).$$
DEFINITION The differential equation is oscillatory if every solution u has infinitely many zeros in $(0, 1)$.
DEFINITION The differential equation is oscillatory if every solution \(u \) has infinitely many zeros in \((0, 1)\). It is non-oscillatory when it is not oscillatory.
DEFINITION The differential equation is oscillatory if every solution u has infinitely many zeros in $(0, 1)$. It is non-oscillatory when it is not oscillatory.

We shall use the following
DEFINITION The differential equation is oscillatory if every solution u has infinitely many zeros in $(0, 1)$. It is non-oscillatory when it is not oscillatory.

We shall use the following

Theorem (Weidmann, LNM)
DEFINITION The differential equation is oscillatory if every solution \(u \) has infinitely many zeros in \((0, 1)\). It is non-oscillatory when it is not oscillatory.

We shall use the following

Theorem (Weidmann, LNM)
(a) \(A \) is bounded below if and only if there exists a real number \(\mu \) such that \((\tau - \mu)u = 0\) is non-oscillatory.
DEFINITION The differential equation is oscillatory if every solution u has infinitely many zeros in $(0, 1)$. It is non-oscillatory when it is not oscillatory.

We shall use the following

Theorem (Weidmann, LNM)
(a) A is bounded below if and only if there exists a real number μ such that $(\tau - \mu)u = 0$ is non-oscillatory.
(b) $$\sigma_{ess}(A) = \{ \lambda \in \mathbb{R} : m(\lambda - \epsilon, \lambda + \epsilon) = \infty \ \forall \epsilon > 0 \}$$
The linear theory

Consider the linear equation

$$-u'' + q(x)u = \lambda u, \quad x \in (0, 1], \quad \lambda \in \mathbb{R}.$$

Recall that $q \in C((0, 1])$ and that $q(x) \sim lx^\alpha, \quad x \to 0^+,$

for some $l > 0$ and $\alpha \in (0, 5/4)$.

Without loss of generality we may suppose that $q(x) > 0, \forall x \in (0, 1]$.

The linear theory

Consider the linear equation

\[-u'' + q(x)u = \lambda u, \quad x \in (0, 1], \quad \lambda \in \mathbb{R}.
\]

Recall that \(q \in C((0, 1])\) and that

\[q(x) \sim \frac{l}{x^\alpha}, \quad x \to 0^+,
\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\).
The linear theory

Consider the linear equation

\[-u'' + q(x)u = \lambda u, \quad x \in (0, 1], \quad \lambda \in \mathbb{R}.
\]

Recall that \(q \in C((0, 1])\) and that

\[q(x) \sim \frac{l}{x^\alpha}, \quad x \to 0^+,
\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\).

Without loss of generality we may suppose that

\[q(x) > 0, \quad \forall \ x \in (0, 1].\]
We study the asymptotic behaviour of solutions when $x \to 0^+$;
We study the asymptotic behaviour of solutions when $x \to 0^+$; to this aim, set $t = -\log x$ and $w(t) = u(e^{-t})$ for all $t > 0$.
We study the asymptotic behaviour of solutions when $x \to 0^+$; to this aim, set $t = -\log x$ and $w(t) = u(e^{-t})$ for all $t > 0$. Then the given linear equation can be written in the form

$$Y' = (C + R(t))Y,$$

as an application of Levinson theorem, we get
We study the asymptotic behaviour of solutions when $x \to 0^+$; to this aim, set $t = -\log x$ and $w(t) = u(e^{-t})$ for all $t > 0$. Then the given linear equation can be written in the form

$$Y' = (C + R(t))Y,$$

where $Y = (w, w')^T$ and

$$C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \quad R(t) = \begin{pmatrix} 0 & 0 \\ e^{-2t}q(e^{-t}) - \lambda e^{-2t} & 0 \end{pmatrix}, \quad \forall \ t > 0.$$
We study the asymptotic behaviour of solutions when $x \to 0^+$; to this aim, set $t = -\log x$ and $w(t) = u(e^{-t})$ for all $t > 0$. Then the given linear equation can be written in the form

$$Y' = (C + R(t))Y,$$

where $Y = (w, w')^T$ and

$$C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \quad R(t) = \begin{pmatrix} 0 & 0 \\ e^{-2t}q(e^{-t}) - \lambda e^{-2t} & 0 \end{pmatrix}, \quad \forall \ t > 0.$$

As an application of Levinson theorem, we get
We study the asymptotic behaviour of solutions when \(x \to 0^+ \); to this aim, set \(t = -\log x \) and \(w(t) = u(e^{-t}) \) for all \(t > 0 \). Then the given linear equation can be written in the form

\[
Y' = (C + R(t))Y,
\]

where \(Y = (w, w')^T \) and

\[
C = \begin{pmatrix}
0 & 1 \\
0 & -1 \\
\end{pmatrix}, \quad R(t) = \begin{pmatrix}
0 & 0 \\
e^{-2t}q(e^{-t}) - \lambda e^{-2t} & 0 \\
\end{pmatrix}, \quad \forall \ t > 0.
\]

