The Poincaré - Birkhoff theorem in the framework of Hamiltonian systems

Alessandro Fonda

(Università degli Studi di Trieste)

The Poincaré - Birkhoff theorem in the framework of Hamiltonian systems

Alessandro Fonda

(Università degli Studi di Trieste)

Jules Henri Poincaré (1854-1912)

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

```
Adunanza del to marzo 1912.
```

§ I.

Introduction.

Je n'ai jamais présenté au public un travail aussi inachevé; je crois donc nécessaire d'expliquer en quelques mots les raisons qui m'ont déterminé à le publier, et d'abord celles qui m'avaient engagé à l'entreprendre. J'ai démontré, il y a longtemps déjà, l'existence des solutions périodiques du problème des trois corps; le résultat laissait cependant encore à désirer; car, si l'existence de chaque sorte de solution était établie pour les petites valeurs des masses, on ne voyait pas ce qui devait arriver pour des valeurs plus grandes, quelles étaient celles de ces solutions qui subsistaient et dans quel ordre elles disparaissaient. En réfléchissant à cette question, je me suis assuré que la réponse devait dépendre de l'exactitude ou de la fausseté d'un certain théorème de géométrie dont l'énoncé est très simple, du moins dans le cas du problème restreint et des problèmes de Dynamique où il n'y a que deux degrés de liberté.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del to marzo 1912.

$$
\text { § } 1 .
$$

Introduction.

Je n'ai jamais présenté au public un travail aussi inachevé je crois donc nécessaire d'expliquer en quelques mots les raisons qui m'ont déterminé à le publier, et d'abord celles qui m'avaient engagé à l'entreprendre. J'ai démontré, il y a longtemps déjà, l'existence des solutions périodiques du problème des trois corps le résultat laissait cependant encore à désirer; car, si l'existence de chaque sorte de solution était établie pour les petites valeurs des masses, on ne voyait pas ce qui devait arriver pour des valeurs plus grandes, quelles étaient celles de ces solutions qui subsistaient et dans auel ordre elles disparaissaient. En réfléchissant à cette question, je me suis assuré que la réponse devait dépendre de l'exactitude ou de la fausseté d'un certain théorème de géométrie dont l'énoncé est très simple du moins dans le cas du problème restreint et des problémes de Dynamique oú il n'y a que deux degrés de liberté.

Poincaré's
 "Théorème de géométrie"

Poincaré's
 "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").
Then, \mathcal{P} has two fixed points.

An equivalent formulation

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
(*)

$$
f(x, a)<0<f(x, b) \quad \text { (twist condition). }
$$

Then, \mathcal{P} has two geometrically distinct fixed points.

George David Birkhoff (1884-1944)

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".
Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".
Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by: Bonheure, Boscaggin, Butler, Corsato, Del Pino, T. Ding, Fabry, Garrione, Hartman, Manásevich, Mawhin, Omari, Ortega, Sabatini, Sfecci, Smets, Torres, Zanini, Zanolin, ...

Periodic solutions as fixed points of the Poincaré map

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,
\mathcal{P} associates

Periodic solutions as fixed points of the Poincaré map

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
The Poincaré time - map is defined as

$$
\mathcal{P}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{T}, y_{T}\right)
$$

i.e.
to each "starting point" $\left(x_{0}, y_{0}\right)$ of a solution at time $t=0$,
\mathcal{P} associates
the "arrival point" $\left(x_{T}, y_{T}\right)$ of the solution at time $t=T$.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good news:
The Poincaré map \mathcal{P} is an area preserving homeomorphism. Its fixed points correspond to T-periodic solutions.

Good and bad news

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Good news:
The Poincaré map \mathcal{P} is an area preserving homeomorphism. Its fixed points correspond to T-periodic solutions.

Bad news:

It is very difficult to find an invariant annulus for \mathcal{P}.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with "starting point" $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Assume $H(t, x, y)$ to be also 2π-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with "starting point" $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Then, there are two geometrically distinct T-periodic solutions.

The twist condition

The twist condition

Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[,
$$

The twist condition

Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[,
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1,
$$

The twist condition

Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1
$$

the twist condition
$(*) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a, \\ >0, & \text { if } y(0)=b,\end{cases}$

The twist condition

Writing $\mathcal{S}=\mathbb{R} \times \overline{\mathcal{D}}$, with

$$
\mathcal{D}=] a, b[
$$

and defining the "outer normal function" $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}$ as

$$
\nu(a)=-1, \quad \nu(b)=+1
$$

the twist condition
(*) $\quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a, \\ >0, & \text { if } y(0)=b,\end{cases}$
can be written as
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad[x(T)-x(0)] \cdot \nu(y(0))>0$.

