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Overview

I will review a joint paper with Nils Waterstraat which improves in
several ways an old result about the relation of the spectral flow
with the variational bifurcation and will discuss some of its
applications in problems where strongly indefinite functionals arise.

Our main goal here is to use topological invariants in order to
obtain bifurcation criteria directly in terms of the coefficients of
the linearised equation at the trivial branch.
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Morse index and bifurcation

A general principle of variational bifurcation states:

The change in Morse index along a trivial branch of critical points
entails bifurcation of critical points from the branch.

More precisely:

If ψ : [a, b]× U → R is C 2

0 is a critical point of ψλ = ψ(λ,−) for all λ ∈ [a, b]

The Hessian Hψλ(0) is essentially positive.

0 is a non degenerate critical point of ψλ, λ = a, b.

Then bifurcation of critical points of ψλ arise in (a,b) whenever

∆m = m(Hψa, 0)−m(Hψb, 0) 6= 0.

Recall that a point λ ∈ [a, b] is a point of bifurcation from the
trivial branch of critical points of the family ψ, if every
neighborhood of (λ, 0) ∈ [a, b]× U contains a solution (λ, x) of
the equation ∇ψλ(x) = 0 with x 6= 0.



Spectral flow

Given a path Lλ; λ ∈ [a, b] of self–adjoint Fredholm operators
A natural substitute to ∆m which allows to extend the above result
to the case of strongly indefinite functionals is the spectral flow.

” Given a path Lλ; λ ∈ [a, b] of self–adjoint Fredholm operators,
invertible at the end points, the spectral flow sf (L) is the number
of negative eigenvalues of La that become positive as λ goes from
a to b minus the number of positive eigenvalues that become
negative.”

sf (L) = ∆m whenever the Morse index is defined.

sf (L) is homotopy invariant.

sf (L) is additive under paths concatenation.

sf (L) = mrel(La, Lb) if Lλ − La is a compact operator.



A geometric definition

Let X be separable Hilbert space. Let ΦSA = SA(X ) ∩ Φ(X ).
The set Σk = {T ∈ ΦSA/ dim ker T = k} is a submanifold of ΦSA

of codimension k2.
Given a path L : [a, b]→ ΦSA with invertible end points, its spectral
flow is the intersection number of the path L with the stratified set

Σ = ∪k≥1Σk .

of singular self–adjoint Fredholm operators.

If the path L is transversal to all of Σk , then

sf (L) =
∑

λ∈L−1(Σ1)

sgn µ̇1(λ)

This extends to continuous paths by approximation with smooth
transversal paths.



Illustration 1



The Bifurcation Theorem.

Theorem (1)

Let U be a neighborhood of 0 in a separable Hilbert space X and
let ψ : [a, b]× U → R be a continuous family of C 2 functionals.
Assume that, for all λ ∈ [a, b], ∇ψλ(0) = 0 and the Hessian Lλ of
ψλ at 0 is Fredholm with La and Lb being invertible. Then:

i) If sf (L) 6= 0, the interval (a, b) contains at least one point of
bifurcation of critical points of ψλ from the trivial branch.

ii) If Σ(L) = L−1(Σ) = {λ ∈ [a, b]| dim ker Lλ ≥ 1} is a finite
subset of (a, b) then the family ψ possesses at least
|sf (L)|/d(L) bifurcation points in (a, b), where

d(L) = max{dim ker Lλ : λ ∈ [a, b]}

is the order of degeneracy of the path L.



Remarks

The hypothesis in ii) is verified if either the path L of Hessians is
real analytic or it is differentiable and has only regular crossing.

A regular crossing is a point λ ∈ Σ(L) at which the crossing form
Q(λ)h = 〈L̇λh, h〉; h ∈ ker Lλ, is non-degenerate. In this case

sf (L, I ) =
∑

λ∈Σ(L)

sigQ(λ).

L has regular crossings if the quadratic form Q(λ) is either always
positive definite or negative definite (e.g., if L̇ is either positive
definite or negative definite). In this case the spectral flow is ± the
sum of the dimensions of the kernels.

If K is a compact, self–adjoint operator, then Lλ = Id− λK is a
path as above. Thus, if ∇φ is compact, ∇φ(0) = 0, then any
characteristic value of K = D∇(φ)(0) is a bifurcation point for
solutions for the equation x − λ∇φ(x) = 0.