As an application of Levinson theorem, we get
PROPOSITION 1. For every $\lambda \in \mathbb{R}$ the equation has two linearly independent solutions $u_{1,\lambda}, u_{2,\lambda}$ such that

$$u_{1,\lambda}(x) = 1 + o(1), \quad u'_{1,\lambda}(x) = o\left(\frac{1}{x}\right) \quad x \to 0^+,$$

and $u_{2,\lambda} \in H^2(0,1)$.
PROPOSITION 1. For every $\lambda \in \mathbb{R}$ the equation has two linearly independent solutions $u_{1,\lambda}, u_{2,\lambda}$ such that

$$u_{1,\lambda}(x) = 1 + o(1), \quad u'_{1,\lambda}(x) = o \left(\frac{1}{x} \right) \quad x \to 0^+,$$

$$u_{2,\lambda}(x) = x + o(x), \quad u'_{2,\lambda}(x) = 1 + o(1), \quad x \to 0^+,$$
PROPOSITION 1. For every $\lambda \in \mathbb{R}$ the equation has two linearly independent solutions $u_{1,\lambda}, u_{2,\lambda}$ such that

$$u_{1,\lambda}(x) = 1 + o(1), \quad u'_{1,\lambda}(x) = o\left(\frac{1}{x}\right) \quad x \to 0^+,$$

$$u_{2,\lambda}(x) = x + o(x), \quad u'_{2,\lambda}(x) = 1 + o(1), \quad x \to 0^+,$$

and $u_{2,\lambda} \in H^2(0, 1)$.
PROPOSITION 1. For every \(\lambda \in \mathbb{R} \) the equation has two linearly independent solutions \(u_{1,\lambda}, u_{2,\lambda} \) such that

\[
\begin{align*}
 u_{1,\lambda}(x) &= 1 + o(1), \quad u'_{1,\lambda}(x) = o \left(\frac{1}{x} \right) \quad x \to 0^+, \\
 u_{2,\lambda}(x) &= x + o(x), \quad u'_{2,\lambda}(x) = 1 + o(1), \quad x \to 0^+,
\end{align*}
\]

and \(u_{2,\lambda} \in H^2(0, 1) \).

For every \(f \in L^2(0, 1) \) the solutions of \(\tau u = f \) are given by

\[
 u(x) = c_1 u_{1,0}(x) + c_2 u_{2,0}(x) + u_f(x), \quad \forall \ x \in (0, 1), \ c_1, c_2 \in \mathbb{R},
\]
PROPOSITION 1. For every $\lambda \in \mathbb{R}$ the equation has two linearly independent solutions $u_{1,\lambda}, u_{2,\lambda}$ such that

$$u_{1,\lambda}(x) = 1 + o(1), \quad u'_{1,\lambda}(x) = o\left(\frac{1}{x}\right) \quad x \to 0^+,$$

$$u_{2,\lambda}(x) = x + o(x), \quad u'_{2,\lambda}(x) = 1 + o(1), \quad x \to 0^+,$$

and $u_{2,\lambda} \in H^2(0, 1)$.

For every $f \in L^2(0, 1)$ the solutions of $\tau u = f$ are given by

$$u(x) = c_1 u_{1,0}(x) + c_2 u_{2,0}(x) + u_f(x), \quad \forall \ x \in (0, 1), \ c_1, c_2 \in \mathbb{R},$$

where

$$u_f(x) = \int_0^x G(x, t)f(t) \, dt, \quad \forall \ x \in (0, 1),$$
PROPOSITION 1. For every \(\lambda \in \mathbb{R} \) the equation has two linearly independent solutions \(u_{1,\lambda}, u_{2,\lambda} \) such that

\[
u_{1,\lambda}(x) = 1 + o(1), \quad u'_{1,\lambda}(x) = o \left(\frac{1}{x} \right) \quad x \to 0^+,
\]

\[
u_{2,\lambda}(x) = x + o(x), \quad u'_{2,\lambda}(x) = 1 + o(1), \quad x \to 0^+,
\]

and \(u_{2,\lambda} \in H^2(0, 1) \).