A higher dimensional version of the theorem

A higher dimensional version of the theorem

We now discuss about
the outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]

A higher dimensional version of the theorem

We now discuss about
the outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]
Attempts in some directions have been made by:
Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Fournier, Golé, Hingston, Josellis, J.Q. Liu, Lupo, Mawhin, Moser, Rabinowitz, Ramos, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

A higher dimensional version of the theorem

We now discuss about
the outstanding question as to the possibility of an N-dimensional extension of Poincaré's last geometric theorem
[Birkhoff, Acta Mathematica 1925]
Attempts in some directions have been made by:
Amann, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Fournier, Golé, Hingston, Josellis, J.Q. Liu, Lupo, Mawhin, Moser, Rabinowitz, Ramos, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,
a genuine generalization of the Poincaré - Birkhoff theorem
to higher dimensions has never been given.
[Moser and Zehnder, Notes on Dynamical Systems, 2005].

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

Twist condition: for a solution $(x(t), y(t))$,
(*) $\quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad[x(T)-x(0)] \cdot \nu(y(0))>0$.
(this is the old condition)

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

Twist condition: for a solution $(x(t), y(t))$,
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$.
(this is the new condition)

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.

Twist condition: for a solution $(x(t), y(t))$,
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$.

A higher dimensional version of the theorem

We consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Here, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$.
Assume $H(t, x, y)$ to be also 2π-periodic in each x_{1}, \ldots, x_{N}.
Let \mathcal{D} be an open, bounded, convex set in \mathbb{R}^{N}, with a smooth boundary, and denote by $\nu: \partial \mathcal{D} \rightarrow \mathbb{R}^{N}$ the outward normal vectorfield. Consider the "strip" $\mathcal{S}=\mathbb{R}^{N} \times \overline{\mathcal{D}}$.
Twist condition: for a solution $(x(t), y(t))$,
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$.
Then, there are $N+1$ geometrically distinct T-periodic solutions.

Why $N+1$ solutions?

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory
for the action functional

$$
\varphi(x, y)=\frac{1}{2} \int_{0}^{T}(\langle\dot{x}, y\rangle-\langle x, \dot{y}\rangle)+\int_{0}^{T} H(t, x(t), y(t)) d t .
$$

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory
for the action functional

$$
\varphi(x, y)=\frac{1}{2} \int_{0}^{T}(\langle\dot{x}, y\rangle-\langle x, \dot{y}\rangle)+\int_{0}^{T} H(t, x(t), y(t)) d t .
$$

Writing $x(t)=\bar{x}+\tilde{x}(t)$, the periodicity in x_{1}, \ldots, x_{N} permits to define the action on the product of the N-torus \mathbb{T}^{N} and a Hilbert space E :

$$
\bar{x} \in \mathbb{T}^{N}, \quad(\tilde{x}, y) \in E, \quad \varphi: \mathbb{T}^{N} \times E \rightarrow \mathbb{R}
$$

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory
for the action functional

$$
\varphi(x, y)=\frac{1}{2} \int_{0}^{T}(\langle\dot{x}, y\rangle-\langle x, \dot{y}\rangle)+\int_{0}^{T} H(t, x(t), y(t)) d t .
$$

Writing $x(t)=\bar{x}+\tilde{x}(t)$, the periodicity in x_{1}, \ldots, x_{N} permits to define the action on the product of the N-torus \mathbb{T}^{N} and a Hilbert space E :

$$
\bar{x} \in \mathbb{T}^{N}, \quad(\tilde{x}, y) \in E, \quad \varphi: \mathbb{T}^{N} \times E \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory
for the action functional

$$
\varphi(x, y)=\frac{1}{2} \int_{0}^{T}(\langle\dot{x}, y\rangle-\langle x, \dot{y}\rangle)+\int_{0}^{T} H(t, x(t), y(t)) d t
$$

Writing $x(t)=\bar{x}+\tilde{x}(t)$, the periodicity in x_{1}, \ldots, x_{N} permits to define the action on the product of the N-torus \mathbb{T}^{N} and a Hilbert space E :

$$
\bar{x} \in \mathbb{T}^{N}, \quad(\tilde{x}, y) \in E, \quad \varphi: \mathbb{T}^{N} \times E \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Note. If φ only has nondegenerate critical points, then we can use Morse theory and find 2^{N} solutions.

