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Voronoi tessellation

Let X̃ ⊂ Rn denote a point set in general position. For x ∈ X̃ ,

C(X̃ , x) := {y ∈ Rn : d(y , x) ≤ dist(y , X̃)}

is the Voronoi cell of X̃ with centre (nucleus) x . The collection X of all
these cells constitutes a Voronoi tessellation.
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Poisson Voronoi tessellation

Let X̃ be a stationary Poisson point process in Rn with intensity λ.

This is a random collection of points in space such that, for A ⊂ Rn, the
random variable X̃(A) := |X̃ ∩ A| follows a Poisson distribution with
Poisson parameter λ · Vd (A) = EX̃(A).

The constant λ ≥ 0 is the intensity of X̃ .

The induced random Voronoi tessellation X := {C(X̃ , x) : x ∈ X̃} is
called Poisson Voronoi tessellation (PVT). It also has intensity λ.
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Typical Poisson Voronoi cell

Let X be a stationary PVT with intensity λ.

A ‘uniform random selection’ of one cell Z from the collection of infini-
tely many cells of X , after translation of the cell so that its nucleus is at
the origin, is called typical cell of X .

Let B ⊂ Rn with λn(B) = 1. The distribution of the typical cell Z of X is

P{Z ∈ ·} :=
1
λ
· E
∑
x∈X̃

1{C(X̃ , x)− x ∈ ·}1B(x).

A characteristic property of Poisson processes (due to J. Mecke) and the
translation invariance of X̃ yield

P{Z ∈ ·} = P{C(X̃ ∪ {o}, o) ∈ ·},
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that is,
Z = C(X̃ ∪ {o}, o) = Zo(Y ),

where Y is an isotropic but instationary Poisson hyperplane process:

Y =
{

H
(

x
‖x‖ ,

1
2‖x‖

)
: x ∈ X̃ \ {o}

}
:
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Shape of large cells: Kendall’s problem

To estimate the size of the typical cell Z of X , we can use e.g. intrinsic
volumes

V1, . . . ,Vn

or the centred inradius
Rm.

The deviation from spherical shape is measured by

ϑ :=
RM − Rm

RM + Rm
,

RM is the centred circumradius.
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Hug, Reitzner, Schneider ’04

Let X be a stationary PVT with intensity λ in Rn and k ∈ {1, . . . , n}.
There is a constant c0 = c0(n) such that the following is true:

If ε ∈ (0, 1) and a ≥ 1, then

P{ϑ(Z ) ≥ ε | Vk (Z ) ≥ a} ≤ c exp
{
−c0ε

(n+3)/2an/kλ
}

and
P{ϑ(Z ) ≥ ε | Rm(Z ) ≥ a} ≤ c exp

{
−c0ε

(n+1)/2anλ
}
,

where c = c(n, ε).
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Hug & Schneider ’11
Let ρ ≥ 1, and choose α with

0 < α < n−1
n+1 , so that β := n−1

2 − α
n+1

2 > 0.

Then there exist c1 = c1(n, γ) and c2 = c2(n) such that

P
{

RM(Z ) ≤ ρ+ ρ−α | Rm(Z ) ≥ ρ
}
≥ 1− c1 exp

{
−c2λρ

β
}
.

If ρBn ⊂ Z , then Bn ⊂ ρ−1Z ⊂ (1 + ρ−1−α)Bn w.h.p.

n = 2 : Calka ’02

8 / 23



Hug & Schneider ’11
Let ρ ≥ 1, and choose α with

0 < α < n−1
n+1 , so that β := n−1

2 − α
n+1

2 > 0.

Then there exist c1 = c1(n, γ) and c2 = c2(n) such that

P
{

RM(Z ) ≤ ρ+ ρ−α | Rm(Z ) ≥ ρ
}
≥ 1− c1 exp

{
−c2λρ

β
}
.

If ρBn ⊂ Z , then Bn ⊂ ρ−1Z ⊂ (1 + ρ−1−α)Bn w.h.p.

n = 2 : Calka ’02

8 / 23



Random mosaics in high dimensions

(joint with Julia Hörrmann)

K. Alishahi, M. Sharifitabar ’08
Let Z denote the typical cell of a Poisson Voronoi tessellation in Rn with
intensity λ. Then, for all n ∈ N,

E[Vn(Z )] =
1
λ

and

c · 1√
n

(
4

3
√

3

)n

≤ Var[Vn(Z )] ≤ C · 1√
n

(
4

3
√

3

)n

.

Newman, Rinott’85: Convergence in distribution via convergence of moments
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What can we say about the shape of the typcial cell Z?

Idea: consider Vn(Z ∩ Bn
u) as a function of the parameter u ≥ 0

Bn
u : ball centred at o with n-dimensional volume u
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K. Alishahi, M. Sharifitabar ’08

E[Vn(Z ∩ Bn
u)] =

1
λ

(1− e−λu), for u ∈ (0,∞) and all n,

Var(Vn(Z ∩ Bn
u))→ 0, as n→∞.

Consequence:
E∆s(Z ,Bn

u) ≥ ln(2)/λ

and
∆s(Z ,Bn

u)− E∆s(Z ,Bn
u)→ 0 in L2 as n→∞.
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Covariogram of random sets

For a set Z ⊂ Rn (random or not), let

gZ (v) := Vn(Z ∩ (Z + v)), v ∈ Rn,

be the geometric covariogram of Z .

A & S ’08: for the typical cell Z of a stationary PVT, s ≥ 0, vn ∈ Sn−1,

E[gZ (svn)]→ c(λ, s) as n→∞,

where c(λ, s) is given by an integral (rather explicitly).

