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Image reconstructions.

In Computerized Tomography the image of a three-dimensional
body is reconstructed by means of X -rays. Algorithms are
mainly based on the inversion of the Radon Transform, which
(in theory) uniquely determines all the two-dimensional
sections of the body.

Actually, only a finite number of directions can be considered,
giving a discrete nature to the reconstruction problem.

Problem. Is it possible to ensure uniqueness of reconstruction
from X -rays taken in a finite set S of directions for some special
classes of geometric sets? Which classes deserve interest for
applications?

Convexity is a natural geometric assumption, and, also, it is
frequently involved in natural shapes.
In particular we are mainly concerned with convex polytopes.
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Convexity in applications.

The main reason is that crystals can be grouped in polyhedral
classes, depending on the symmetries of their primitive cell.
 

cubic hexagonal
e 

orthorombic trigonal tetragonal monoclinic triclinic 

Applications of discrete tomography to reconstruction of
crystals has received considerable attention.
(For instance Salzberg-Figueroa; Batenburg-Palenstijn;
Schwander; Tijdeman-te Riele; Baake, Gritzmann, Huck,
Langfeld, and Lord)
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Beyond convexity.
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Beyond convexity.

 

  

quartz amethyst diamond 

Problem. Find uniqueness results for special (non-convex)
clusters of convex polytopes.
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Getting uniqueness.

• Uniqueness results are known for convex bodies in R2,Z2.
Gardner-McMullen, 1980; Gardner-Gritzmann, 1997
These could be of course applied to the subclass of convex
polygons, but the procedures cannot be extended to
non-convex combinations of polygons.

• Convex polygons are often employed to provide
counterexamples (i.e. non-uniqueness results). Giering, 1962;
Volčič, 1985; Gardner’s book

• Very few results are known in higher dimensions (mainly in
the non-uniqueness direction).
Positive results in Zn for X -rays in coordinate directions by
Fishburn et al., 1991; Vallejo, 1997-1998-2002.
Counterexamples by Volčič, J.Wills and R.Gardner (see
Gardner’s book). Also by [Fishburn, Lagarias, Reeds, and
Shepp, 1990
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Additivity and Uniqueness.

• A powerful weapon for uniqueness is additivity.

Let H be a subspace of Rn. A ridge function orthogonal to H is
a function which is constant on each translate of H.
Let H = {Hi : 1 ≤ i ≤ m} be a set of subspaces of Rn. A
bounded set E ⊂ Rn is called H-additive if

E =

{
x ∈ Rn :

∑
i

fi(x) > 0

}
,

where fi is a ridge function orthogonal to Hi .
Theorem. Any H-additive set is uniquely reconstructible by
means of X -rays parallel to the subspaces in H.

Fishburn et al., 1990
Remark. The results also holds in the lattice Zn, provided H is
a so-called Radon Base. Fishburn-Shepp, 1999
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Additivity of polytopes.

Theorem. Let P be a non-degenerate n-dimensional convex
polytope, n ≥ 2. Then P is H-additive with respect to the set H
of the n − 1 dimensional spaces parallel to its facets.

[D-Peri, 2011]

Proof (sketch).
• Let m be the number of facets of P.
• P = {x ∈ Rn Atx ≥ b} (the j-th row of At corresponds to the
inner normal to the j-th facet).
• For each j ∈ {1, ...,m}, define the following function on Rn

fj(x) =


−(m − 1)/m if x ∈ B−

j

1/m if x ∈ cl(B+
j ).

B±
j =open half-spaces bounded by the hyperplane of the j-th

facet.
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Additivity of polytopes.
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Additivity of polytopes.
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Additivity of polytopes.
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Additivity of polytopes. 
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Additivity of polytopes.
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Additivity of polytopes.

Therefore we have

 

0 

1 

-2 

-1 

T 

T =

p ∈ R3 : f (p) =
m∑

j=1

fj(p) > 0

 .

For any P ∈ Rn, if p belongs to the skew back-projection of a
k -dimensional face of P, then it proves to be f (p) = k + 1− n,
and the additivity of P still follows.
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Uniqueness of polytopes.