For every \(f \in L^2(0, 1) \) the solutions of \(\tau u = f \) are given by

\[
u(x) = c_1 u_{1,0}(x) + c_2 u_{2,0}(x) + u_f(x), \quad \forall \ x \in (0, 1), \ c_1, c_2 \in \mathbb{R},
\]

where

\[
u_f(x) = \int_0^x G(x, t)f(t) \, dt, \quad \forall \ x \in (0, 1),
\]

\[
G(x, t) = u_{1,0}(t)u_{2,0}(x) - u_{2,0}(t)u_{1,0}(x), \quad \forall \ x \in (0, 1), \ t \in (0, 1)
\]
PROPOSITION 1. For every $\lambda \in \mathbb{R}$ the equation has two linearly independent solutions $u_{1,\lambda}$, $u_{2,\lambda}$ such that

$$u_{1,\lambda}(x) = 1 + o(1), \quad u_{1,\lambda}'(x) = o\left(\frac{1}{x}\right), \quad x \to 0^+,$$

$$u_{2,\lambda}(x) = x + o(x), \quad u_{2,\lambda}'(x) = 1 + o(1), \quad x \to 0^+,$$

and $u_{2,\lambda} \in H^2(0, 1)$.

For every $f \in L^2(0, 1)$ the solutions of $\tau u = f$ are given by

$$u(x) = c_1 u_{1,0}(x) + c_2 u_{2,0}(x) + u_f(x), \quad \forall \ x \in (0, 1), \ c_1, c_2 \in \mathbb{R},$$

where

$$u_f(x) = \int_0^x G(x, t) f(t) \, dt, \quad \forall \ x \in (0, 1),$$

$$G(x, t) = u_{1,0}(t)u_{2,0}(x) - u_{2,0}(t)u_{1,0}(x), \quad \forall \ x \in (0, 1), \ t \in (0, 1)$$

fulfill $G \in L^\infty((0, 1)^2)$, $u_f(0) = 0 = u'_f(0)$ and $u_f \in H^2(0, 1)$.
From the spectral theory for singular differential operators, it follows that the differential operator A defined by $Au = \tau u$, being

$$D(A) = \{ u \in L^2(0,1) : u, u' \in AC(0,1), \tau u \in L^2(0,1), \lim_{x \to 0^+} (xu'(x) - u(x)) = 0 = u(1) \},$$

is a self-adjoint realization of τ.
PROPOSITION 2. The relation $D(A) = H^2_0(0,1)$ holds true.

Moreover, A has a bounded inverse A^{-1}: $\mathbb{L}^2(0,1) \rightarrow H^2_0(0,1)$.

Sketch of the proof. Let us start proving that $H^2_0(0,1) \subset D(A)$.

It is well known that $H^2_0(0,1) \subset \mathbb{C}^1(0,1)$; hence, for every $u \in H^2_0(0,1)$ we have $u, u' \in AC(0,1)$.

Moreover, using the fact that $u(0) = 0$ we deduce that $u(x) = u'(0)x + o(x), x \to 0$ and $q(u(x)) = u'(0)x^2 - \alpha + o(x^2), x \to 0$; the condition $\alpha < 5/4$ guarantees again that $qu \in \mathbb{L}^2(0,1)$ and therefore $\tau u = -u'' + qu \in \mathbb{L}^2(0,1)$.

Finally, the regularity of u and u' imply that $\lim_{x \to 0^+} (xu'(x) - u(x)) = 0$ and so also the boundary condition in the definition of $D(A)$ is satisfied.
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \to H^2_0(0, 1)$.
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \to H^2_0(0, 1)$.

Sketch of the proof. Let us start proving that $H^2_0(0, 1) \subset D(A)$.

...
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \to H^2_0(0, 1)$.

Sketch of the proof. Let us start proving that $H^2_0(0, 1) \subset D(A)$. It is well known that $H^2_0(0, 1) \subset C^1(0, 1)$; hence, for every $u \in H^2_0(0, 1)$ we have $u, u' \in AC(0, 1)$.
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \to H^2_0(0, 1)$.

Sketch of the proof. Let us start proving that $H^2_0(0, 1) \subset D(A)$. It is well known that $H^2_0(0, 1) \subset C^1(0, 1)$; hence, for every $u \in H^2_0(0, 1)$ we have $u, u' \in AC(0, 1)$. Moreover, using the fact that $u(0) = 0$ we deduce that

$$u(x) = u'(0)x + o(x), \quad x \to 0^+$$
PROPOSITION 2. The relation \(D(A) = H^2_0(0, 1) \) holds true. Moreover, \(A \) has a bounded inverse \(A^{-1} : L^2(0, 1) \to H^2_0(0, 1) \).

Sketch of the proof. Let us start proving that \(H^2_0(0, 1) \subset D(A) \). It is well known that \(H^2_0(0, 1) \subset C^1(0, 1) \); hence, for every \(u \in H^2_0(0, 1) \) we have \(u, u' \in AC(0, 1) \). Moreover, using the fact that \(u(0) = 0 \) we deduce that

\[
u(x) = u'(0)x + o(x), \quad x \to 0^+
\]

and

\[
q(x)u(x) = u'(0)x^{1-\alpha} + o(x^{1-\alpha}), \quad x \to 0^+;
\]
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \to H^2_0(0, 1)$.

