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We are concerned with a second order ODE of the form

−u′′ + q(x)u = λu + g(x , u)u, λ ∈ R, x ∈ (0, 1],

where q ∈ C ((0, 1]) satisfies

lim
x→0+

q(x)
l

xα

= 1

for some l > 0 and α ∈ (0, 5/4), and g ∈ C ([0, 1]×R) is such that

lim
u→0

g(x , u) = 0, uniformly in x ∈ (0, 1].

We will look for solutions u such that u ∈ H2
0 (0, 1).

In what follows, we set τu = −u′′ + q(·)u. The constant 5/4 arises
in the study of the differential operator τ .
We develop a global bifurcation approach.
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A global bifurcation result for the a second order BVP in [0, π]
(Rabinowitz, J. Funct. Anal., 1971)

THEOREM.

Assume b ∈ C and non-negative and
f (t, ξ, η, λ) = λa(t)ξ + h(t, ξ, η, λ) (being a continuous and
positive and h(t, ξ, η, λ) = o(

√
ξ2 + η2), (ξ, η) → (0, 0)). Then

for every k, (λk , 0) is a bifurcation point for the nonlinear BVP
−u′′ + b(t)u = f (t, u, u′, λ), t ∈ [0, π],

u(0) = 0 = u(π).

The bifurcating branches Ck ⊂ R× C 1([0, π], R) are unbounded in
R× C 1([0, π], R); moreover, if (λ, u) ∈ Ck and u 6= 0, then u has
(k − 1) simple zeros in (0, π).
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When passing to the case of an open interval many problems arise.

• It is necessary to deal with the problem of the existence of a
self-adjoint realization of τ .

•• It is necessary to know the properties of point spectrum and of
the essential spectrum (according to the behaviour of q in a right
neighbourhood of zero).



When passing to the case of an open interval many problems arise.

• It is necessary to deal with the problem of the existence of a
self-adjoint realization of τ .

•• It is necessary to know the properties of point spectrum and of
the essential spectrum (according to the behaviour of q in a right
neighbourhood of zero).



When passing to the case of an open interval many problems arise.

• It is necessary to deal with the problem of the existence of a
self-adjoint realization of τ .

•• It is necessary to know the properties of point spectrum and of
the essential spectrum (according to the behaviour of q in a right
neighbourhood of zero).



When passing to the case of an open interval many problems arise.

• It is necessary to deal with the problem of the existence of a
self-adjoint realization of τ .

•• It is necessary to know the properties of point spectrum and of
the essential spectrum (according to the behaviour of q in a right
neighbourhood of zero).



• The existence of a self-adjoint realization of τ is treated in the
framework of the linear spectral theory for singular problems.

We use the above cited monographs of Coddington-Levinson and
Weidmann.
The former focuses on a generalization of the so-called ”expansion
theorem” valid for functions in L2([0, 1]) and, by doing this, a sort
of ”generalized shooting method” is performed. Indeed, one may
deal with the well-known problem in the closed interval [b, 1], and
then discuss limb→0+ . This leads to the important concepts of
”limit point case” and ”limit circle case”; one or the other property
is implied by suitable assumptions on the coefficient q.
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On the other hand, in Weidmann’s book the existence of a
self-adjoint realization of the formal differential expression
τu = −u′′ + q(·)u is tackled from an abstract point of view.

It is
interesting to observe that both the approach by
Coddington-Levinson (based on more elementary ODE techniques)
and the one in Weidmann’s book lead in different ways to the
important concepts of ”limit point case” and ”limit circle case”.
The knowledge of one (or the other) case leads then to information
on the boundary conditions to be added to in order to have a
self-adjoint realization of τ . More specifically, we are led to
consider the functions

w1(x) = x , x ∼ 0,

w2(x) =

∫ x

0

∫ 1

t
q(s)dsdt − 1, x ∼ 0.
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From the abstract spectral theory, we learn that a self-adjoint
extension is obtained by means of the boundary condition

lim
x→0

(wα(x)u′(x)− w ′
α(x)u(x)) = 0,

where wα := cos αw1 + sinαw2, α ∈ [0, 2π), must be such that the
function

Wα(x) :=
1

|x |
wα(|x |) =

= cos α +
1

|x |
(− sin α + sin α

∫ |x |

0

∫ 1

t
q(s)dsdt), x ∼ 0

is of class C∞
0 ((0, 1]).

This happens if and only if sinα = 0, i.e. if
wα(x) = w1(x) = x . Hence, the correct boundary condition is

lim
x→0

(xu′(x)− u(x)) = 0.

Notice that the condition α < 5/4 guarantees that
τw2 ∈ L2((0, 1]).
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•• In our case, the spectrum consists only of the point spectrum,
i.e. the essential spectrum is empty.

