Polygonal solutions for a shape optimisation problem

Chiara Bianchini
in collaboration with
Antoine Henrot

Cortona, June 2011

Geometric Formulation

$$
\min _{\Omega \in \mathscr{C}_{\mathfrak{a}, b}} \lambda|\Omega|-P(\Omega),
$$

where:

$$
\mathscr{C}_{a, b}=\left\{K \subseteq \mathbb{R}^{2}: K \text { convex, } D_{a} \subseteq K \subseteq D_{b}\right\}
$$

Let us define $\mathrm{J}_{\lambda}(\Omega)=\lambda|\Omega|-P(\Omega) \rightsquigarrow \min _{\Omega \in \mathscr{C}_{a, b}} \mathrm{~J}_{\lambda}(\Omega)$.
Notice: For every $\lambda \geq 0$ there exists a solution Ω_{λ}.

Geometric Formulation

$$
\min _{\Omega \in \mathscr{C}_{\mathfrak{a}, b}} \lambda|\Omega|-P(\Omega),
$$

where:

$$
\mathscr{C}_{a, b}=\left\{K \subseteq \mathbb{R}^{2}: K \text { convex, } D_{a} \subseteq K \subseteq D_{b}\right\}
$$

Let us define $\mathrm{J}_{\lambda}(\Omega)=\lambda|\Omega|-P(\Omega) \rightsquigarrow \min _{\Omega \in \mathscr{C}_{a, b}} \mathrm{~J}_{\lambda}(\Omega)$.
Notice: For every $\lambda \geq 0$ there exists a solution Ω_{λ}.

The limit cases $\lambda=0,+\infty$

- $\lambda=0, \mathrm{~J}_{0}(\cdot)$ attains its minimum on D_{b}
$(\rightsquigarrow$ maximise $P(\cdot)!)$
- $\lambda=+\infty, \mathrm{J}_{+\infty}(\cdot)$ attains its minimum on D_{a}
$(\rightsquigarrow$ minimise $|\cdot|!)$
what happens for the intermediate values $0<\lambda<+\infty$?

The limit cases $\lambda=0,+\infty$

- $\lambda=0, \mathrm{~J}_{0}(\cdot)$ attains its minimum on D_{b}
$(\rightsquigarrow$ maximise $P(\cdot)!$)
- $\lambda=+\infty, \mathrm{J}_{+\infty}(\cdot)$ attains its minimum on D_{a}
$(\rightsquigarrow$ minimise $|\cdot|!$)
\rightsquigarrow what happens for the intermediate values $0<\lambda<+\infty$?

Analytic Formulation

We can rewrite the functional J_{λ} in terms of h_{Ω}, the support function of Ω :

$$
\mathrm{J}_{\lambda}\left(h_{\Omega}\right)=\frac{\lambda}{2} \int_{0}^{2 \pi}\left(h_{\Omega}^{2}-h_{\Omega}^{\prime 2}\right) d \theta-\int_{0}^{2 \pi} h_{\Omega} d \theta
$$

Moreover the class $\mathscr{C}_{a, b}$ is:
$\mathscr{C}_{a, b}=\left\{h_{K} \in W^{1,2}(0,2 \pi): a \leq h_{K} \leq b, h_{K}^{\prime \prime}+h_{K} \geq 0 \forall \theta \in[0,2 \pi]\right\}$.

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

Thm. Let $\Omega \in \mathscr{C}_{a, b}$; if for some $\omega \subseteq[0,2 \pi]$, $\operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap \omega$ contains at least 3 directions, corresponding to support sets in the interior of the ring, then $\exists v$ compactly supported in ω s.t. $h_{\Omega}+t v$ is the support function of a convex set in $\mathscr{C}_{a, b}$, for $t \in(-\delta, \delta)$.
[J. Lamboley, A. Novruzi 2009]
\rightsquigarrow this gives a perturbation of Ω in the class
Corollary If $\operatorname{supp}\left(h^{\prime \prime}+h\right) \cap(0, \pi)$ has at least 3 directions,

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

Thm. Let $\Omega \in \mathscr{C}_{a, b}$; if for some $\omega \subseteq[0,2 \pi]$, $\operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap \omega$ contains at least 3 directions, corresponding to support sets in the interior of the ring, then $\exists v$ compactly supported in ω s.t. $h_{\Omega}+t v$ is the support function of a convex set in $\mathscr{C}_{a, b}$, for $t \in(-\delta, \delta)$.
[J. Lamboley, A. Novruzi 2009]
\rightsquigarrow this gives a perturbation of Ω in the class $\mathscr{C}_{a, b}$

Corollary If $\operatorname{supp}\left(h^{\prime \prime}+h\right) \cap(0, \pi)$ has at least 3 directions, corresponding to support sets in the ring, then Ω cannot be optimal.