Sketch of the proof. Let us start proving that $H^2_0(0, 1) \subset D(A)$. It is well known that $H^2_0(0, 1) \subset C^1(0, 1)$; hence, for every $u \in H^2_0(0, 1)$ we have $u, u' \in AC(0, 1)$. Moreover, using the fact that $u(0) = 0$ we deduce that

$$u(x) = u'(0)x + o(x), \quad x \to 0^+$$

and

$$q(x)u(x) = u'(0)x^{1-\alpha} + o(x^{1-\alpha}), \quad x \to 0^+;$$

the condition $\alpha < 5/4$ guarantees again that $qu \in L^2(0, 1)$ and therefore $\tau u = -u'' + qu \in L^2(0, 1)$.
PROPOSITION 2. The relation $D(A) = H^2_0(0, 1)$ holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0, 1) \rightarrow H^2_0(0, 1)$.

Sketch of the proof. Let us start proving that $H^2_0(0, 1) \subset D(A)$. It is well known that $H^2_0(0, 1) \subset C^1(0, 1)$; hence, for every $u \in H^2_0(0, 1)$ we have $u, u' \in AC(0, 1)$. Moreover, using the fact that $u(0) = 0$ we deduce that

$$u(x) = u'(0)x + o(x), \quad x \to 0^+$$

and

$$q(x)u(x) = u'(0)x^{1-\alpha} + o(x^{1-\alpha}), \quad x \to 0^+;$$

the condition $\alpha < 5/4$ guarantees again that $qu \in L^2(0, 1)$ and therefore $\tau u = -u'' + qu \in L^2(0, 1)$. Finally, the regularity of u and u' imply that

$$\lim_{x \to 0^+} (xu'(x) - u(x)) = 0$$

and so also the boundary condition in the definition of $D(A)$ is satisfied.
Now, let us prove that $D(A) \subset H_0^2(0, 1)$.
Now, let us prove that $D(A) \subset H_0^2(0, 1)$. For every $u \in D(A)$ let $f = \tau u \in L^2(0, 1)$. According to Proposition 1, u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$;
Now, let us prove that $D(A) \subset H^2_0(0,1)$. For every $u \in D(A)$ let $f = \tau u \in L^2(0,1)$. According to Proposition 1, u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$; it is easy to see that the function u_1 does not satisfy the boundary condition given in $x = 0$ in the definition of $D(A)$,
Now, let us prove that $D(A) \subset H^2_0(0, 1)$. For every $u \in D(A)$ let $f = \tau u \in L^2(0, 1)$. According to Proposition 1, u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$; it is easy to see that the function u_1 does not satisfy the boundary condition given in $x = 0$ in the definition of $D(A)$, while u_2 and u_f do.
Now, let us prove that $D(A) \subset H^2_0(0,1)$. For every $u \in D(A)$ let $f = \tau u \in L^2(0,1)$. According to Proposition 1, u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$; it is easy to see that the function u_1 does not satisfy the boundary condition given in $x = 0$ in the definition of $D(A)$, while u_2 and u_f do.

Hence $u \in D(A)$ if and only if $c_1 = 0$;
Now, let us prove that $D(A) \subset H^2_0(0, 1)$. For every $u \in D(A)$ let $f = \tau u \in L^2(0, 1)$. According to Proposition 1, u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$; it is easy to see that the function u_1 does not satisfy the boundary condition given in $x = 0$ in the definition of $D(A)$, while u_2 and u_f do.

Hence $u \in D(A)$ if and only if $c_1 = 0$; the last statement of Proposition 1 implies then that $u \in H^2(0, 1)$.
Now, let us prove that \(D(A) \subset H^2_0(0,1) \). For every \(u \in D(A) \) let \(f = \tau u \in L^2(0,1) \). According to Proposition 1, \(u \) can be written as
\[
u = c_1 u_1 + c_2 u_2 + u_f,\
\]
for some \(c_1, c_2 \in \mathbb{R} \); it is easy to see that the function \(u_1 \) does not satisfy the boundary condition given in \(x = 0 \) in the definition of \(D(A) \), while \(u_2 \) and \(u_f \) do.

Hence \(u \in D(A) \) if and only if \(c_1 = 0 \); the last statement of Proposition 1 implies then that \(u \in H^2(0,1) \).

As in the first part of the proof, the regularity of \(u \) allows to conclude that the boundary condition in \(x = 0 \) given in \(D(A) \) reduces to \(u(0) = 0 \).
2. Let us study the invertibility of A.
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A.

