RECONSTRUCTION OF TWISTED POLYTOPES AND APPLICATIONS

Paolo Dulio
Politecnico di Milano (joint research with Carla Peri)

Fifth International Workshop on Convex Geometry-Analytic Aspects Cortona, Italy, June 12-18, 2011

Image reconstructions.

In Computerized Tomography the image of a three-dimensional body is reconstructed by means of X-rays. Algorithms are mainly based on the inversion of the Radon Transform, which (in theory) uniquely determines all the two-dimensional sections of the body.

Image reconstructions.

In Computerized Tomography the image of a three-dimensional body is reconstructed by means of X-rays. Algorithms are mainly based on the inversion of the Radon Transform, which (in theory) uniquely determines all the two-dimensional sections of the body.

Actually, only a finite number of directions can be considered, giving a discrete nature to the reconstruction problem.

Image reconstructions.

In Computerized Tomography the image of a three-dimensional body is reconstructed by means of X-rays. Algorithms are mainly based on the inversion of the Radon Transform, which (in theory) uniquely determines all the two-dimensional sections of the body.

Actually, only a finite number of directions can be considered, giving a discrete nature to the reconstruction problem.

Problem. Is it possible to ensure uniqueness of reconstruction from X-rays taken in a finite set S of directions for some special classes of geometric sets? Which classes deserve interest for applications?

Image reconstructions.

In Computerized Tomography the image of a three-dimensional body is reconstructed by means of X-rays. Algorithms are mainly based on the inversion of the Radon Transform, which (in theory) uniquely determines all the two-dimensional sections of the body.

Actually, only a finite number of directions can be considered, giving a discrete nature to the reconstruction problem.

Problem. Is it possible to ensure uniqueness of reconstruction from X-rays taken in a finite set S of directions for some special classes of geometric sets? Which classes deserve interest for applications?

Convexity is a natural geometric assumption, and, also, it is frequently involved in natural shapes.

Image reconstructions.

In Computerized Tomography the image of a three-dimensional body is reconstructed by means of X-rays. Algorithms are mainly based on the inversion of the Radon Transform, which (in theory) uniquely determines all the two-dimensional sections of the body.

Actually, only a finite number of directions can be considered, giving a discrete nature to the reconstruction problem.

Problem. Is it possible to ensure uniqueness of reconstruction from X-rays taken in a finite set S of directions for some special classes of geometric sets? Which classes deserve interest for applications?

Convexity is a natural geometric assumption, and, also, it is frequently involved in natural shapes.
In particular we are mainly concerned with convex polytopes.

Convexity in applications.

The main reason is that crystals can be grouped in polyhedral classes, depending on the symmetries of their primitive cell.

cubic

hexagonal

orthorombic

trigonal

tetragonal

triclinic

Applications of discrete tomography to reconstruction of crystals has received considerable attention.
(For instance Salzberg-Figueroa; Batenburg-Palenstijn; Schwander; Tijdeman-te Riele; Baake, Gritzmann, Huck, Langfeld, and Lord)

Beyond convexity.

Beyond convexity.

mint

maple

tomato

grape-wine

edelweiss

sea star

Beyond convexity.

Beyond convexity.

Problem. Find uniqueness results for special (non-convex) clusters of convex polytopes.

Getting uniqueness.

- Uniqueness results are known for convex bodies in $\mathbb{R}^{2}, \mathbb{Z}^{2}$. Gardner-McMullen, 1980; Gardner-Gritzmann, 1997 These could be of course applied to the subclass of convex polygons, but the procedures cannot be extended to non-convex combinations of polygons.

Getting uniqueness.

- Uniqueness results are known for convex bodies in $\mathbb{R}^{2}, \mathbb{Z}^{2}$. Gardner-McMullen, 1980; Gardner-Gritzmann, 1997 These could be of course applied to the subclass of convex polygons, but the procedures cannot be extended to non-convex combinations of polygons.
- Convex polygons are often employed to provide counterexamples (i.e. non-uniqueness results). Giering, 1962; Volčič, 1985; Gardner's book

Getting uniqueness.