Hence: every minimum is a polygon inside the ring

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

Thm. Let $\Omega \in \mathscr{C}_{a, b}$; if for some $\omega \subseteq[0,2 \pi]$, $\operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap \omega$ contains at least 3 directions, corresponding to support sets in the interior of the ring, then $\exists v$ compactly supported in ω s.t. $h_{\Omega}+t v$ is the support function of a convex set in $\mathscr{C}_{a, b}$, for $t \in(-\delta, \delta)$.
[J. Lamboley, A. Novruzi 2009]
\rightsquigarrow this gives a perturbation of Ω in the class $\mathscr{C}_{a, b}$
Corollary If $\operatorname{supp}\left(h^{\prime \prime}+h\right) \cap(0, \pi)$ has at least 3 directions, corresponding to support sets in the ring, then Ω cannot be optimal.

Hence: every minimum is a polygon inside the ring.

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

Thm. Let $\Omega \in \mathscr{C}_{a, b}$; if for some $\omega \subseteq[0,2 \pi]$, $\operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap \omega$ contains at least 3 directions, corresponding to support sets in the interior of the ring, then $\exists v$ compactly supported in ω s.t. $h_{\Omega}+t v$ is the support function of a convex set in $\mathscr{C}_{a, b}$, for $t \in(-\delta, \delta)$.
[J. Lamboley, A. Novruzi 2009]
\rightsquigarrow this gives a perturbation of Ω in the class $\mathscr{C}_{a, b}$
Corollary If $\operatorname{supp}\left(h^{\prime \prime}+h\right) \cap(0, \pi)$ has at least 3 directions, corresponding to support sets in the ring, then Ω cannot be optimal.

Hence: every minimum is a polygon inside the ring.

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

[Proof of the Corollary.]
Let Ω be a minimum for J_{λ}; assume it is not a polygon in the ring $\rightsquigarrow \operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap(0, \varepsilon)$ contains at least 3 points for some $\varepsilon<\pi$.
Hence:

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

[Proof of the Corollary.]
Let Ω be a minimum for J_{λ}; assume it is not a polygon in the ring $\rightsquigarrow \operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap(0, \varepsilon)$ contains at least 3 points for some $\varepsilon<\pi$. Hence: we can make perturbations Ω^{t} s.t. $h_{\Omega^{t}}=h_{\Omega}+t v,|t|<\delta$. By second order optimality conditions

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

[Proof of the Corollary.]
Let Ω be a minimum for J_{λ}; assume it is not a polygon in the ring $\rightsquigarrow \operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap(0, \varepsilon)$ contains at least 3 points for some $\varepsilon<\pi$. Hence: we can make perturbations Ω^{t} s.t. $h_{\Omega^{t}}=h_{\Omega}+t v,|t|<\delta$. By second order optimality conditions

$$
0 \leq\left\langle\mathrm{J}_{\lambda}^{\prime \prime}(\Omega) v, v\right\rangle=\lambda \int_{0}^{2 \pi} v^{2}-v^{\prime 2}
$$

But using Poincaré inequality we get:

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

[Proof of the Corollary.]
Let Ω be a minimum for J_{λ}; assume it is not a polygon in the ring $\rightsquigarrow \operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap(0, \varepsilon)$ contains at least 3 points for some $\varepsilon<\pi$. Hence: we can make perturbations Ω^{t} s.t. $h_{\Omega^{t}}=h_{\Omega}+t v,|t|<\delta$. By second order optimality conditions

$$
0 \leq\left\langle J_{\lambda}^{\prime \prime}(\Omega) v, v\right\rangle=\lambda \int_{0}^{2 \pi} v^{2}-v^{\prime 2}
$$

But using Poincaré inequality we get:

$$
0 \leq \lambda \int_{0}^{\varepsilon} v^{2}-v^{\prime 2} \leq \lambda\left(\frac{\varepsilon^{2}}{\pi^{2}}-1\right) \int_{0}^{\varepsilon} v^{\prime 2}
$$

contradiction! for every $\varepsilon<\pi$.
\rightsquigarrow every local minimum is a polygon inside the ring.