Moreover, since A is self-adjoint on H, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0,1)$ and let us prove that there exists $u \in H^2_0(0,1)$ such that $Au = f$, i.e. $\tau u = f$. The same argument of the first part of the proof implies that $c_1 = 0$. Hence $u = c_2 u_2 + u f(1)$. From Proposition 1 this function belongs to $H^2_0(0,1)$ and satisfies the boundary condition $u(0) = 0$. In order to prove that the missing condition $u(1) = 0$ is fulfilled for every $f \in L^2(0,1)$, let us observe that $u_2(1) \neq 0$, otherwise u_2 would be an eigenfunction of A associated to the zero eigenvalue. Therefore, $u(1) = 0$ is satisfied if $c_2 = -u f(1) u_2(1)$, for every $f \in L^2(0,1)$.
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A;
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective.
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0, 1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0, 1)$ and let us prove that there exists $u \in H^2_0(0, 1)$ such that $Au = f$, i.e. $\tau u = f$; the same argument of the first part of the proof implies that $c_1 = 0$. Hence $u = c_2 u_2 + u f$. From Proposition 1 this function belongs to $H^2_2(0, 1)$ and satisfies the boundary condition $u(0) = 0$. In order to prove that the missing condition $u(1) = 0$ is fulfilled for every $f \in L^2(0, 1)$, let us observe that $u_2(1) \neq 0$, otherwise u_2 would be an eigenfunction of A associated to the zero eigenvalue. Therefore, $u(1) = 0$ is satisfied if $c_2 = -u f(1) u_2(1)$, for every $f \in L^2(0, 1)$.
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0,1)$ and let us prove that there exists $u \in H^2_0(0,1)$ such that $Au = f$, i.e. $\tau u = f$;
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0, 1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0, 1)$ and let us prove that there exists $u \in H^2_0(0, 1)$ such that $Au = f$, i.e. $\tau u = f$; the same argument of the first part of the proof implies that $c_1 = 0$.
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0,1)$ and let us prove that there exists $u \in H^2_0(0,1)$ such that $Au = f$, i.e. $\tau u = f$; the same argument of the first part of the proof implies that $c_1 = 0$. Hence $u = c_2 u_2 + u_f$;
2. Let us study the invertibility of A. The existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A; hence, it is sufficient to prove that A is surjective. To this aim, let us first observe that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0,1)$ and let us prove that there exists $u \in H^2_0(0,1)$ such that $Au = f$, i.e. $\tau u = f$; the same argument of the first part of the proof implies that $c_1 = 0$. Hence $u = c_2 u_2 + u_f$; from Proposition 1 this function belongs to $H^2(0,1)$ and satisfies the boundary condition $u(0) = 0$.
2. Let us study the invertibility of \(A \). The existence of a bounded inverse of \(A \) is equivalent to the fact that \(0 \in \rho_A \), being \(\rho_A \) the resolvent of \(A \). Since \(A \) is self-adjoint on \(H^2_0(0,1) \), this follows from the surjectivity of \(A \); hence, it is sufficient to prove that \(A \) is surjective. To this aim, let us first observe that \(0 \) cannot be an eigenvalue of \(A \). Now, let us fix \(f \in L^2(0,1) \) and let us prove that there exists \(u \in H^2_0(0,1) \) such that \(Au = f \), i.e. \(\tau u = f \); the same argument of the first part of the proof implies that \(c_1 = 0 \). Hence \(u = c_2 u_2 + u_f \); from Proposition 1 this function belongs to \(H^2(0,1) \) and satisfies the boundary condition \(u(0) = 0 \).

In order to prove that the missing condition \(u(1) = 0 \) is fulfilled for every \(f \in L^2(0,1) \), let us observe that \(u_2(1) \neq 0 \), otherwise \(u_2 \) would be an eigenfunction of \(A \) associated to the zero eigenvalue. Therefore, \(u(1) = 0 \) is satisfied if \(c_2 = -\frac{u_f(1)}{u_2(1)} \), for every \(f \in L^2(0,1) \).
Spectral properties of A

The regularity assumptions on q imply that solutions to
$$-u'' + q(x)u = \lambda u,$$
have a finite number of zeros in any interval of the form $[a, 1)$, for every $0 < a < 1$.

Moreover, for every $\lambda \in \mathbb{R}$ there exists $c(\lambda) \in (0, 1]$ such that $\lambda - q(x) < 0$, $\forall x \in (0, c(\lambda))$.