- Uniqueness results are known for convex bodies in $\mathbb{R}^{2}, \mathbb{Z}^{2}$. Gardner-McMullen, 1980; Gardner-Gritzmann, 1997 These could be of course applied to the subclass of convex polygons, but the procedures cannot be extended to non-convex combinations of polygons.
- Convex polygons are often employed to provide counterexamples (i.e. non-uniqueness results). Giering, 1962; Volčič, 1985; Gardner's book
- Very few results are known in higher dimensions (mainly in the non-uniqueness direction).
Positive results in \mathbb{Z}^{n} for X-rays in coordinate directions by Fishburn et al., 1991; Vallejo, 1997-1998-2002.
Counterexamples by Volčič, J.Wills and R.Gardner (see Gardner's book). Also by [Fishburn, Lagarias, Reeds, and Shepp, 1990

Additivity and Uniqueness.

- A powerful weapon for uniqueness is additivity.

Additivity and Uniqueness.

- A powerful weapon for uniqueness is additivity.

Let H be a subspace of \mathbb{R}^{n}. A ridge function orthogonal to H is a function which is constant on each translate of H.

Additivity and Uniqueness.

- A powerful weapon for uniqueness is additivity.

Let H be a subspace of \mathbb{R}^{n}. A ridge function orthogonal to H is a function which is constant on each translate of H. Let $\mathcal{H}=\left\{H_{i}: 1 \leq i \leq m\right\}$ be a set of subspaces of \mathbb{R}^{n}. A bounded set $E \subset \mathbb{R}^{n}$ is called \mathcal{H}-additive if

$$
E=\left\{x \in \mathbb{R}^{n}: \sum_{i} f_{i}(x)>0\right\},
$$

where f_{i} is a ridge function orthogonal to H_{i}.

Additivity and Uniqueness.

- A powerful weapon for uniqueness is additivity.

Let H be a subspace of \mathbb{R}^{n}. A ridge function orthogonal to H is a function which is constant on each translate of H. Let $\mathcal{H}=\left\{H_{i}: 1 \leq i \leq m\right\}$ be a set of subspaces of \mathbb{R}^{n}. A bounded set $E \subset \mathbb{R}^{n}$ is called \mathcal{H}-additive if

$$
E=\left\{x \in \mathbb{R}^{n}: \sum_{i} f_{i}(x)>0\right\}
$$

where f_{i} is a ridge function orthogonal to H_{i}.
Theorem. Any \mathcal{H}-additive set is uniquely reconstructible by means of X-rays parallel to the subspaces in \mathcal{H}.

Fishburn et al., 1990

Additivity and Uniqueness.

- A powerful weapon for uniqueness is additivity.

Let H be a subspace of \mathbb{R}^{n}. A ridge function orthogonal to H is a function which is constant on each translate of H.
Let $\mathcal{H}=\left\{H_{i}: 1 \leq i \leq m\right\}$ be a set of subspaces of \mathbb{R}^{n}. A bounded set $E \subset \mathbb{R}^{n}$ is called \mathcal{H}-additive if

$$
E=\left\{x \in \mathbb{R}^{n}: \sum_{i} f_{i}(x)>0\right\}
$$

where f_{i} is a ridge function orthogonal to H_{i}.
Theorem. Any \mathcal{H}-additive set is uniquely reconstructible by means of X-rays parallel to the subspaces in \mathcal{H}.

Fishburn et al., 1990
Remark. The results also holds in the lattice \mathbb{Z}^{n}, provided \mathcal{H} is a so-called Radon Base.

Fishburn-Shepp, 1999

Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex polytope, $n \geq 2$. Then P is \mathcal{H}-additive with respect to the set \mathcal{H} of the $n-1$ dimensional spaces parallel to its facets.
[D-Peri, 2011]

Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex polytope, $n \geq 2$. Then P is \mathcal{H}-additive with respect to the set \mathcal{H} of the $n-1$ dimensional spaces parallel to its facets.
[D-Peri, 2011]

Proof (sketch).

Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex polytope, $n \geq 2$. Then P is \mathcal{H}-additive with respect to the set \mathcal{H} of the $n-1$ dimensional spaces parallel to its facets.
[D-Peri, 2011]

Proof (sketch).

- Let m be the number of facets of P.

Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex polytope, $n \geq 2$. Then P is \mathcal{H}-additive with respect to the set \mathcal{H} of the $n-1$ dimensional spaces parallel to its facets.
[D-Peri, 2011]

Proof (sketch).

- Let m be the number of facets of P.
- $P=\left\{\mathbf{x} \in \mathbb{R}^{n} A^{t} \mathbf{x} \geq \mathbf{b}\right\}$ (the j-th row of A^{t} corresponds to the inner normal to the j-th facet).

Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex polytope, $n \geq 2$. Then P is \mathcal{H}-additive with respect to the set \mathcal{H} of the $n-1$ dimensional spaces parallel to its facets.
[D-Peri, 2011]

Proof (sketch).

- Let m be the number of facets of P.
- $P=\left\{\mathbf{x} \in \mathbb{R}^{n} A^{t} \mathbf{x} \geq \mathbf{b}\right\}$ (the j-th row of A^{t} corresponds to the inner normal to the j-th facet).
- For each $j \in\{1, \ldots, m\}$, define the following function on \mathbb{R}^{n}

$$
f_{j}(x)=\left\{\begin{array}{cl}
-(m-1) / m & \text { if } x \in B_{j}^{-} \\
1 / m & \text { if } x \in \mathrm{cl}\left(B_{j}^{+}\right) .
\end{array}\right.
$$

$B_{j}^{ \pm}=$open half-spaces bounded by the hyperplane of the j-th facet.

Additivity of polytopes.

Additivity of polytopes.

Therefore we have

Additivity of polytopes.

Therefore we have

$$
T=\left\{p \in \mathbb{R}^{3}: f(p)=\sum_{j=1}^{m} f_{j}(p)>0\right\}
$$

Additivity of polytopes.

Therefore we have

For any $P \in \mathbb{R}^{n}$, if p belongs to the skew back-projection of a k-dimensional face of P, then it proves to be $f(p)=k+1-n$, and the additivity of P still follows.

Uniqueness of polytopes.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{P}_{S} be the set of convex polytopes whose facets are parallel to some direction in S.

Uniqueness of polytopes.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{P}_{S} be the set of convex polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $P \in \mathcal{P}_{S}$. Then P is uniquely determined among all measurable sets by its (1-dimensional) X-rays in the directions in S.

Uniqueness of polytopes.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{P}_{S} be the set of convex polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $P \in \mathcal{P}_{S}$. Then P is uniquely determined among all measurable sets by its (1-dimensional) X-rays in the directions in S.
Proof. Let $E \subset \mathbb{R}^{n}$ a measurable set with the same X-rays as P in the directions in S.

Uniqueness of polytopes.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{P}_{S} be the set of convex polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $P \in \mathcal{P}_{S}$. Then P is uniquely determined among all measurable sets by its (1-dimensional) X-rays in the directions in S.
Proof. Let $E \subset \mathbb{R}^{n}$ a measurable set with the same X-rays as P in the directions in S.
Let \mathcal{H}_{P} be the set of $n-1$-dimensional bounding subspaces of P.

Uniqueness of polytopes.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{P}_{S} be the set of convex polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $P \in \mathcal{P}_{S}$. Then P is uniquely determined among all measurable sets by its (1 -dimensional) X-rays in the directions in S.
Proof. Let $E \subset \mathbb{R}^{n}$ a measurable set with the same X-rays as P in the directions in S.
Let \mathcal{H}_{P} be the set of $n-1$-dimensional bounding subspaces of P.
Since $P \in \mathcal{P}_{S}$ then, for each $H \in \mathcal{H}_{P}$ there exists $\mathbf{u}_{H} \in S \cap H$ such that

$$
\lambda_{1}\left(L\left(x, \mathbf{u}_{H}\right) \cap E\right)=\lambda_{1}\left(L\left(x, \mathbf{u}_{H}\right) \cap P\right),
$$

for all $x \in \mathbb{R}^{n}\left(\lambda_{1}=1\right.$-dimensional Lebesgue measure).

Uniqueness of polytopes.

By the Cavalieri principle we get $\lambda_{n-1}(E \cap F)=\lambda_{n-1}(P \cap F)$ for all hyperplane F parallel to H, for all $H \in \mathcal{H}_{P}\left(\lambda_{n-1}=n-1\right.$ dimensional Lebesgue measure).