Minima of J_{λ} are locally polygons in $D_{b} \backslash \overline{D_{a}}$

[Proof of the Corollary.]
Let Ω be a minimum for J_{λ}; assume it is not a polygon in the ring $\rightsquigarrow \operatorname{supp}\left(h_{\Omega}^{\prime \prime}+h_{\Omega}\right) \cap(0, \varepsilon)$ contains at least 3 points for some $\varepsilon<\pi$. Hence: we can make perturbations Ω^{t} s.t. $h_{\Omega^{t}}=h_{\Omega}+t v,|t|<\delta$. By second order optimality conditions

$$
0 \leq\left\langle J_{\lambda}^{\prime \prime}(\Omega) v, v\right\rangle=\lambda \int_{0}^{2 \pi} v^{2}-v^{\prime 2}
$$

But using Poincaré inequality we get:

$$
0 \leq \lambda \int_{0}^{\varepsilon} v^{2}-v^{\prime 2} \leq \lambda\left(\frac{\varepsilon^{2}}{\pi^{2}}-1\right) \int_{0}^{\varepsilon} v^{\prime 2}
$$

contradiction! for every $\varepsilon<\pi$.
\rightsquigarrow every local minimum is a polygon inside the ring.

When is the solution a polygon?

- Thm. Ω_{λ} is a polygon if and only if $\frac{1}{2 b}<\lambda<\frac{2}{a}$. Moreover: $\Omega_{\lambda}=D_{b}$ for $0 \leq \lambda \leq \frac{1}{2 b}$ and $\Omega_{\lambda}=D_{a}$ for $\frac{2}{a}<\lambda \leq+\infty$; if $\lambda=\frac{2}{7}$ there exist infinite solutions, circumscribed to D_{a}.
[CB, A. Henrot 2011]

When is the solution a polygon?

- Thm. Ω_{λ} is a polygon if and only if $\frac{1}{2 b}<\lambda<\frac{2}{a}$. Moreover: $\Omega_{\lambda}=D_{b}$ for $0 \leq \lambda \leq \frac{1}{2 b}$ and $\Omega_{\lambda}=D_{a}$ for $\frac{2}{a}<\lambda \leq+\infty$; if $\lambda=\frac{2}{a}$ there exist infinite solutions, circumscribed to D_{a}
[CB, A. Henrot 2011]

When is the solution a polygon?

- Thm. Ω_{λ} is a polygon if and only if $\frac{1}{2 b}<\lambda<\frac{2}{a}$. Moreover: $\Omega_{\lambda}=D_{b}$ for $0 \leq \lambda \leq \frac{1}{2 b}$ and $\Omega_{\lambda}=D_{a}$ for $\frac{2}{a}<\lambda \leq+\infty$; if $\lambda=\frac{2}{a}$ there exist infinite solutions, circumscribed to D_{a}.
[CB, A. Henrot 2011]

When is the solution a polygon?

- Thm. Ω_{λ} is a polygon if and only if $\frac{1}{2 b}<\lambda<\frac{2}{a}$. Moreover: $\Omega_{\lambda}=D_{b}$ for $0 \leq \lambda \leq \frac{1}{2 b}$ and $\Omega_{\lambda}=D_{a}$ for $\frac{2}{a}<\lambda \leq+\infty$; if $\lambda=\frac{2}{a}$ there exist infinite solutions, circumscribed to D_{a}.
[CB, A. Henrot 2011]
\rightsquigarrow which is the shape of Ω_{λ} ?

"Free sides" are not allowed

There cannot exist two "free" sides $\overline{A B}, \overline{B C}$ otherwise \rightsquigarrow consider the set Ω_{t} obtained as a perturbation of Ω_{λ} moving the vertex B along the direction $v=\overrightarrow{A C}$ for a time $t \in(-\delta, \delta)$ (N.B. all the other vertices are fixed!)
\rightsquigarrow contradiction!

Reduction to a finite dimensional problem

Classes of (central) angles:
$\xi_{0} \in \mathscr{A}_{b}^{a}, \cos \xi_{0}=\frac{a}{b}$
$\theta_{i} \in \mathscr{A}^{a}, \cos \theta_{i}>\frac{a}{b}$
$\eta_{j} \in \mathscr{A}_{b}, \cos \eta_{j}>\frac{a}{b}$.
Corresponding classes of sides:
\mathscr{A}_{b}^{a} h \mathscr{L}_{b}^{a},
\mathscr{A}^{a} uns \mathscr{L}^{a},
\mathscr{A}_{b} H \mathscr{L}_{b}.
Thm. For $\frac{1}{2 b}<\lambda<\frac{2}{a}, \partial \Omega_{\lambda}=\cup l_{i}$ with $I_{i} \in \mathscr{L}_{b}^{a} \cup \mathscr{L}^{a} \cup \mathscr{L}_{b}$.
[CB, A. Henrot 2011]

