Bifurcation of critical points for continuous families of functionals of Fredholm type

Jacobo Pejsachowicz

Politecnico di Torino
Firenze 3-4 giugno 2014

Overview

I will review a joint paper with Nils Waterstraat which improves in several ways an old result about the relation of the spectral flow with the variational bifurcation and will discuss some of its applications in problems where strongly indefinite functionals arise.

Our main goal here is to use topological invariants in order to obtain bifurcation criteria directly in terms of the coefficients of the linearised equation at the trivial branch.

CONTENTS:

- Morse index and variational bifurcation
- Spectral flow and its properties
- The main bifurcation Thm.
- The several parameter case
- A comparison principle
- Bifurcation of periodic orbits of Hamiltonian systems.

Morse index and bifurcation

A general principle of variational bifurcation states:
The change in Morse index along a trivial branch of critical points entails bifurcation of critical points from the branch.

More precisely:

- If $\psi:[a, b] \times U \rightarrow \mathbb{R}$ is C^{2}

■ 0 is a critical point of $\psi_{\lambda}=\psi(\lambda,-)$ for all $\lambda \in[a, b]$

- The Hessian $H \psi_{\lambda}(0)$ is essentially positive.
- 0 is a non degenerate critical point of $\psi_{\lambda}, \lambda=a, b$.

Then bifurcation of critical points of ψ_{λ} arise in (a, b) whenever

$$
\Delta m=m\left(H \psi_{a}, 0\right)-m\left(H \psi_{b}, 0\right) \neq 0 .
$$

Recall that a point $\lambda \in[a, b]$ is a point of bifurcation from the trivial branch of critical points of the family ψ, if every neighborhood of $(\lambda, 0) \in[a, b] \times U$ contains a solution (λ, x) of the equation $\nabla \psi_{\lambda}(x)=0$ with $x \neq 0$.

Given a path $L_{\lambda} ; \lambda \in[a, b]$ of self-adjoint Fredholm operators A natural substitute to Δm which allows to extend the above result to the case of strongly indefinite functionals is the spectral flow.
" Given a path $L_{\lambda} ; \lambda \in[a, b]$ of self-adjoint Fredholm operators, invertible at the end points, the spectral flow $\operatorname{sf}(L)$ is the number of negative eigenvalues of L_{a} that become positive as λ goes from a to b minus the number of positive eigenvalues that become negative."

■ $s f(L)=\Delta m$ whenever the Morse index is defined.

- $s f(L)$ is homotopy invariant.

■ $s f(L)$ is additive under paths concatenation.
$\square s f(L)=m_{r e l}\left(L_{a}, L_{b}\right)$ if $L_{\lambda}-L_{a}$ is a compact operator.

Let X be separable Hilbert space. Let $\Phi_{S A}=S A(X) \cap \Phi(X)$. The set $\Sigma_{k}=\left\{T \in \Phi_{S A} / \operatorname{dim}\right.$ ker $\left.T=k\right\}$ is a submanifold of $\Phi_{S A}$ of codimension k^{2}.
Given a path $L:[a, b] \rightarrow \Phi_{S A}$ with invertible end points, its spectral flow is the intersection number of the path L with the stratified set

$$
\Sigma=\cup_{k \geq 1} \Sigma_{k}
$$

of singular self-adjoint Fredholm operators.
If the path L is transversal to all of Σ_{k}, then

$$
\operatorname{sf}(L)=\sum_{\lambda \in L^{-1}\left(\Sigma_{1}\right)} \operatorname{sgn} \dot{\mu}_{1}(\lambda)
$$

This extends to continuous paths by approximation with smooth transversal paths.