Uniqueness of polytopes.

By the Cavalieri principle we get $\lambda_{n-1}(E \cap F)=\lambda_{n-1}(P \cap F)$ for all hyperplane F parallel to H, for all $H \in \mathcal{H}_{P}\left(\lambda_{n-1}=n-1\right.$ dimensional Lebesgue measure).

Then E has the same $n-1$ dimensional X-rays as P.

Uniqueness of polytopes.

By the Cavalieri principle we get $\lambda_{n-1}(E \cap F)=\lambda_{n-1}(P \cap F)$ for all hyperplane F parallel to H, for all $H \in \mathcal{H}_{P}\left(\lambda_{n-1}=n-1\right.$ dimensional Lebesgue measure).

Then E has the same $n-1$ dimensional X-rays as P.
Since P is \mathcal{H}_{P}-additive, P is uniquely determined among all measurable sets by its $n-1$ dimensional X-rays.

Uniqueness of polytopes.

By the Cavalieri principle we get $\lambda_{n-1}(E \cap F)=\lambda_{n-1}(P \cap F)$ for all hyperplane F parallel to H, for all $H \in \mathcal{H}_{P}\left(\lambda_{n-1}=n-1\right.$ dimensional Lebesgue measure).

Then E has the same $n-1$ dimensional X-rays as P.
Since P is \mathcal{H}_{P}-additive, P is uniquely determined among all measurable sets by its $n-1$ dimensional X-rays.

Therefore we get $E=P$.

Uniqueness of polytopes.

By the Cavalieri principle we get $\lambda_{n-1}(E \cap F)=\lambda_{n-1}(P \cap F)$ for all hyperplane F parallel to H, for all $H \in \mathcal{H}_{P}\left(\lambda_{n-1}=n-1\right.$ dimensional Lebesgue measure).

Then E has the same $n-1$ dimensional X-rays as P.
Since P is \mathcal{H}_{P}-additive, P is uniquely determined among all measurable sets by its $n-1$ dimensional X-rays.

Therefore we get $E=P$.
Remark. The result also holds in the n-dimensional integer lattice \mathbb{Z}^{n} (\mathcal{H} is a Radon base).

Clusters of twisted polytopes.

Clusters of twisted polytopes.

The idea is to fill the free-regions (where $f(p) \geq 0$) with further polytopes, to get a union of a number of mutually intersecting convex polytopes.

Clusters of twisted polytopes.

The idea is to fill the free-regions (where $f(p) \geq 0$) with further polytopes, to get a union of a number of mutually intersecting convex polytopes.

If the polytopes are carefully selected, the resulting cluster of twisted polytopes is still an additive set.

Clusters of twisted polytopes.

Clusters of twisted polytopes.

Theorem. Let $C \subset \mathbb{R}^{n}$ be a cluster of twisted polytopes
P_{1}, \ldots, P_{r}. Denote by \mathcal{H} the set of all the bounding subspaces of P_{1}, \ldots, P_{r}. Then C is \mathcal{H}-additive.

Clusters of twisted polytopes.

Theorem. Let $C \subset \mathbb{R}^{n}$ be a cluster of twisted polytopes
P_{1}, \ldots, P_{r}. Denote by \mathcal{H} the set of all the bounding subspaces of P_{1}, \ldots, P_{r}. Then C is \mathcal{H}-additive.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{C}_{S} be the set of clusters of twisted polytopes whose facets are parallel to some direction in S.

Clusters of twisted polytopes.

Theorem. Let $C \subset \mathbb{R}^{n}$ be a cluster of twisted polytopes
P_{1}, \ldots, P_{r}. Denote by \mathcal{H} the set of all the bounding subspaces of P_{1}, \ldots, P_{r}. Then C is \mathcal{H}-additive.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{C}_{S} be the set of clusters of twisted polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $C \in \mathcal{C}_{S}$. Then C is uniquely determined among all measurable sets by X-rays in the directions in S.

Clusters of twisted polytopes.

Theorem. Let $C \subset \mathbb{R}^{n}$ be a cluster of twisted polytopes
P_{1}, \ldots, P_{r}. Denote by \mathcal{H} the set of all the bounding subspaces of P_{1}, \ldots, P_{r}. Then C is \mathcal{H}-additive.