Reduction to a finite dimensional problem

Classes of (central) angles:
$\xi_{0} \in \mathscr{A}_{b}^{a}, \cos \xi_{0}=\frac{a}{b}$
$\theta_{i} \in \mathscr{A}^{a}, \cos \theta_{i}>\frac{a}{b}$
$\eta_{j} \in \mathscr{A}_{b}, \cos \eta_{j}>\frac{a}{b}$.
Corresponding classes of sides:
\mathscr{A}_{b}^{a} h \mathscr{L}_{b}^{a},
\mathscr{A}^{a} uns \mathscr{L}^{a},
\mathscr{A}_{b} H \mathscr{L}_{b}.
Thm. For $\frac{1}{2 b}<\lambda<\frac{2}{a}, \partial \Omega_{\lambda}=\cup I_{i}$ with $I_{i} \in \mathscr{L}_{b}^{a} \cup \mathscr{L}^{a} \cup \mathscr{L}_{b}$. Moreover Ω_{λ} is either a regular or a quasi-regular polygon.
[CB, A. Henrot 2011]

Reduction to a finite dimensional problem

Classes of (central) angles:
$\xi_{0} \in \mathscr{A}_{b}^{a}, \cos \xi_{0}=\frac{a}{b}$
$\theta_{i} \in \mathscr{A}^{a}, \cos \theta_{i}>\frac{a}{b}$
$\eta_{j} \in \mathscr{A}_{b}, \cos \eta_{j}>\frac{a}{b}$.
Corresponding classes of sides:
\mathscr{A}_{b}^{a} แn \mathscr{L}_{b}^{a},
$\mathscr{A}^{a} \xrightarrow{3} \mathscr{L}^{a}$,
\mathscr{A}_{b} \& \mathscr{L}_{b}.
Thm. For $\frac{1}{2 b}<\lambda<\frac{2}{a}, \partial \Omega_{\lambda}=\cup I_{i}$ with $I_{i} \in \mathscr{L}_{b}^{a} \cup \mathscr{L}^{a} \cup \mathscr{L}_{b}$. Moreover Ω_{λ} is either a regular or a quasi-regular polygon.
[CB, A. Henrot 2011]

An example: $a=1, b=3$

0	$\frac{1}{2 b}$	$\frac{1}{a+b}$	$\frac{1}{b}$	$\frac{2 b}{(b-a)(b+2 a)}$	$\frac{2}{a}$	$+\infty$

$$
0 \leq \lambda<\frac{1}{6}
$$

An example: $a=1, b=3$

$$
0.1792<\lambda<0.1847
$$

An example: $a=1, b=3$

$$
0.1847<\lambda<0.19506
$$

An example: $a=1, b=3$

0	$\frac{1}{2 b}$	$\frac{1}{a+b}$	$\frac{1}{b}$	$\frac{2 b}{(b-a)(b+2 a)}$	$\frac{2}{a}$	$+\infty$

$$
0.19506<\lambda<0.19525
$$

An example: $a=1, b=3$

$0.19525<\lambda<0.2187$

An example: $a=1, b=3$

$\begin{array}{lllllll}0 & \frac{1}{2 b} & \frac{1}{a+b} & \frac{1}{b} & \frac{2 b}{(b-a)(b+2 a)} & \frac{2}{a} & +\infty\end{array}$

$$
0.2187<\lambda<0.2222
$$

An example: $a=1, b=3$

$\begin{array}{lllllll}0 & \frac{1}{2 b} & \frac{1}{a+b} & \frac{1}{b} & \frac{2 b}{(b-a)(b+2 a)} & \frac{2}{a} & +\infty\end{array}$

$$
0.2222<\lambda<0.3080
$$

An example: $a=1, b=3$

$$
0.3080<\lambda<0.6
$$

An example: $a=1, b=3$

$\begin{array}{lllllll}0 & \frac{1}{2 b} & \frac{1}{a+b} & \frac{1}{b} & \frac{2 b}{(b-a)(b+2 a)} & \frac{2}{a} & +\infty\end{array}$

$$
0.6<\lambda<2
$$

An example: $a=1, b=3$

$$
\lambda=2
$$

An example: $a=1, b=3$

$$
2<\lambda<+\infty
$$

An example: analysis of $\left|\Omega_{\lambda}\right|$

A Bonnesen-Fenchel type inequalitiy

For every planar convex set Ω of inradius $r(\Omega)$ it holds

$$
P(\Omega) \leq 2 \frac{|\Omega|}{r(\Omega)}
$$

[T. Bonnesen- W. Fenchel 1929]
Proof.
We can assume $D_{r} \subset \Omega$; moreover $\exists R>r$ s.t. $\Omega \subset D_{R} \leadsto$

A Bonnesen-Fenchel type inequalitiy

For every planar convex set Ω of inradius $r(\Omega)$ it holds

$$
P(\Omega) \leq 2 \frac{|\Omega|}{r(\Omega)}
$$

[T. Bonnesen- W. Fenchel 1929]

Proof.