Theorem (1)

Let U be a neighborhood of 0 in a separable Hilbert space X and let $\psi:[a, b] \times U \rightarrow \mathbb{R}$ be a continuous family of C^{2} functionals. Assume that, for all $\lambda \in[a, b], \nabla \psi_{\lambda}(0)=0$ and the Hessian L_{λ} of ψ_{λ} at 0 is Fredholm with L_{a} and L_{b} being invertible. Then:
i) If $\operatorname{sf}(L) \neq 0$, the interval (a, b) contains at least one point of bifurcation of critical points of ψ_{λ} from the trivial branch.
ii) If $\Sigma(L)=L^{-1}(\Sigma)=\left\{\lambda \in[a, b] \mid \operatorname{dim} \operatorname{ker} L_{\lambda} \geq 1\right\}$ is a finite subset of (a, b) then the family ψ possesses at least $|s f(L)| / d(L)$ bifurcation points in (a, b), where

$$
d(L)=\max \left\{\operatorname{dim} \operatorname{ker} L_{\lambda}: \lambda \in[a, b]\right\}
$$

is the order of degeneracy of the path L.

Remarks

The hypothesis in ii) is verified if either the path L of Hessians is real analytic or it is differentiable and has only regular crossing.

A regular crossing is a point $\lambda \in \Sigma(L)$ at which the crossing form $\mathcal{Q}(\lambda) h=\left\langle\dot{L}_{\lambda} h, h\right\rangle ; h \in \operatorname{ker} L_{\lambda}$, is non-degenerate. In this case

$$
s f(L, I)=\sum_{\lambda \in \Sigma(L)} \operatorname{sig} \mathcal{Q}(\lambda)
$$

L has regular crossings if the quadratic form $\mathcal{Q}(\lambda)$ is either always positive definite or negative definite (e.g., if \dot{L} is either positive definite or negative definite). In this case the spectral flow is \pm the sum of the dimensions of the kernels.

If K is a compact, self-adjoint operator, then $L_{\lambda}=\operatorname{Id}-\lambda K$ is a path as above. Thus, if $\nabla \phi$ is compact, $\nabla \phi(0)=0$, then any characteristic value of $K=D \nabla(\phi)(0)$ is a bifurcation point for solutions for the equation $x-\lambda \nabla \phi(x)=0$.
$\psi: \Lambda \times U \rightarrow \mathbb{R}=$ a continuous family of Fredholm C^{2} functionals $\nabla \psi_{\lambda}(0)=0$, for all $\lambda \in \Lambda . L=D \nabla \psi_{\lambda}(0)=$ the family of Hessians at 0 . $\Sigma(L)=L^{-1}(\Sigma)$. Bif $=B(\psi)=$ the set of bifurcation points.

$$
\operatorname{sf}(L \circ \gamma) \neq 0 \Longrightarrow \text { Bif disconnects } \wedge
$$

Theorem (1m)

Let ψ be as above. If (H2) holds, then:
i) If there exists an admissible path γ in Λ such that sf $(L, \gamma) \neq 0$, then $\Lambda \backslash B(\psi)$ is disconnected.
ii) If there exists a sequence of admissible paths $\gamma_{n}, n \in \mathbb{N}$, such that $\lim _{n \rightarrow \infty}\left|s f\left(L, \gamma_{n}\right)\right|=\infty$, then $\Lambda \backslash B(\psi)$ has infinitely many path components.
iii) If $\Sigma(L)=B(\psi)$, any admissible path γ such that $L \circ \gamma$ has only isolated singular points will cross at least $\frac{|s f(L, \gamma)|}{d(L o \gamma)}+1$ components of $\Lambda \backslash B(\psi)$.

Remark since no subset of covering dimension strictly smaller than $n-1$ can disconnect a topological n-manifold, it follows that, if the parameter space Λ is a topological n-manifold, then the covering dimension of $B(\psi)$ is at least $n-1$.

Theorem

If M is a closed spin manifold of dimension $n \equiv 3 \bmod 4$. Then the space of metrics g on M such that the Dirac operator D_{g} is invertible, if nonempty, has infinitely many path components.

Proved previously by Dahl for $n>7$ in a different way.