For a set S of directions in Rn, let PS be the set of convex
polytopes whose facets are parallel to some direction in S.

Theorem. Let S be a set of non-parallel directions in Rn, n ≥ 2,
and let P ∈ PS. Then P is uniquely determined among all
measurable sets by its (1-dimensional) X -rays in the directions
in S.
Proof. Let E ⊂ Rn a measurable set with the same X -rays as P
in the directions in S.
Let HP be the set of n − 1-dimensional bounding subspaces of
P.
Since P ∈ PS then, for each H ∈ HP there exists uH ∈ S ∩ H
such that

λ1(L(x ,uH) ∩ E) = λ1(L(x ,uH) ∩ P),

for all x ∈ Rn (λ1=1-dimensional Lebesgue measure).
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Uniqueness of polytopes.

By the Cavalieri principle we get λn−1(E ∩ F ) = λn−1(P ∩ F ) for
all hyperplane F parallel to H, for all H ∈ HP (λn−1=n − 1
dimensional Lebesgue measure).

Then E has the same n − 1 dimensional X -rays as P.

Since P is HP-additive, P is uniquely determined among all
measurable sets by its n − 1 dimensional X -rays.

Therefore we get E = P.

Remark. The result also holds in the n-dimensional integer
lattice Zn (H is a Radon base).
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Then E has the same n − 1 dimensional X -rays as P.

Since P is HP-additive, P is uniquely determined among all
measurable sets by its n − 1 dimensional X -rays.

Therefore we get E = P.

Remark. The result also holds in the n-dimensional integer
lattice Zn (H is a Radon base).

Paolo Dulio, Politecnico di Milano Cortona, Italy, June 12-18, 2011



Clusters of twisted polytopes.
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The idea is to fill the free-regions (where f (p) ≥ 0) with further
polytopes, to get a union of a number of mutually intersecting
convex polytopes.

If the polytopes are carefully selected, the resulting cluster of
twisted polytopes is still an additive set.
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Clusters of twisted polytopes.

Theorem. Let C ⊂ Rn be a cluster of twisted polytopes
P1, ...,Pr . Denote by H the set of all the bounding subspaces of
P1, ...,Pr . Then C is H-additive.

For a set S of directions in Rn, let CS be the set of clusters of
twisted polytopes whose facets are parallel to some direction in
S.

Theorem. Let S be a set of non-parallel directions in Rn, n ≥ 2,
and let C ∈ CS. Then C is uniquely determined among all
measurable sets by X -rays in the directions in S.

The result also holds in the n-dimensional integer lattice Zn.
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Clusters of twisted polytopes.

We can approximate natural shapes by adding new polyhedra
on each facet of a starting base.
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Clusters of twisted polygons.

In the case n = 2 clusters of twisted polygons can be formed
with the property of interlacing boundaries (for each pair of
twisted-polygons, the consecutive edges of one have,
alternatingly, an empty and a non-empty intersection with the
other)

This is related to the notion of inscribability.

For a finite set D of directions in R2, a convex body K ⊂ R2 is
D-inscribable if its interior is the union of interiors of convex
polygons inscribed in K , each of whose edges is parallel to
some direction in D.
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Clusters of twisted polygons.

• If D consists of the set of coordinate directions in the plane

•• D-inscribability and uniqueness by means of X -rays in the
directions in D are equivalent. Kuba-Volc̆ic̆, 1988
•• D-inscribability and D-additivity are equivalent. Gardner,
1992
• For any finite set D of directions every D-inscribable set is
also D-additive, but the converse is not always true. Gardner,
1992

From special clusters of twisted polygons we get a discrete
counterpart of inscribability, where sets are not necessarily
convex.
Theorem Let D be a finite set of at least two nonparallel lattice
directions. Then the class of non-degenerate D-inscribable sets
is D-unique. [D.-Peri, 2011]
This seems to be interesting in view of applications to sections
of non-convex bodies
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