Karlsruher Institut für Technologie

Random tessellations some high-dimensional aspects

Daniel Hug | June 13, 2011

CORTONA

Voronoi tessellation

Let $\widetilde{X} \subset \mathbb{R}^{n}$ denote a point set in general position. For $x \in \widetilde{X}$,

$$
C(\widetilde{X}, x):=\left\{y \in \mathbb{R}^{n}: d(y, x) \leq \operatorname{dist}(y, \widetilde{X})\right\}
$$

is the Voronoi cell of \tilde{X} with centre (nucleus) x. The collection X of all these cells constitutes a Voronoi tessellation.

Poisson Voronoi tessellation

Let \widetilde{X} be a stationary Poisson point process in \mathbb{R}^{n} with intensity λ.
This is a random collection of points in space such that, for $A \subset \mathbb{R}^{n}$, the random variable $\widetilde{X}(A):=|\widetilde{X} \cap A|$ follows a Poisson distribution with Poisson parameter $\lambda \cdot V_{d}(A)=\mathbb{E} \widetilde{X}(A)$.

The constant $\lambda \geq 0$ is the intensity of \widetilde{X}.

The induced random Voronoi tessellation $X:=\{C(\widetilde{X}, x): x \in \widetilde{X}\}$ is called Poisson Voronoi tessellation (PVT). It also has intensity λ.

Typical Poisson Voronoi cell

Let X be a stationary PVT with intensity λ.

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^{n}$ with $\lambda^{n}(B)=1$. The distribution of the typical cell Z of X is

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of X yield

Typical Poisson Voronoi cell

Let X be a stationary PVT with intensity λ.

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^{n}$ with $\lambda^{n}(B)=1$. The distribution of the typical cell Z of X is

$$
\mathbb{P}\{Z \in \cdot\}:=\frac{1}{\lambda} \cdot \mathbb{E} \sum_{x \in \tilde{X}} \mathbf{1}\{C(\widetilde{X}, x)-x \in \cdot\} 1_{B}(x)
$$

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of X yield

Typical Poisson Voronoi cell

Let X be a stationary PVT with intensity λ.

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^{n}$ with $\lambda^{n}(B)=1$. The distribution of the typical cell Z of X is

$$
\mathbb{P}\{Z \in \cdot\}:=\frac{1}{\lambda} \cdot \mathbb{E} \sum_{x \in \tilde{X}} 1\{C(\widetilde{X}, x)-x \in \cdot\} 1_{B}(x)
$$

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of \widetilde{X} yield

$$
\mathbb{P}\{Z \in \cdot\}=\mathbb{P}\{C(\widetilde{X} \cup\{o\}, o) \in \cdot\}
$$

that is,

$$
Z=C(\widetilde{X} \cup\{o\}, o)=Z_{o}(Y)
$$

where Y is an isotropic but instationary Poisson hyperplane process:

$$
Y=\left\{H\left(\frac{x}{\|x\|}, \frac{1}{2}\|x\|\right): x \in \widetilde{X} \backslash\{0\}\right\}:
$$

Shape of large cells: Kendall's problem

To estimate the size of the typical cell Z of X, we can use e.g. intrinsic volumes

$$
V_{1}, \ldots, V_{n}
$$

or the centred inradius

$$
R_{m}
$$

The deviation from spherical shape is measured by

R_{M} is the centred circumradius.

Shape of large cells: Kendall's problem

To estimate the size of the typical cell Z of X, we can use e.g. intrinsic volumes

$$
V_{1}, \ldots, V_{n}
$$

or the centred inradius

$$
R_{m}
$$

The deviation from spherical shape is measured by

$$
\vartheta:=\frac{R_{M}-R_{m}}{R_{M}+R_{m}},
$$

R_{M} is the centred circumradius.

Hug, Reitzner, Schneider '04

Let X be a stationary PVT with intensity λ in \mathbb{R}^{n} and $k \in\{1, \ldots, n\}$. There is a constant $c_{0}=c_{0}(n)$ such that the following is true: If $\epsilon \in(0,1)$ and $a \geq 1$, then

$$
\mathbb{P}\left\{\vartheta(Z) \geq \epsilon \mid V_{k}(Z) \geq a\right\} \leq c \exp \left\{-c_{0} \epsilon^{(n+3) / 2} a^{n / k} \lambda\right\}
$$

and

$$
\mathbb{P}\left\{\vartheta(Z) \geq \epsilon \mid R_{m}(Z) \geq a\right\} \leq c \exp \left\{-c_{0} \epsilon^{(n+1) / 2} a^{n} \lambda\right\}
$$

where $c=c(n, \epsilon)$.