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Ljusternik - Schnirelmann theory
for the action functional

$$
\varphi(x, y)=\frac{1}{2} \int_{0}^{T}(\langle\dot{x}, y\rangle-\langle x, \dot{y}\rangle)+\int_{0}^{T} H(t, x(t), y(t)) d t .
$$

Writing $x(t)=\bar{x}+\tilde{x}(t)$, the periodicity in x_{1}, \ldots, x_{N} permits to define the action on the product of the N-torus \mathbb{T}^{N} and a Hilbert space E :

$$
\bar{x} \in \mathbb{T}^{N}, \quad(\tilde{x}, y) \in E, \quad \varphi: \mathbb{T}^{N} \times E \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Note. If φ only has nondegenerate critical points, then we can use Morse theory and find 2^{N} solutions. Indeed,

$$
\operatorname{sb}\left(\mathbb{T}^{N}\right)=2^{N}
$$

Examples of applications

Examples of applications

Pendulum - like systems:
Consider the system

$$
\ddot{x}+\nabla G(x)=e(t),
$$

where $e(t)$ is a T-periodic forcing.

Examples of applications

Pendulum - like systems:
Consider the system

$$
\ddot{x}+\nabla G(x)=e(t),
$$

where $e(t)$ is a T-periodic forcing.
Assume that $G(x)$ is 2π-periodic in each x_{1}, \ldots, x_{N}.

Examples of applications

Pendulum - like systems:

Consider the system

$$
\ddot{x}+\nabla G(x)=e(t),
$$

where $e(t)$ is a T-periodic forcing.
Assume that $G(x)$ is 2π-periodic in each x_{1}, \ldots, x_{N}.
If, moreover,

$$
\int_{0}^{T} e(t) d t=0
$$

then there are at least $N+1$ geometrically distinct T-periodic solutions.

Examples of applications

Pendulum - like systems:

Consider the system

$$
\ddot{x}+\nabla G(x)=e(t),
$$

where $e(t)$ is a T-periodic forcing.
Assume that $G(x)$ is 2π-periodic in each x_{1}, \ldots, x_{N}.
If, moreover,

$$
\int_{0}^{T} e(t) d t=0
$$

then there are at least $N+1$ geometrically distinct T-periodic solutions.
[Mawhin-Willem 1984]

Examples of applications

Examples of applications

Superlinear systems:

Consider a system of the type

$$
\left\{\begin{array}{l}
\ddot{x}_{1}+g_{1}\left(x_{1}\right)=\frac{\partial \mathcal{U}}{\partial x_{1}}\left(t, x_{1}, \ldots, x_{N}\right), \\
\ldots \\
\ddot{x}_{N}+g_{N}\left(x_{N}\right)=\frac{\partial \mathcal{U}}{\partial x_{N}}\left(t, x_{1}, \ldots, x_{N}\right),
\end{array}\right.
$$

where all $\frac{\partial \mathcal{U}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.

Examples of applications

Superlinear systems:

Consider a system of the type

$$
\left\{\begin{array}{l}
\ddot{x}_{1}+g_{1}\left(x_{1}\right)=\frac{\partial \mathcal{U}}{\partial x_{1}}\left(t, x_{1}, \ldots, x_{N}\right), \\
\ldots \\
\ddot{x}_{N}+g_{N}\left(x_{N}\right)=\frac{\partial \mathcal{U}}{\partial x_{N}}\left(t, x_{1}, \ldots, x_{N}\right),
\end{array}\right.
$$

where all $\frac{\partial \mathcal{U}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} \frac{g_{k}(\xi)}{\xi}=+\infty
$$

Examples of applications

Superlinear systems:

Consider a system of the type

$$
\left\{\begin{array}{l}
\ddot{x}_{1}+g_{1}\left(x_{1}\right)=\frac{\partial \mathcal{U}}{\partial x_{1}}\left(t, x_{1}, \ldots, x_{N}\right) \\
\ldots \\
\ddot{x}_{N}+g_{N}\left(x_{N}\right)=\frac{\partial \mathcal{U}}{\partial x_{N}}\left(t, x_{1}, \ldots, x_{N}\right)
\end{array}\right.
$$

where all $\frac{\partial \mathcal{U}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} \frac{g_{k}(\xi)}{\xi}=+\infty
$$

Then, there are infinitely many T-periodic solutions.