An application of the Sturm comparison theorem proves that every solution has at most one zero in $(0, c(\lambda))$; as a consequence, we obtain the following result:
The regularity assumptions on q imply that solutions to $-u'' + q(x)u = \lambda u$ have a finite number of zeros in any interval of the form $[a, 1)$, for every $0 < a < 1$. Moreover, for every $\lambda \in \mathbb{R}$ there exists $c(\lambda) \in (0, 1]$ such that $\lambda - q(x) < 0$, $\forall x \in (0, c(\lambda))$. An application of the Sturm comparison theorem proves that every solution has at most one zero in $(0, c(\lambda))$; as a consequence, we obtain the following result:
Spectral properties of A

The regularity assumptions on q imply that solutions to $-u'' + q(x)u = \lambda u$ have a finite number of zeros in any interval of the form $[a, 1)$, for every $0 < a < 1$. Moreover, for every $\lambda \in \mathbb{R}$ there exists $c(\lambda) \in (0, 1]$ such that

$$\lambda - q(x) < 0, \quad \forall \ x \in (0, c(\lambda)).$$
The regularity assumptions on q imply that solutions to $-u'' + q(x)u = \lambda u$ have a finite number of zeros in any interval of the form $[a, 1)$, for every $0 < a < 1$.

Moreover, for every $\lambda \in \mathbb{R}$ there exists $c(\lambda) \in (0, 1]$ such that

$$\lambda - q(x) < 0, \quad \forall \ x \in (0, c(\lambda)).$$

An application of the Sturm comparison theorem proves that every solution has at most one zero in $(0, c(\lambda))$; as a consequence, we obtain the following result:
PROPOSITION 3

For every $\lambda \in \mathbb{R}$ the differential equation is non-oscillatory.
PROPOSITION 3 For every $\lambda \in \mathbb{R}$ the differential equation is non-oscillatory.

PROPOSITION 4 The differential operator A is bounded-below and satisfies

$$\sigma_{ess}(A) = \emptyset.$$
PROPOSITION 3 For every $\lambda \in \mathbb{R}$ the differential equation is non-oscillatory.

PROPOSITION 4 The differential operator A is bounded-below and satisfies

$$\sigma_{ess}(A) = \emptyset.$$

Moreover, there exists a sequence $\{\lambda_n\}_{n \in \mathbb{N}}$ of simple eigenvalues of A such that

$$\lim_{n \to +\infty} \lambda_n = +\infty$$
PROPOSITION 3 For every $\lambda \in \mathbb{R}$ the differential equation is non-oscillatory.

PROPOSITION 4 The differential operator A is bounded-below and satisfies

$$\sigma_{ess}(A) = \emptyset.$$

Moreover, there exists a sequence $\{\lambda_n\}_{n \in \mathbb{N}}$ of simple eigenvalues of A such that

$$\lim_{n \to +\infty} \lambda_n = +\infty$$

and for every $n \in \mathbb{N}$ the eigenfunction u_n of A associated to the eigenvalue λ_n has $(n - 1)$ simple zeros in $(0, 1)$.
The nonlinear problem

\[-u'' + q(x)u = \lambda u + g(x, u), \ \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1])\) satisfies

\[\lim_{x \to 0^+} q(x) = 1\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\), and \(g \in C([0, 1] \times \mathbb{R})\) is such that

\[\lim_{u \to 0} g(x, u) = 0, \ \text{uniformly in} \ x.\]

We will look for solutions \(u\) such that \(u \in H^2_0(0, 1)\).

Let \(\Sigma\) denote the set of nontrivial solutions in \(H^2_0(0, 1) \times \mathbb{R}\) and let \(\Sigma' = \Sigma \cup \{\lambda \in H^2_0(0, 1) \times \mathbb{R}: \lambda \text{ is an eigenvalue of } A\}\).
The nonlinear problem

Consider

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1),\]
The nonlinear problem

Consider

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1),\]

where \(q \in C((0, 1])\) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{l} = 1
\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\).
The nonlinear problem

Consider

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1]) \) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{l} \frac{l}{x^\alpha} = 1
\]

for some \(l > 0 \) and \(\alpha \in (0, 5/4) \) and \(g \in C([0, 1] \times \mathbb{R}) \) is such that

\[
\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x.
\]
The nonlinear problem

Consider

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1),\]

where \(q \in C((0, 1])\) satisfies

\[\lim_{x \to 0^+} \frac{q(x)}{x^\alpha} = 1\]

for some \(l > 0\) and \(\alpha \in (0, 5/4)\) and \(g \in C([0, 1] \times \mathbb{R})\) is such that

\[\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x.\]

We will look for solutions \(u\) such that \(u \in H_0^2(0, 1)\).
The nonlinear problem

Consider

\[-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \ x \in (0, 1),\]

where \(q \in C((0, 1]) \) satisfies

\[
\lim_{x \to 0^+} \frac{q(x)}{l x^\alpha} = 1
\]

for some \(l > 0 \) and \(\alpha \in (0, 5/4) \) and \(g \in C([0, 1] \times \mathbb{R}) \) is such that

\[
\lim_{u \to 0} g(x, u) = 0,
\]

uniformly in \(x \).

We will look for solutions \(u \) such that \(u \in H^2_0(0, 1) \).