For a set S of directions in \mathbb{R}^{n}, let \mathcal{C}_{S} be the set of clusters of twisted polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in $\mathbb{R}^{n}, n \geq 2$, and let $C \in \mathcal{C}_{S}$. Then C is uniquely determined among all measurable sets by X-rays in the directions in S.

The result also holds in the n-dimensional integer lattice \mathbb{Z}^{n}.

Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra on each facet of a starting base.

Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra on each facet of a starting base.

Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra on each facet of a starting base.

Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra on each facet of a starting base.

Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra on each facet of a starting base.

Clusters of twisted polygons.

In the case $n=2$ clusters of twisted polygons can be formed with the property of interlacing boundaries (for each pair of twisted-polygons, the consecutive edges of one have, alternatingly, an empty and a non-empty intersection with the other)

Clusters of twisted polygons.

In the case $n=2$ clusters of twisted polygons can be formed with the property of interlacing boundaries (for each pair of twisted-polygons, the consecutive edges of one have, alternatingly, an empty and a non-empty intersection with the other)

This is related to the notion of inscribability.

Clusters of twisted polygons.

In the case $n=2$ clusters of twisted polygons can be formed with the property of interlacing boundaries (for each pair of twisted-polygons, the consecutive edges of one have, alternatingly, an empty and a non-empty intersection with the other)

This is related to the notion of inscribability.
For a finite set \mathcal{D} of directions in \mathbb{R}^{2}, a convex body $K \subset \mathbb{R}^{2}$ is \mathcal{D}-inscribable if its interior is the union of interiors of convex polygons inscribed in K, each of whose edges is parallel to some direction in \mathcal{D}.

Clusters of twisted polygons.

- If \mathcal{D} consists of the set of coordinate directions in the plane

Clusters of twisted polygons.

- If \mathcal{D} consists of the set of coordinate directions in the plane $\bullet \mathcal{D}$-inscribability and uniqueness by means of X-rays in the directions in \mathcal{D} are equivalent. Kuba-Volc̆ič, 1988
$\bullet \mathcal{D}$-inscribability and \mathcal{D}-additivity are equivalent. Gardner, 1992

Clusters of twisted polygons.

- If \mathcal{D} consists of the set of coordinate directions in the plane -• \mathcal{D}-inscribability and uniqueness by means of X-rays in the directions in \mathcal{D} are equivalent. Kuba-Volčič, 1988
- \mathcal{D}-inscribability and \mathcal{D}-additivity are equivalent. Gardner, 1992
- For any finite set \mathcal{D} of directions every \mathcal{D}-inscribable set is also \mathcal{D}-additive, but the converse is not always true. Gardner, 1992

Clusters of twisted polygons.

- If \mathcal{D} consists of the set of coordinate directions in the plane -• \mathcal{D}-inscribability and uniqueness by means of X-rays in the directions in \mathcal{D} are equivalent. Kuba-Volčič, 1988
- \mathcal{D}-inscribability and \mathcal{D}-additivity are equivalent. Gardner, 1992
- For any finite set \mathcal{D} of directions every \mathcal{D}-inscribable set is also \mathcal{D}-additive, but the converse is not always true. Gardner, 1992

From special clusters of twisted polygons we get a discrete counterpart of inscribability, where sets are not necessarily convex.

Clusters of twisted polygons.

- If \mathcal{D} consists of the set of coordinate directions in the plane - \mathcal{D}-inscribability and uniqueness by means of X-rays in the directions in \mathcal{D} are equivalent. Kuba-Volčič, 1988
- \mathcal{D}-inscribability and \mathcal{D}-additivity are equivalent. Gardner, 1992
- For any finite set \mathcal{D} of directions every \mathcal{D}-inscribable set is also \mathcal{D}-additive, but the converse is not always true. Gardner, 1992

From special clusters of twisted polygons we get a discrete counterpart of inscribability, where sets are not necessarily convex.
Theorem Let \mathcal{D} be a finite set of at least two nonparallel lattice directions. Then the class of non-degenerate \mathcal{D}-inscribable sets is \mathcal{D}-unique. [D.-Peri, 2011]
This seems to be interesting in view of applications to sections of non-convex bodies