We can assume $D_{r} \subset \Omega$; moreover $\exists R>r$ s.t. $\Omega \subset D_{R} \rightsquigarrow$ $\Omega \in \mathscr{C}_{r, R}$.

A Bonnesen-Fenchel type inequalitiy

For every planar convex set Ω of inradius $r(\Omega)$ it holds

$$
P(\Omega) \leq 2 \frac{|\Omega|}{r(\Omega)}
$$

[T. Bonnesen- W. Fenchel 1929]

Proof.

We can assume $D_{r} \subset \Omega$; moreover $\exists R>r$ s.t. $\Omega \subset D_{R} \rightsquigarrow$
$\Omega \in \mathscr{C}_{r, R}$. Take $\lambda=\frac{2}{r} \rightsquigarrow \Omega_{\frac{2}{r}}=D_{r} \rightsquigarrow \mathrm{~J}_{\frac{2}{r}}(\Omega) \geq \mathrm{J}_{\frac{2}{r}}\left(D_{r}\right)$

Moreover: equality holds for every convex set Ω whose boundary is composed by arcs of D_{r} and tangent segments to it.

A Bonnesen-Fenchel type inequalitiy

For every planar convex set Ω of inradius $r(\Omega)$ it holds

$$
P(\Omega) \leq 2 \frac{|\Omega|}{r(\Omega)}
$$

[T. Bonnesen- W. Fenchel 1929]

Proof.

We can assume $D_{r} \subset \Omega$; moreover $\exists R>r$ s.t. $\Omega \subset D_{R} \rightsquigarrow$ $\Omega \in \mathscr{C}_{r, R}$. Take $\lambda=\frac{2}{r} \rightsquigarrow \Omega_{\frac{2}{r}}=D_{r} \rightsquigarrow \mathrm{~J}_{\frac{2}{r}}(\Omega) \geq \mathrm{J}_{\frac{2}{r}}\left(D_{r}\right) \rightsquigarrow$

$$
\frac{2}{r}|\Omega|-P(\Omega) \geq \frac{2}{r}\left|D_{r}\right|-P\left(D_{r}\right)=0
$$

Moreover: equality holds for every convex set Ω whose boundary is composed by arcs of D_{r} and tangent segments to it.

Favard type inequalities

For every planar convex set Ω, whose circumradius is $R(\Omega)$, it holds

$$
|\Omega| \geq R(\Omega)(P(\Omega)-4 R(\Omega))
$$

and equality holds for linear segments.
[J. Favard 1929]
Moreover

$$
|\Omega| \geq R(\Omega)(2 P(\Omega)-3 \pi R(\Omega))
$$

and equality holds if Ω is a ball.
[CB, A. Henrot 2011]

Favard type inequalities

For every planar convex set Ω, whose circumradius is $R(\Omega)$, it holds

$$
|\Omega| \geq R(\Omega)(P(\Omega)-4 R(\Omega))
$$

and equality holds for linear segments.
[J. Favard 1929]
Moreover

$$
|\Omega| \geq R(\Omega)(2 P(\Omega)-3 \pi R(\Omega))
$$

and equality holds if Ω is a ball.
[CB, A. Henrot 2011]

Bibliography

K. Ball, "Volume ratios and a reverse isoperimetric inequality", 1991.
C. Bianchini, A. Henrot, "Optimal sets for a class of minimization problems with convex constraints", 2011.
T. Bonessen, W. Fenchel, "Théorie der konvexen Körper", 1929.
S. Campi, P. Gronchi, "A Favard type problem for 3-d convex bodies", 2008.
M. Crouzeix, "Une famille d'inégalités pour les ensembles convexes du plan", 2005.
J. Favard, "Problèmes d'extremums relatifs aux courbes convexes", 1929.
J. Lamboley, A. Novruzi, "Polygon as optimal shapes with convexity constraint", 2009.
P.R. Scott, P.W. Awyong, "Inequalities for convex sets", 2000.