We say that $T \geq S$ if $T-S$ is a positive operator. If T and S have a Morse index then $T \geq S$ implies $m(T) \leq m(S)$. The following property of the spectral flow is an extension of this.

Theorem (2)

Let $H:[0,1] \times[a, b] \rightarrow \Phi_{S A}$ be a homotopy such that $H(\cdot, a)$ is non-increasing and $H(\cdot, b)$ is non-decreasing, then

$$
\operatorname{sf}\left(H_{0}\right) \leq \operatorname{sf}\left(H_{1}\right)
$$

Corollary (3)

Let $L, M:[a, b] \rightarrow \Phi_{S A}$ be such that $L_{\lambda}-M_{\lambda}$ is compact for each $\lambda \in I$. If $L_{a} \leq M_{a}$ and $L_{b} \geq M_{b}$, then

$$
\operatorname{sf}(M) \leq \operatorname{sf}(L)
$$

Proof: Take $H(t, \lambda)=M_{\lambda}+t\left(L_{\lambda}-M_{\lambda}\right)$

Given any path $L:[a, b] \rightarrow \Phi_{S A}$ (possibly with noninvertible end points), we define $\operatorname{sf}(L)=\operatorname{sf}(L+\delta \mathrm{Id})$, where $\delta>0$ such that $L_{i}+\lambda \mathrm{Id} ; i=a, b$ is invertible for $0<\lambda \leq \delta$.

Clearly, the right hand side does not depend on the choice of δ. The resulting function is additive under concatenation and is homotopy invariant under homotopies keeping the end-points fixed.

The comparison principle extends without any restriction to this more general case.

Let us consider a family of Hamiltonian systems parametrized by $\lambda \in \Lambda$.

$$
\left\{\begin{array}{c}
\mathrm{J} u^{\prime}(t)+\nabla_{u} \mathcal{H}(\lambda, t, u(t))=0, \quad t \in[0,2 \pi] \tag{1}\\
u(0)=u(2 \pi)
\end{array}\right.
$$

Here
■ J denotes the standard symplectic matrix.

- Λ is a connected topological space
- $\mathcal{H}: \Lambda \times \mathbb{R} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ is a continuous function 2π-periodic in t, such that each \mathcal{H}_{λ} is C^{2} with its first and second partial derivatives depend continuously on (λ, t, u).
- $\mathcal{H}(\lambda, t, 0)=0$ for all $(\lambda, t) \in \Lambda \times[0,2 \pi]$.

In order to work with bounded operators we will study weak solutions of the equation belonging to $H^{\frac{1}{2}}=H^{\frac{1}{2}}\left(S^{1}, \mathbb{R}^{2 n}\right)$.

We extend the bilinear form

$$
(u, v) \rightsquigarrow \int_{0}^{2 \pi}\left\langle\mathrm{~J} u^{\prime}(t), v(t)\right\rangle d t
$$

to a form $\Gamma: H^{\frac{1}{2}} \times H^{\frac{1}{2}} \rightarrow \mathbb{R}$ and consider
$\psi: \Lambda \times H^{\frac{1}{2}}\left(S^{1}, \mathbb{R}^{2 n}\right) \rightarrow \mathbb{R}, \quad \psi_{\lambda}(u)=\frac{1}{2} \Gamma(u, u)+\int_{0}^{2 \pi} \mathcal{H}(\lambda, t, u(t)) d t$.
Under the natural growth assumptions each ψ_{λ} is C^{2} and the critical points of ψ_{λ} are the weak solutions of the Hamiltonian system (1).

The Hessian L_{λ} of ψ_{λ} the at 0 is defined by

$$
\left\langle L_{\lambda} u, v\right\rangle_{H^{\frac{1}{2}}}=\Gamma(u, v)+\int_{0}^{2 \pi}\left\langle A_{\lambda}(t) u(t), v(t)\right\rangle d t
$$

where $A_{\lambda}(t)=D_{u} \nabla_{u} \mathcal{H}_{\lambda}(t, 0)$.
L_{λ} is Fredholm by compactness of the embedding of $H^{\frac{1}{2}}$ into L^{2}.