Multiparameter bifurcation

ψ : Λ× U → R = a continuous family of Fredholm C 2 functionals
∇ψλ(0) = 0, for all λ ∈ Λ. L = D∇ψλ(0) = the family of Hessians
at 0. Σ(L) = L−1(Σ). Bif = B(ψ) = the set of bifurcation points.

sf (L ◦ γ) 6= 0 =⇒ Bif disconnects Λ



Multiparameter bifurcation Thm

Theorem (1m)

Let ψ be as above. If (H2) holds, then:

i) If there exists an admissible path γ in Λ such that
sf (L, γ) 6= 0, then Λ \ B(ψ) is disconnected.

ii) If there exists a sequence of admissible paths γn, n ∈ N, such
that limn→∞ |sf (L, γn)| =∞, then Λ \ B(ψ) has infinitely
many path components.

iii) If Σ(L) = B(ψ), any admissible path γ such that L ◦ γ has

only isolated singular points will cross at least |sf (L,γ)|
d(L◦γ) + 1

components of Λ \ B(ψ).

Remark since no subset of covering dimension strictly smaller
than n − 1 can disconnect a topological n-manifold, it follows
that, if the parameter space Λ is a topological n-manifold, then
the covering dimension of B(ψ) is at least n − 1.



Nils Waterstraat Thm.

Theorem

If M is a closed spin manifold of dimension n ≡ 3 mod 4. Then
the space of metrics g on M such that the Dirac operator Dg is
invertible, if nonempty, has infinitely many path components.

Proved previously by Dahl for n > 7 in a different way.



Comparison

We say that T ≥ S if T − S is a positive operator. If T and S
have a Morse index then T ≥ S implies m(T ) ≤ m(S). The
following property of the spectral flow is an extension of this.

Theorem (2)

Let H : [0, 1]× [a, b]→ ΦSA be a homotopy such that H(·, a) is
non-increasing and H(·, b) is non-decreasing, then

sf(H0) ≤ sf(H1).

Corollary (3)

Let L,M : [a, b]→ ΦSA be such that Lλ −Mλ is compact for each
λ ∈ I . If La ≤ Ma and Lb ≥ Mb, then

sf (M) ≤ sf (L).

Proof: Take H(t, λ) = Mλ + t(Lλ −Mλ)



Remark: the generalized spectral flow

Given any path L : [a, b]→ ΦSA (possibly with noninvertible end
points), we define sf(L) = sf(L + δ Id), where δ > 0 such that
Li + λ Id; i = a, b is invertible for 0 < λ ≤ δ.

Clearly, the right hand side does not depend on the choice of δ.
The resulting function is additive under concatenation and is
homotopy invariant under homotopies keeping the end-points fixed.

The comparison principle extends without any restriction to this
more general case.



Bifurcation of periodic orbits of Hamiltonian systems

Let us consider a family of Hamiltonian systems parametrized by
λ ∈ Λ. {

J u′(t) +∇uH(λ, t, u(t)) = 0, t ∈ [0, 2π]

u(0) = u(2π).
(1)

Here

J denotes the standard symplectic matrix.

Λ is a connected topological space

H : Λ× R× R2n → R is a continuous function 2π-periodic in
t, such that each Hλ is C 2 with its first and second partial
derivatives depend continuously on (λ, t, u).

H(λ, t, 0) = 0 for all (λ, t) ∈ Λ× [0, 2π].

In order to work with bounded operators we will study weak

solutions of the equation belonging to H
1
2 = H

1
2 (S1,R2n).



Bifurcation of periodic orbits I

We extend the bilinear form

(u, v) 
∫ 2π

0
〈J u′(t), v(t)〉 dt

to a form Γ : H
1
2 × H

1
2 → R and consider

ψ : Λ×H
1
2 (S1,R2n)→ R, ψλ(u) =

1

2
Γ(u, u)+

∫ 2π

0
H(λ, t, u(t)) dt.

Under the natural growth assumptions each ψλ is C 2 and the
critical points of ψλ are the weak solutions of the Hamiltonian
system (1).

The Hessian Lλ of ψλ the at 0 is defined by

〈Lλu, v〉
H

1
2

= Γ(u, v) +

∫ 2π

0
〈Aλ(t)u(t), v(t)〉 dt,

where Aλ(t) = Du∇uHλ(t, 0).

Lλ is Fredholm by compactness of the embedding of H
1
2 into L2.



Bifurcation of periodic orbits II

Assumption (H1) : Aλ(t) ≡ Aλ for all λ ∈ Λ.

In this case, Lλ is invertible if and only if the matrix Aλ is
non-resonant, i.e., the spectrum of J Aλ does not contain integral
multiples of i =

√
−1.

Taking Λ = [a, b] and assuming that Aa,Ab are non resonant, the
spectral flow sf (L) can be computed as follows:

Consider the sequence of 4n × 4n matrices:

L0(A) =

(
A 0
0 A

)
, Lk(A) =

(
1
k A J
− J 1

k A

)
, k ∈ N.

Define the index of the matrix A by

i(A) =
1

2

∞∑
k=0

sgn Lk(A).