Let \(\Sigma \) denote the set of nontrivial solutions in \(H^2_0(0, 1) \times \mathbb{R} \) and let

\(\Sigma' = \Sigma \cup \{(0, \lambda) \in H^2_0(0, 1) \times \mathbb{R} : \lambda \) is an eigenvalue of \(A \}\).
Let M denote the Nemitskii operator associated to g, given by

$$M(u)(x) = g(x, u(x))u(x), \quad \forall \, x \in [0, 1],$$

for every $u \in H^2_0(0, 1)$.
Let M denote the Nemitskii operator associated to g, given by

$$M(u)(x) = g(x, u(x))u(x), \quad \forall \ x \in [0, 1],$$

for every $u \in H^2_0(0, 1)$.

The search of solutions $u \in H^2_0(0, 1)$ is equivalent to the search of solutions of the abstract equation

$$Au = \lambda u + M(u), \quad (u, \lambda) \in H^2_0(0, 1) \times \mathbb{R};$$

which can be written in the form

$$w = \lambda Rw + M(Rw), \quad (w, \lambda) \in L^2(0, 1) \times \mathbb{R},$$

where $R : L^2(0, 1) \to H^2_0(0, 1)$ is the inverse of A.
It is easy to see that \(M : H_0^2(0, 1) \rightarrow L^2(0, 1) \) is a continuous map and satisfies
\[
M(u) = o(\|u\|), \quad u \rightarrow 0.
\]
It is easy to see that $M : H^2_0(0, 1) \rightarrow L^2(0, 1)$ is a continuous map and satisfies

$$M(u) = o(||u||), \quad u \rightarrow 0.$$

Note that R is compact;
It is easy to see that $M : H^2_0(0,1) \rightarrow L^2(0,1)$ is a continuous map and satisfies

$$M(u) = o(||u||), \quad u \rightarrow 0.$$

Note that R is compact; this fact and the continuity of M guarantee that the operator

$$MR : L^2(0,1) \rightarrow H^2_0(0,1)$$

is compact.
It is easy to see that $M : H^2_0(0,1) \rightarrow L^2(0,1)$ is a continuous map and satisfies

$$M(u) = o(||u||), \quad u \rightarrow 0.$$

Note that R is compact; this fact and the continuity of M guarantee that the operator

$$MR : L^2(0,1) \rightarrow H^2_0(0,1)$$

is compact. Moreover,

$$M(Rw) = o(||w||_{L^2(0,1)}), \quad w \rightarrow 0.$$
It is easy to see that $M : H^2_0(0,1) \rightarrow L^2(0,1)$ is a continuous map and satisfies

$$M(u) = o(||u||), \quad u \rightarrow 0.$$

Note that R is compact; this fact and the continuity of M guarantee that the operator

$$MR : L^2(0,1) \rightarrow H^2_0(0,1)$$

is compact. Moreover,

$$M(Rw) = o(||w||_{L^2(0,1)}), \quad w \rightarrow 0.$$

In this framework, Rabinowitz global bifurcation theorem is applicable.
In order to obtain a more precise description of the bifurcating branch, first observe that for every nontrivial solution \(u \in H^2_0(0,1) \) the function \(u \) is a nontrivial solution of the linearized equation

\[
-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0.
\]
In order to obtain a more precise description of the bifurcating branch, first observe that for every nontrivial solution \(u \in H_0^2(0, 1) \) the function \(u \) is a nontrivial solution of the linearized equation

\[
-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0.
\]

PROPOSITION 5 All the nontrivial solutions of the linearized equation (in particular \(u \)) have a finite number of zeros in \((0, 1)\).
In order to obtain a more precise description of the bifurcating branch, first observe that for every nontrivial solution \(u \in H^2_0(0, 1) \) the function \(u \) is a nontrivial solution of the linearized equation

\[-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0.\]

Proposition 5 All the nontrivial solutions of the linearized equation (in particular \(u \)) have a finite number of zeros in \((0, 1)\). Denote by \(n(u) \) this number.
In order to obtain a more precise description of the bifurcating branch, first observe that for every nontrivial solution \(u \in H^2_0(0, 1) \) the function \(u \) is a nontrivial solution of the linearized equation

\[
-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0.
\]

PROPOSITION 5 All the nontrivial solutions of the linearized equation (in particular \(u \)) have a finite number of zeros in \((0, 1)\). Denote by \(n(u) \) this number.

For the proof, we use the fact that for every \(\lambda \in \mathbb{R} \) and for every nontrivial solution \(u \in H^2_0(0, 1) \) there exist a neighbourhood \(U \subset H^2_0(0, 1) \times \mathbb{R} \) of \((u, \lambda)\) and \(x_{u,\lambda} \in (0, 1) \) such that

\[
q(x) - g(x, v(x)) - \lambda > 0, \quad \forall (v, \mu) \in U, \ x \in (0, x_{u,\lambda}].
\]
In order to obtain a more precise description of the bifurcating branch, first observe that for every nontrivial solution $u \in H^2_0(0, 1)$ the function u is a nontrivial solution of the linearized equation

$$-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0.$$

PROPOSITION 5 All the nontrivial solutions of the linearized equation (in particular u) have a finite number of zeros in $(0, 1)$. Denote by $n(u)$ this number.