Assumption $\left(H_{1}\right): A_{\lambda}(t) \equiv A_{\lambda}$ for all $\lambda \in \Lambda$.

In this case, L_{λ} is invertible if and only if the matrix A_{λ} is non-resonant, i.e., the spectrum of $J A_{\lambda}$ does not contain integral multiples of $i=\sqrt{-1}$.
Taking $\Lambda=[a, b]$ and assuming that A_{a}, A_{b} are non resonant, the spectral flow $s f(L)$ can be computed as follows:

Consider the sequence of $4 n \times 4 n$ matrices:

$$
L^{0}(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right), \quad L^{k}(A)=\left(\begin{array}{cc}
\frac{1}{k} A & J \\
-J & \frac{1}{k} A
\end{array}\right), k \in \mathbb{N} .
$$

Define the index of the matrix A by

$$
i(A)=\frac{1}{2} \sum_{k=0}^{\infty} \operatorname{sgn} L^{k}(A) .
$$

Then, $\quad s f(L)=i\left(A_{b}\right)-i\left(A_{a}\right)($ see $[S],[F P R])$.

Theorem (4)

Assume that the Hamiltonian system (1) verifies (H1) and that A_{λ} is invertible for all λ.
i) If $i\left(A_{a}\right) \neq i\left(A_{b}\right)$, then any neighbourhood of the stationary branch $[a, b] \times\{0\}$ in $[a, b] \times H^{1 / 2}$ contains solutions of the form (λ, u) with u non-constant and 2π-periodic.
ii) If A_{λ} is non resonant for all but a finite number of λ then there are at least $\left|i\left(A_{a}\right)-i\left(A_{b}\right)\right| / 2 n$ bifurcation points of periodic orbits in the interval $[a, b]$.

As an immediate consequence of Theorem (1m) we obtain:

Theorem

Assume that (H1) and (H2) hold.
i) If there exist $\lambda, \mu \in \Lambda$ such that the matrices A_{λ}, A_{μ} are non-resonant and $i\left(A_{\lambda}\right) \neq i\left(A_{\mu}\right)$, then $\Lambda \backslash B(\psi)$ is disconnected.
ii) If there exists a sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subset \Lambda$ such that $A_{\lambda_{n}}$ is non-resonant for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left|i\left(A_{\lambda_{n}}\right)\right|=\infty$, then $\Lambda \backslash B(\psi)$ has infinitely many path components.
iii) If $B(\psi)=\left\{\lambda: A_{\lambda}\right.$ is resonant $\}$, then any path γ joining two non-resonant parameters λ and μ such that $A \circ \gamma$ has only isolated resonant points must cross at least $\frac{\left|i\left(A_{\lambda}\right)-i\left(A_{\mu}\right)\right|}{2 n}+1$ components of $\Lambda \backslash B(\psi)$.

Time depending systems $J u^{\prime}(t)-A_{\lambda}(t) u(t)=0$ do not have an index defined in terms of the coefficients as before. The spectral flow $s f(L, I)$ can still be computed as the relative Conley-Zehnder index of the path $\left\{P_{\lambda}\right\}_{\lambda \in I}$ of Poincaré monodromy operators (cf. [FPR II]). But the monodromy operator can be only obtained by integrating the linearization and cannot be considered as given directly by our data. Floquet theory leads to the same problem. However, using the comparison principle for the spectral flow, we still are able to detect bifurcation and estimate from below the number of bifurcation points directly from the coefficient matrix of the system.

Here we will consider only the case $\Lambda=[a, b]$ taking $a=0, b=1$.

Let $J u^{\prime}(t)+A_{\lambda}(t) u(t)=0$ be the linearised equation at 0 . In order to estimate $\operatorname{sf}(L)$ we will use the numerical range of $A_{i}(t), i=0,1$.