This fact depends on the
oscillatory properties of the linear equation. More precisely, we
shall show that the linear equation is non-oscillatory. Moreover,
this will enable us to learn that the spectrum of A is purely discrete
and that, for every n ∈ N, the eigenfunction associated to the
eigenvalue λn has (n − 1) simple zeros in (0, 1). To this end, for
[c , d ] ⊂ (0, 1), define

M(c , d , λ) := number of zeros in (c , d) of the solution to

(τ − λ)u = 0 satisfying u(c) = 0 or u(d) = 0

and
m(µ, λ) = lim inf

c→0+,d→1−
(M(c , d , λ)−M(c , d , µ)).
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DEFINITION The differential equation is oscillatory if every
solution u has infinitely many zeros in (0, 1).

It is non-oscillatory
when it is not oscillatory.

We shall use the following

Theorem (Weidmann, LNM)
(a) A is bounded below if and only if there exists a real number µ
such that (τ − µ)u = 0 is non-oscillatory.
(b)

σess(A) = {λ ∈ R : m(λ− ε, λ + ε) = ∞ ∀ε > 0}
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The linear theory

Consider the linear equation

−u′′ + q(x)u = λu, x ∈ (0, 1], λ ∈ R.

Recall that q ∈ C ((0, 1]) and that

q(x) ∼ l

xα
, x → 0+,

for some l > 0 and α ∈ (0, 5/4).
Without loss of generality we may suppose that

q(x) > 0, ∀ x ∈ (0, 1].
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We study the asymptotic behaviour of solutions when x → 0+;

to
this aim, set t = − log x and w(t) = u(e−t) for all t > 0.
Then the given linear equation can be written in the form

Y ′ = (C + R(t))Y ,

where Y = (w ,w ′)T and

C =

 0 1

0 −1

 , R(t) =

 0 0

e−2tq(e−t)− λe−2t 0

 , ∀ t > 0.

As an application of Levinson theorem, we get
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PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).

For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



PROPOSITION 1. For every λ ∈ R the equation has two
linearly independent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R,

where

uf (x) =
∫ x
0 G (x , t)f (t) dt, ∀ x ∈ (0, 1),

G (x , t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).



From the spectral theory for singular differential operators, it
follows that the differential operator A defined by Au = τu, being

D(A) = {u ∈ L2(0, 1) : u, u′ ∈ AC (0, 1), τu ∈ L2(0, 1),

lim
x→0+

(xu′(x)− u(x)) = 0 = u(1)},

is a self-adjoint realization of τ .



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A).

It
is well known that H2

0 (0, 1) ⊂ C 1(0, 1); hence, for every
u ∈ H2

0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact
that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1).

Moreover, using the fact
that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1).

Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



PROPOSITION 2. The relation D(A) = H2
0 (0, 1) holds true.

Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Sketch of the proof. Let us start proving that H2
0 (0, 1) ⊂ D(A). It

is well known that H2
0 (0, 1) ⊂ C 1(0, 1); hence, for every

u ∈ H2
0 (0, 1) we have u, u′ ∈ AC (0, 1). Moreover, using the fact

that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and
therefore τu = −u′′ + qu ∈ L2(0, 1). Finally, the regularity of u
and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is
satisfied.



Now, let us prove that D(A) ⊂ H2
0 (0, 1).

For every u ∈ D(A) let
f = τu ∈ L2(0, 1). According to Proposition 1, u can be written as

u = c1u1 + c2u2 + uf ,

for some c1, c2 ∈ R;it is easy to see that the function u1 does not
satisfy the boundary condition given in x = 0 in the definition of
D(A), while u2 and uf do.

Hence u ∈ D(A) if and only if c1 = 0; the last statement of
Proposition 1 implies then that u ∈ H2(0, 1).

As in the first part of the proof, the regularity of u allows to
conclude that the boundary condition in x = 0 given in D(A)
reduces to u(0) = 0.
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2. Let us study the invertibility of A.

The existence of a bounded
inverse of A is equivalent to the fact that 0 ∈ ρA, being ρA the
resolvent of A. Since A is self-adjoint on H2

0 (0, 1), this follows
from the surjectivity of A; hence, it is sufficient to prove that A is
surjective. To this aim, let us first observe that 0 cannot be an
eigenvalue of A.Now, let us fix f ∈ L2(0, 1) and let us prove that
there exists u ∈ H2

0 (0, 1) such that Au = f , i.e. τu = f ; the same
argument of the first part of the proof implies that c1 = 0.
Hence u = c2u2 + uf ; from Proposition 1 this function belongs to
H2(0, 1) and satisfies the boundary condition u(0) = 0.
In order to prove that the missing condition u(1) = 0 is fulfilled for
every f ∈ L2(0, 1), let us observe that u2(1) 6= 0, otherwise u2

would be an eigenfunction of A associated to the zero eigenvalue.

