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Geometric Formulation

min
Ω∈Ca,b

λ|Ω| − P(Ω),

where:

Ca,b = {K ⊆ R2 : K convex, Da ⊆ K ⊆ Db}.

Let us define Jλ(Ω) = λ|Ω| − P(Ω)  minΩ∈Ca,b
Jλ(Ω).

Notice: For every λ ≥ 0 there exists a solution Ωλ.
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The limit cases λ = 0,+∞

I λ = 0, J0(·) attains its minimum on Db

( maximise P(·)!)

I λ = +∞, J+∞(·) attains its minimum on Da

( minimise | · | !)

 what happens for the intermediate values 0 < λ < +∞ ?
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Analytic Formulation

We can rewrite the functional Jλ in terms of hΩ, the support
function of Ω:

Jλ(hΩ) =
λ

2

∫ 2π

0
(h2

Ω − h′2Ω) dθ −
∫ 2π

0
hΩ dθ.

Moreover the class Ca,b is:

Ca,b = {hK ∈W 1,2(0, 2π) : a ≤ hK ≤ b, h′′K + hK ≥ 0 ∀θ ∈ [0, 2π]}.
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Minima of Jλ are locally polygons in Db \ Da

Thm. Let Ω ∈ Ca,b; if for some ω ⊆ [0, 2π], supp(h′′Ω + hΩ) ∩ ω
contains at least 3 directions, corresponding to support sets in the
interior of the ring, then ∃v compactly supported in ω s.t. hΩ + tv
is the support function of a convex set in Ca,b, for t ∈ (−δ, δ).

[J. Lamboley, A. Novruzi 2009]
 this gives a perturbation of Ω in the class Ca,b

Corollary If supp(h′′ + h) ∩ (0, π) has at least 3 directions,
corresponding to support sets in the ring, then Ω cannot be
optimal.

Hence: every minimum is a polygon inside the ring.
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Minima of Jλ are locally polygons in Db \ Da

[Proof of the Corollary.]
Let Ω be a minimum for Jλ; assume it is not a polygon in the ring
 supp(h′′Ω +hΩ)∩ (0, ε) contains at least 3 points for some ε < π.
Hence: we can make perturbations Ωt s.t. hΩt = hΩ + tv , |t| < δ.
By second order optimality conditions

0 ≤ 〈J′′λ(Ω)v , v〉 = λ

∫ 2π

0
v2 − v ′2.

But using Poincaré inequality we get:

0 ≤λ
∫ ε

0
v2 − v ′2 ≤ λ (

ε2

π2
− 1)

∫ ε

0
v ′2,

contradiction! for every ε < π.
 every local minimum is a polygon inside the ring.
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When is the solution a polygon?

I Thm. Ωλ is a polygon if and only if 1
2b < λ < 2

a .

Moreover:
Ωλ = Db for 0 ≤ λ ≤ 1

2b and Ωλ = Da for 2
a < λ ≤ +∞;

if λ = 2
a there exist infinite solutions, circumscribed to Da.

[CB, A. Henrot 2011]

 which is the shape of Ωλ?
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“Free sides” are not allowed

A

B

C

Ω

v

t = 0A

Bt

C

Ωt

t < 0 A

Bt

C

Ωt

t > 0

There cannot exist two “free” sides AB,BC otherwise  
consider the set Ωt obtained as a perturbation of Ωλ moving the

vertex B along the direction v =
−→
AC for a time t ∈ (−δ, δ)

(N.B. all the other vertices are fixed!)
 contradiction!
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an example

Reduction to a finite dimensional problem

ξ0

θi

ηj

Classes of (central) angles:
ξ0 ∈ A a

b , cos ξ0 = a
b

θi ∈ A a, cos θi >
a
b

ηj ∈ Ab, cos ηj >
a
b .

Corresponding classes of sides:
A a

b ! L a
b ,

A a! L a,
Ab ! Lb.

Thm. For 1
2b < λ < 2

a , ∂Ωλ = ∪li with li ∈ L a
b ∪L a ∪Lb.

Moreover Ωλ is either a regular or a quasi-regular polygon.
[CB, A. Henrot 2011]
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classes of sides
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An example: a = 1, b = 3

0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)

2
a +∞

0 ≤ λ < 1
6
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classes of sides
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An example: a = 1, b = 3

0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)

2
a +∞

0.1792 < λ < 0.1847
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0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)
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0
1

2b
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An example: a = 1, b = 3

0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)

2
a +∞
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An example: a = 1, b = 3

0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)

2
a +∞
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0
1
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a+b
1
b
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An example: a = 1, b = 3

0
1

2b
1

a+b
1
b

2b
(b−a)(b+2a)

2
a +∞

0.6 < λ < 2
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An example: analysis of |Ωλ|

|Ωλ|

λ
1

2b
1

a+b
2

a+b
2b

(b−a)(b+2a)
2
a
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Bonnesen-Fenchel inequality
Favard type inequalities

A Bonnesen-Fenchel type inequalitiy

For every planar convex set Ω of inradius r(Ω) it holds

P(Ω) ≤ 2
|Ω|
r(Ω)

.

[T. Bonnesen- W. Fenchel 1929]
Proof.
We can assume Dr ⊂ Ω; moreover ∃R > r s.t. Ω ⊂ DR  
Ω ∈ Cr ,R . Take λ = 2

r  Ω 2
r

= Dr  J 2
r
(Ω) ≥ J 2

r
(Dr )  

2

r
|Ω| − P(Ω) ≥ 2

r
|Dr | − P(Dr ) = 0.

Moreover: equality holds for every convex set Ω whose boundary is
composed by arcs of Dr and tangent segments to it.
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Bonnesen-Fenchel inequality
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Favard type inequalities

For every planar convex set Ω, whose circumradius is R(Ω), it holds

|Ω| ≥ R(Ω)(P(Ω)− 4R(Ω)),

and equality holds for linear segments.
[J. Favard 1929]

Moreover
|Ω| ≥ R(Ω)(2P(Ω)− 3πR(Ω)),

and equality holds if Ω is a ball.
[CB, A. Henrot 2011]
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J. Favard, “Problèmes d’extremums relatifs aux courbes convexes”, 1929.
J. Lamboley, A. Novruzi, “Polygon as optimal shapes with convexity
constraint”, 2009.
P.R. Scott, P.W. Awyong, “Inequalities for convex sets”, 2000.

Chiara Bianchini, Institut Elie Cartan, Nancy Polygonal solutions for a shape optimisation problem


	The Problem
	locally polygonal solutions
	polygonal solutions

	The shape of polygons
	classes of sides
	an example

	Applications
	Bonnesen-Fenchel inequality
	Favard type inequalities