For the proof, we use the fact that for every $\lambda \in \mathbb{R}$ and for every nontrivial solution $u \in H^2_0(0, 1)$ there exist a neighbourhood $U \subset H^2_0(0, 1) \times \mathbb{R}$ of (u, λ) and $x_{u,\lambda} \in (0, 1)$ such that

$$q(x) - g(x, u(x)) - \lambda > 0, \quad \forall (v, \mu) \in U, \ x \in (0, x_{u,\lambda}].$$
We are then allowed to define the functional $j : \Sigma' \rightarrow \mathbb{N}$ by setting

$$j(u, \lambda) = \begin{cases} n(u) & \text{if } u \not\equiv 0 \\ n - 1 & \text{if } u \equiv 0 \text{ and } \lambda = \lambda_n, \end{cases}$$

for every $(u, \lambda) \in \Sigma'$.

Let us observe that the definition $j(0, \lambda_n) = n - 1$ is suggested by Proposition 4.

Proposition 6
The function $j : \Sigma' \rightarrow \mathbb{N}$ is continuous.
We are then allowed to define the functional $j : \Sigma' \to \mathbb{N}$ by setting

$$j(u, \lambda) = \begin{cases} n(u) & \text{if } u \not\equiv 0 \\ n - 1 & \text{if } u \equiv 0 \text{ and } \lambda = \lambda_n, \end{cases}$$

for every $(u, \lambda) \in \Sigma'$. Let us observe that the definition $j(0, \lambda_n) = n - 1$ is suggested by Proposition 4.
We are then allowed to define the functional $j : \Sigma' \to \mathbb{N}$ by setting

$$j(u, \lambda) = \begin{cases}
 n(u) & \text{if } u \not\equiv 0 \\
 n - 1 & \text{if } u \equiv 0 \text{ and } \lambda = \lambda_n,
\end{cases}$$

for every $(u, \lambda) \in \Sigma'$. Let us observe that the definition $j(0, \lambda_n) = n - 1$ is suggested by Proposition 4.

PROPOSITION 6 The function $j : \Sigma' \to \mathbb{N}$ is continuous.
MAIN RESULT For every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions in $H^2_0(0, 1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$ and such that C_n is unbounded in $H^2_0(0, 1) \times \mathbb{R}$ and

$$j(u, \lambda) = n - 1, \quad \forall (u, \lambda) \in C_n.$$
MAIN RESULT For every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions in $H^2_0(0, 1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$ and such that C_n is unbounded in $H^2_0(0, 1) \times \mathbb{R}$ and

$$j(u, \lambda) = n - 1, \quad \forall (u, \lambda) \in C_n.$$

Indeed, Rabinowitz theorem guarantees that for every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions in $H^2_0(0, 1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$
MAIN RESULT For every eigenvalue \(\lambda_n \) of \(A \) there exists a continuum \(C_n \) of nontrivial solutions in \(H_0^2(0, 1) \times \mathbb{R} \) bifurcating from \((0, \lambda_n) \) and such that \(C_n \) is unbounded in \(H_0^2(0, 1) \times \mathbb{R} \) and

\[
j(u, \lambda) = n - 1, \quad \forall (u, \lambda) \in C_n.
\]

Indeed, Rabinowitz theorem guarantees that for every eigenvalue \(\lambda_n \) of \(A \) there exists a continuum \(C_n \) of nontrivial solutions in \(H_0^2(0, 1) \times \mathbb{R} \) bifurcating from \((0, \lambda_n) \) such that one of the following conditions holds true:

1. \(C_n \) is unbounded in \(H_0^2(0, 1) \times \mathbb{R} \);
2. \(C_n \) contains \((0, \lambda_{n'}) \in \Sigma' \), with \(n' \neq n \).
MAIN RESULT For every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions in $H^2_0(0,1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$ and such that C_n is unbounded in $H^2_0(0,1) \times \mathbb{R}$ and

$$j(u, \lambda) = n - 1, \quad \forall (u, \lambda) \in C_n.$$

Indeed, Rabinowitz theorem guarantees that for every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions in $H^2_0(0,1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$ such that one of the following conditions holds true:

1. C_n is unbounded in $H^2_0(0,1) \times \mathbb{R}$;
2. C_n contains $(0, \lambda_{n'}) \in \Sigma'$, with $n' \neq n$.

The continuity of j enables to exclude the second alternative.
1987-2014 and much more :
1987-2014 and much more :

a 27 years uninterrupted friendship...thanks Massimo and best wishes !!!!