Examples of applications

Superlinear systems:

Consider a system of the type

$$
\left\{\begin{array}{l}
\ddot{x}_{1}+g_{1}\left(x_{1}\right)=\frac{\partial \mathcal{U}}{\partial x_{1}}\left(t, x_{1}, \ldots, x_{N}\right) \\
\ldots \\
\ddot{x}_{N}+g_{N}\left(x_{N}\right)=\frac{\partial \mathcal{U}}{\partial x_{N}}\left(t, x_{1}, \ldots, x_{N}\right)
\end{array}\right.
$$

where all $\frac{\partial \mathcal{U}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} \frac{g_{k}(\xi)}{\xi}=+\infty
$$

Then, there are infinitely many T-periodic solutions.
[Ding-Zanolin 1992, Boscaggin-Ortega 2014]

Examples of applications

Examples of applications

Superlinear systems:
Consider a Hamiltonian system of the type

$$
\left\{\begin{array}{l}
-\ddot{x}_{1}=x_{1}\left[h_{1}\left(t, x_{1}\right)+e_{1}\left(t, x_{1}, \ldots, x_{N}\right)\right] \\
\ldots \\
-\ddot{x}_{N}=x_{N}\left[h_{N}\left(t, x_{N}\right)+e_{N}\left(t, x_{1}, \ldots, x_{N}\right)\right]
\end{array}\right.
$$

where all $e_{k}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.

Examples of applications

Superlinear systems:
Consider a Hamiltonian system of the type

$$
\left\{\begin{array}{l}
-\ddot{x}_{1}=x_{1}\left[h_{1}\left(t, x_{1}\right)+e_{1}\left(t, x_{1}, \ldots, x_{N}\right)\right] \\
\ldots \\
-\ddot{x}_{N}=x_{N}\left[h_{N}\left(t, x_{N}\right)+e_{N}\left(t, x_{1}, \ldots, x_{N}\right)\right]
\end{array}\right.
$$

where all $e_{k}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} h_{k}(t, \xi)=+\infty
$$

Examples of applications

Superlinear systems:
Consider a Hamiltonian system of the type

$$
\left\{\begin{array}{l}
-\ddot{x}_{1}=x_{1}\left[h_{1}\left(t, x_{1}\right)+e_{1}\left(t, x_{1}, \ldots, x_{N}\right)\right] \\
\ldots \\
-\ddot{x}_{N}=x_{N}\left[h_{N}\left(t, x_{N}\right)+e_{N}\left(t, x_{1}, \ldots, x_{N}\right)\right]
\end{array}\right.
$$

where all $e_{k}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} h_{k}(t, \xi)=+\infty
$$

Then, there are infinitely many T-periodic solutions.

Examples of applications

Superlinear systems:
Consider a Hamiltonian system of the type

$$
\left\{\begin{array}{l}
-\ddot{x}_{1}=x_{1}\left[h_{1}\left(t, x_{1}\right)+e_{1}\left(t, x_{1}, \ldots, x_{N}\right)\right] \\
\ldots \\
-\ddot{x}_{N}=x_{N}\left[h_{N}\left(t, x_{N}\right)+e_{N}\left(t, x_{1}, \ldots, x_{N}\right)\right]
\end{array}\right.
$$

where all $e_{k}\left(t, x_{1}, \ldots, x_{N}\right)$ are bounded, and T-periodic in t.
Assume that, for every k,

$$
\lim _{|\xi| \rightarrow \infty} h_{k}(t, \xi)=+\infty
$$

Then, there are infinitely many T-periodic solutions.
[Jacobowitz 1976, Hartman 1977, F.-Sfecci 2014]

More general twist conditions

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.
I. The "indefinite twist" condition: for a regular symmetric $N \times N$ matrix \mathbb{A},

$$
\left(\star^{\prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \mathbb{A} \nu(y(0))\rangle>0 .
$$

More general twist conditions

The twist condition
$(\star) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \nu(y(0))\rangle>0$
can be improved in two directions.
I. The "indefinite twist" condition: for a regular symmetric $N \times N$ matrix \mathbb{A},
$\left(\star^{\prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad\langle x(T)-x(0), \mathbb{A} \nu(y(0))\rangle>0$.
II. The "avoiding rays" condition:
$\left(\star^{\prime \prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \notin\{-\lambda \nu(y(0)): \lambda \geq 0\}$.

More general twist conditions

II. The "avoiding rays" condition:
$\left(\star^{\prime \prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \notin\{-\lambda \nu(y(0)): \lambda \geq 0\}$.

More general twist conditions

II. The "avoiding rays" condition:
$\left(\star^{\prime \prime}\right) \quad(x(0), y(0)) \in \partial \mathcal{S} \quad \Rightarrow \quad x(T)-x(0) \notin\{-\lambda \nu(y(0)): \lambda \geq 0\}$.

a collaboration with Antonio J. Ureña