Let $\left\{\mu_{1}^{i}(t) \leq \mu_{2}^{i}(t) \leq \cdots \leq \mu_{2 n}^{i}(t)\right\}$ be the eigenvalues of $A_{i}(t)$. For $i=0,1$, set

$$
\mu_{i}^{-}=\inf _{t}\left\{\mu_{1}^{i}(t)\right\}, \quad \mu_{i}^{+}=\sup _{t}\left\{\mu_{2 n}^{i}(t)\right\}
$$

Then

$$
\begin{equation*}
\mu_{i}^{-} \mathrm{Id} \leq A_{i}(t) \leq \mu_{i}^{+} \mathrm{Id}, \quad i=0,1 \tag{2}
\end{equation*}
$$

Let $A_{\lambda}^{ \pm}=\left[\lambda \mu_{1}^{ \pm}+(1-\lambda) \mu_{0}^{\mp}\right] \operatorname{Id}$ and let $L^{ \pm}$be the path of operators on $H^{\frac{1}{2}}$ defined by:

$$
\left\langle L_{\lambda}^{ \pm} u, v\right\rangle_{H^{\frac{1}{2}}}=\Gamma(u, v)+\int_{0}^{2 \pi}\left\langle A_{\lambda}^{ \pm} u(t), v(t)\right\rangle d t
$$

Then $L_{\lambda}-L_{\lambda}^{ \pm}$is compact for all λ.

By the corollary of the comparison theorem,

$$
\begin{equation*}
s f\left(L^{-}\right) \leq s f(L) \leq s f\left(L^{+}\right) \tag{3}
\end{equation*}
$$

The spectral flows of $L^{ \pm}$are easy to compute.

Given real numbers μ and ν, define

$$
\Delta(\mu, \nu)=\left\{\begin{array}{rr}
\#\{i \in \mathbb{Z}: \mu \leq i<\nu\} & \text { if } \mu \leq \nu \tag{4}\\
-\#\{i \in \mathbb{Z}: \nu \leq i<\mu\} & \text { if } \nu \leq \mu
\end{array}\right.
$$

Then

$$
\operatorname{sf}\left(L^{ \pm}\right)=2 n \Delta\left(\mu_{0}^{\mp}, \mu_{1}^{ \pm}\right)
$$

By (3) and (4),

$$
2 n \Delta\left(\mu_{0}^{+}, \mu_{1}^{-}\right) \leq \operatorname{sf}(L) \leq 2 n \Delta\left(\mu_{0}^{-}, \mu_{1}^{+}\right) .
$$

From Theorem (1) we conclude that

Theorem (6)

i) The interval $[a, b]$ contains some bifurcation point of 2π-periodic orbits from the stationary branch if either $\mu_{0}^{+}<\mu_{1}^{-}$and $\Delta\left(\mu_{0}^{+}, \mu_{1}^{-}\right)>0$ or $\mu_{1}^{+}<\mu_{0}^{-}$and $\Delta\left(\mu_{0}^{-}, \mu_{1}^{+}\right)<0$
ii) If moreover, the linearization of the problem (1) along the stationary branch admits only trivial solutions for all but a finite number of values of $\lambda \in[0,1]$, then the family (1) has at least $\Delta\left(\mu_{0}^{+}, \mu_{1}^{-}\right)$points of bifurcation of periodic solutions from the stationary branch in the first case and at least $-\Delta\left(\mu_{0}^{-}, \mu_{1}^{+}\right)$bifurcation points in the second.

$$
\begin{aligned}
& \mu_{1}^{+} \\
& \mu_{1}^{-} \\
& \mu_{0}^{+} \\
& \mu_{0}^{-}
\end{aligned} \underset{0 \leq t \leq 2 \pi}{U} \operatorname{spect[}\left[\mathrm{~A}_{1}(\mathrm{t})\right]
$$

Thank you and congratulations to Massimo!