Therefore, u(1) = 0 is satisfied if c2 = −uf (1)

u2(1)
, for every

f ∈ L2(0, 1).
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Spectral properties of A

The regularity assumptions on q imply that solutions to
−u′′ + q(x)u = λu have a finite number of zeros in any interval of
the form [a, 1), for every 0 < a < 1.
Moreover, for every λ ∈ R there exists c(λ) ∈ (0, 1] such that

λ− q(x) < 0, ∀ x ∈ (0, c(λ)).

An application of the Sturm comparison theorem proves that every
solution has at most one zero in (0, c(λ)); as a consequence, we
obtain the following result:
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PROPOSITION 3 For every λ ∈ R the differential equation is
non-oscillatory.

PROPOSITION 4 The differential operator A is bounded-below
and satisfies

σess(A) = ∅.

Moreover, there exists a sequence {λn}n∈N of simple eigenvalues of
A such that

lim
n→+∞

λn = +∞

and for every n ∈ N the eigenfunction un of A associated to the
eigenvalue λn has (n − 1) simple zeros in (0, 1).
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The nonlinear problem

Consider

−u′′ + q(x)u = λu + g(x , u)u, λ ∈ R, x ∈ (0, 1],

where q ∈ C ((0, 1]) satisfies

lim
x→0+

q(x)
l

xα

= 1

for some l > 0 and α ∈ (0, 5/4) and g ∈ C ([0, 1]× R) is such that
limu→0 g(x , u) = 0, uniformly in x .
We will look for solutions u such that u ∈ H2

0 (0, 1).
Let Σ denote the set of nontrivial solutions in H2

0 (0, 1)× R and let
Σ′ = Σ ∪ {(0, λ) ∈ H2

0 (0, 1)× R : λ is an eigenvalue of A}.
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Let M denote the Nemitskii operator associated to g , given by

M(u)(x) = g(x , u(x))u(x), ∀ x ∈ [0, 1],

for every u ∈ H2
0 (0, 1).

The search of solutions u ∈ H2
0 (0, 1) is equivalent to the search of

solutions of the abstract equation

Au = λu + M(u), (u, λ) ∈ H2
0 (0, 1)× R;

which can be written in the form

w = λRw + M(Rw), (w , λ) ∈ L2(0, 1)× R,

where R : L2(0, 1) → H2
0 (0, 1) is the inverse of A.
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It is easy to see that M : H2
0 (0, 1) −→ L2(0, 1) is a continuous map

and satisfies
M(u) = o(||u||), u → 0.

Note that R is compact; this fact and the continuity of M
guarantee that the operator

MR : L2(0, 1) → H2
0 (0, 1)

is compact. Moreover,

M(Rw) = o(||w ||L2(0,1)), w → 0.

In this framework, Rabinowitz global bifurcation theorem is
applicable.
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In order to obtain a more precise description of the bifurcating
branch, first observe that for every nontrivial solution u ∈ H2

0 (0, 1)
the function u is a nontrivial solution of the linearized equation

−w ′′ + (q(x)− g(x , u(x))− λ)w = 0.

PROPOSITION 5 All the nontrivial solutions of the linearized
equation (in particular u) have a finite number of zeros in (0, 1).
Denote by n(u) this number.

For the proof, we use the fact that for every λ ∈ R and for every
nontrivial solution u ∈ H2

0 (0, 1) there exist a neighbourhood
U ⊂ H2

0 (0, 1)× R of (u, λ) and xu,λ ∈ (0, 1) such that
q(x)− g(x , v(x))− λ > 0, ∀ (v , µ) ∈ U, x ∈ (0, xu,λ].
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PROPOSITION 5 All the nontrivial solutions of the linearized
equation (in particular u) have a finite number of zeros in (0, 1).

Denote by n(u) this number.

For the proof, we use the fact that for every λ ∈ R and for every
nontrivial solution u ∈ H2
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We are then allowed to define the functional j : Σ′ → N by setting

j(u, λ) =


n(u) if u 6≡ 0

n − 1 if u ≡ 0 and λ = λn,

for every (u, λ) ∈ Σ′.

Let us observe that the definition
j(0, λn) = n − 1 is suggested by Proposition 4.

PROPOSITION 6 The function j : Σ′ → N is continuous.
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MAIN RESULT For every eigenvalue λn of A there exists a
continuum Cn of nontrivial solutions in H2

0 (0, 1)× R bifurcating
from (0, λn) and such that Cn is unbounded in H2

0 (0, 1)× R and

j(u, λ) = n − 1, ∀ (u, λ) ∈ Cn.

Indeed, Rabinowitz theorem guarantees that for every eigenvalue
λn of A there exists a continuum Cn of nontrivial solutions in
H2

0 (0, 1)× R bifurcating from (0, λn) such that one of the
following conditions holds true:

(1) Cn is unbounded in H2
0 (0, 1)× R;

(2) Cn contains (0, λn′) ∈ Σ′, with n′ 6= n.

The continuity of j enables to exclude the second alternative.
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