Then, sf (L) = i(Ab)− i(Aa)(see [S], [FPR]).



Bifurcation of periodic orbits III

Theorem (4)

Assume that the Hamiltonian system (1) verifies (H1) and that Aλ
is invertible for all λ.

i) If i(Aa) 6= i(Ab), then any neighbourhood of the stationary
branch [a, b]× {0} in [a, b]× H1/2 contains solutions of the
form (λ, u) with u non-constant and 2π-periodic.

ii) If Aλ is non resonant for all but a finite number of λ then
there are at least |i(Aa)− i(Ab)|/2n bifurcation points of
periodic orbits in the interval [a, b].



Multiparameter bifurcation of periodic orbits

As an immediate consequence of Theorem (1m) we obtain:

Theorem

Assume that (H1) and (H2) hold.

i) If there exist λ, µ ∈ Λ such that the matrices Aλ,Aµ are
non-resonant and i(Aλ) 6= i(Aµ), then Λ \ B(ψ) is
disconnected.

ii) If there exists a sequence {λn}n∈N ⊂ Λ such that Aλn is
non-resonant for all n ∈ N and limn→∞ |i(Aλn)| =∞, then
Λ \ B(ψ) has infinitely many path components.

iii) If B(ψ) = {λ : Aλ is resonant}, then any path γ joining two
non-resonant parameters λ and µ such that A ◦ γ has only

isolated resonant points must cross at least
|i(Aλ)−i(Aµ)|

2n + 1
components of Λ \ B(ψ).



Bifurcation of periodic orbits IV

Time depending systems Ju′(t)− Aλ(t)u(t) = 0 do not have an
index defined in terms of the coefficients as before. The spectral
flow sf (L, I ) can still be computed as the relative Conley-Zehnder
index of the path {Pλ}λ∈I of Poincaré monodromy operators (cf.
[FPR II]). But the monodromy operator can be only obtained by
integrating the linearization and cannot be considered as given
directly by our data. Floquet theory leads to the same problem.
However, using the comparison principle for the spectral flow, we
still are able to detect bifurcation and estimate from below the
number of bifurcation points directly from the coefficient matrix of
the system.

Here we will consider only the case Λ = [a, b] taking a = 0, b = 1.



Bifurcation of periodic orbits V

Let Ju′(t) + Aλ(t)u(t) = 0 be the linearised equation at 0. In order
to estimate sf (L) we will use the numerical range of Ai (t), i = 0, 1.

Let {µi
1(t) ≤ µi

2(t) ≤ · · · ≤ µi
2n(t)} be the eigenvalues of Ai (t).

For i = 0, 1, set

µ−i = inf
t
{µi

1(t)}, µ+
i = sup

t
{µi

2n(t)}.

Then
µ−i Id ≤ Ai (t) ≤ µ+

i Id, i = 0, 1. (2)

Let A±λ = [λµ±1 + (1− λ)µ∓0 ] Id and let L± be the path of

operators on H
1
2 defined by:

〈L±λ u, v〉
H

1
2

= Γ(u, v) +

∫ 2π

0
〈A±λ u(t), v(t)〉 dt.

Then Lλ − L±λ is compact for all λ.



Bifurcation of periodic orbits VI

By the corollary of the comparison theorem,

sf (L−) ≤ sf (L) ≤ sf (L+). (3)



Bifurcation of periodic orbits VII

The spectral flows of L± are easy to compute.

Given real numbers µ and ν, define

∆(µ, ν) =

{
#{i ∈ Z : µ ≤ i < ν} if µ ≤ ν
−#{i ∈ Z : ν ≤ i < µ} if ν ≤ µ.

(4)

Then
sf (L±) = 2n ∆(µ∓0 , µ

±
1 )

By (3) and (4),

2n ∆(µ+
0 , µ

−
1 ) ≤ sf (L) ≤ 2n ∆(µ−0 , µ

+
1 ).

From Theorem (1) we conclude that



Bifurcation of periodic orbits VI

Theorem (6)

i) The interval [a, b] contains some bifurcation point of
2π-periodic orbits from the stationary branch if either
µ+

0 < µ−1 and ∆(µ+
0 , µ

−
1 ) > 0 or µ+

1 < µ−0 and
∆(µ−0 , µ

+
1 ) < 0

ii) If moreover, the linearization of the problem (1) along the
stationary branch admits only trivial solutions for all but a
finite number of values of λ ∈ [0, 1], then the family (1) has
at least ∆(µ+

0 , µ
−
1 ) points of bifurcation of periodic solutions

from the stationary branch in the first case and at least
−∆(µ−0 , µ

+
1 ) bifurcation points in the second.



Illustration 2



Thank you and congratulations to Massimo!