Yao ’10:
Var(gZ (v)) ≤ 4 · Var(Vn(Z )), v ∈ Rn.
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Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations?

Recall: Random hyperplane systems induce random tessellations.
Specifically, we consider a stationary Poisson hyperplane process X in
Rn of intensity γ and the induced PHT.

Let Zo denote the cell containing the origin.
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A hyperplane process X in Rn is a Poisson process if

P {X(A) = k} =
Θ(A)k

k!
· e−Θ(A),

for all measurable A ⊂ H and k ∈ N0 and a locally finite measure Θ on
the space H of hyperplanes.

In particular, EX(A) = Θ(A).

If X is stationary, then Θ is a translation invariant measure.

If X is isotropic, then Θ is a rotation invariant measure.

For a Poisson process, the converse statements are true, too.
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If X is a stationary (Poisson) hyperplane process in Rn, then its translation
invariant intensity measure EX(·) is of the form

EX = 2γ
∫ ∞

0

∫
Sn−1

1{u⊥ + tu ∈ ·}ϕ(du) dt

with some even probability measure ϕ on Sn−1 and γ ≥ 0.

Terminology:

γ: intensity of X

ϕ: direction distribution of X

Special case:

ϕ normalized spherical Lebesgue measure
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Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations in high dimensions?

Let Zo be the zero cell of a stationary and isotropic Poisson hyperplane
tessellation of intensity γ in Rn. Then

EVn(Zo)→∞ and Var(Vn(Zo))→∞,

as n→∞.

Modification(s)?

A natural first attempt is to adjust the intensity γ = γ(n, λ) in such a way
that EVn(Zo) = λ−1.

However, then the variance is still divergent.
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What kind of change is happening if we pass from Poisson Voronoi
to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider ’07:

Let X be a PHP with intensity measure of the form

Θ(A) =
2γ
nκn

∫
Sn−1

∫ ∞
0

1{H(u, t) ∈ A}t r−1 dt σ(du)

for A ⊂ H, with intensity γ > 0 and distance exponent r ∈ [1,∞).

X is isotropic, but stationary only for r = 1.

Voronoi-case: γVoronoi = nκn2n−1λ and r = n.
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Further objects of investigation

0 0 0

Volume of the section of Zo with

n-dim. ball: Vn(Zo ∩ Bn
u), for u ∈ (0,∞)

m-dim. ball: Vm(Zo ∩ Bm
u ), for u ∈ (0,∞),m ≤ n

subspace through o: Vm(Zo ∩ L), for L ∈ G(n,m),m ≤ n.
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Distance exponent r proportional to n:

Vn(Zo) Vm(Zo ∩ Bm
u ) Vn−l(Zo ∩Bn−l

u ) Vn−l(Zo∩L)

r = an,
a > 0
γ constant

E→ 0
Var→ 0

E → Vm(Bm
R(a)∩Bm

u )

Var→ 0
E→ 0
Var→ 0

-

r = an,
a > 0
γ(a, n, λ),
λ > 0

E→ 1
λ

Var→ 0
E→ u
Var→ 0

E→ I(a, u, l, λ)

Var→ 0
E→ e

l
2

λ
Var→ 0

m, l ∈ N constant, L ∈ G(n, n − l)

γ(1, n, λ) = γVoronoi !
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Slicing problem

Let K ⊂ Rn be a convex body with Vn(K ) = 1. ∃H ∈ Hn such that

Vn−1(K ∩ H) ≥ c?

For a convex body K ⊂ Rn, the isotropic constant LK of K is defined by

n · L2
K := min

T

1

Vn(TK )1+ 2
n

∫
TK
‖x‖2 dx .

Is there a universal constant C such that

LK ≤ C

for all convex bodies K ⊂ Rn and all n ∈ N?
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Some known results

LK ≤ c · n1/4 log(n) Bourgain (1991)

LK ≤ c · n1/4
Klartag (2006)

Conjecture holds for special classes of bodies (zonoids, ...)

LP ≤ C · (f0(P)/n)1/2
Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

The isotropic constant of certain r.p. is bounded with high probability:
Gaussian polytopes Klartag, Kozma (2008)

Random polytopes whose vertices have independent coordinates
Random polytopes spanned by r.p. from Sn−1

Alonso-Gutiérrez (2008)

Random polytopes in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)
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Yet another partial ...

Let Z o :=
(
Vn(Zo)

)− 1
n Zo be the normalized zero cell of a PHP in Rn with

distance exponent r = an and intensity γ(a, n, λ). Then, for any
L ∈ G(n, n − 1),

P
{

Vn−1(Z o ∩ L) >

√
e

2

}
≥ 1− C

(
1√
n

(
2√
5

)an

+

(
2√
5

)n)
for a universal constant C > 0.

Ef0(Zo) ≥ c · n(n−2)/2.
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Some explicit formulas – based on integral geometry

E[Vn(Zo)] = Γ
(n

r
+ 1
)
κn

(
nκnr

2γc(n, r)

) n
r

E[
(
Vn(Zo)

)2
] = bn,24π

π∫
0

2

∞∫
0

1∫
0

exp
[
− 2γc(n, r)

nκnr
sr Γ( r

2 + 1)
√
πΓ( r+1

2 )

×
( α(ϕ,t)∫
−π

2

(cos θ)r dθ t r +

π
2∫

α(ϕ,t)−ϕ

(cos θ)r dθ
)]

s2n−1tn−1(sinϕ)n−2dt ds dϕ
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