Hug \& Schneider '11

Let $\rho \geq 1$, and choose α with

$$
0<\alpha<\frac{n-1}{n+1}, \quad \text { so that } \quad \beta:=\frac{n-1}{2}-\alpha \frac{n+1}{2}>0
$$

Then there exist $c_{1}=c_{1}(n, \gamma)$ and $c_{2}=c_{2}(n)$ such that

$$
\mathbb{P}\left\{R_{M}(Z) \leq \rho+\rho^{-\alpha} \mid R_{m}(Z) \geq \rho\right\} \geq 1-c_{1} \exp \left\{-c_{2} \lambda \rho^{\beta}\right\} .
$$

Hug \& Schneider '11

Let $\rho \geq 1$, and choose α with

$$
0<\alpha<\frac{n-1}{n+1}, \quad \text { so that } \quad \beta:=\frac{n-1}{2}-\alpha \frac{n+1}{2}>0
$$

Then there exist $c_{1}=c_{1}(n, \gamma)$ and $c_{2}=c_{2}(n)$ such that

$$
\mathbb{P}\left\{R_{M}(Z) \leq \rho+\rho^{-\alpha} \mid R_{m}(Z) \geq \rho\right\} \geq 1-c_{1} \exp \left\{-c_{2} \lambda \rho^{\beta}\right\} .
$$

- If $\rho B^{n} \subset Z$, then $B^{n} \subset \rho^{-1} Z \subset\left(1+\rho^{-1-\alpha}\right) B^{n} \quad$ w.h.p.
- $n=2$: Calka '02

Random mosaics in high dimensions

(joint with Julia Hörrmann)

K. Alishahi, M. Sharifitabar '08
 Let Z denote the tynical cell of a Poisson Voronoi tessellation in \mathbb{R}^{n} with intensity λ. Then, for all $n \in \mathbb{N}$

and

Newman, Rinott'85: Convergence in distribution via convergence of moments

Random mosaics in high dimensions

(joint with Julia Hörrmann)

K. Alishahi, M. Sharifitabar '08

Let Z denote the typical cell of a Poisson Voronoi tessellation in \mathbb{R}^{n} with intensity λ. Then, for all $n \in \mathbb{N}$,

$$
\mathbb{E}\left[V_{n}(Z)\right]=\frac{1}{\lambda}
$$

and

$$
c \cdot \frac{1}{\sqrt{n}}\left(\frac{4}{3 \sqrt{3}}\right)^{n} \leq \operatorname{Var}\left[V_{n}(Z)\right] \leq C \cdot \frac{1}{\sqrt{n}}\left(\frac{4}{3 \sqrt{3}}\right)^{n} .
$$

Newman, Rinott'85: Convergence in distribution via convergence of moments

What can we say about the shape of the typcial cell Z ?
Idea: consider $V_{n}\left(Z \cap B_{u}^{n}\right)$ as a function of the parameter $u \geq 0$

B_{u}^{n} : ball centred at o with n-dimensional volume u

K. Alishahi, M. Sharifitabar '08

$$
\mathbb{E}\left[V_{n}\left(Z \cap B_{u}^{n}\right)\right]=\frac{1}{\lambda}\left(1-e^{-\lambda u}\right), \quad \text { for } u \in(0, \infty) \text { and all } n,
$$

$$
\operatorname{Var}\left(V_{n}\left(Z \cap B_{u}^{n}\right)\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Consequence:

$$
\mathbb{E} \Delta_{s}\left(Z, B_{u}^{n}\right) \geq \ln (2) / \lambda
$$

and

$$
\Delta_{s}\left(Z, B_{u}^{n}\right)-\mathbb{E} \Delta_{s}\left(Z, B_{u}^{n}\right) \rightarrow 0 \quad \text { in } L^{2} \text { as } n \rightarrow \infty .
$$

Covariogram of random sets

For a set $Z \subset \mathbb{R}^{n}$ (random or not), let

$$
g_{Z}(v):=V_{n}(Z \cap(Z+v)), \quad v \in \mathbb{R}^{n}
$$

be the geometric covariogram of Z.
A \& S '08: for the typical cell Z of a stationary PVT, $s \geq 0, v_{n} \in \mathbb{S}^{n-1}$

where $c(\lambda, s)$ is given by an integral (rather explicitly).

Yao '10:

$$
\operatorname{Var}\left(g_{Z}(v)\right) \leq 4 \cdot \operatorname{Var}\left(V_{n}(Z)\right)
$$

Covariogram of random sets

For a set $Z \subset \mathbb{R}^{n}$ (random or not), let

$$
g_{Z}(v):=V_{n}(Z \cap(Z+v)), \quad v \in \mathbb{R}^{n},
$$

be the geometric covariogram of Z.
A \& S '08: for the typical cell Z of a stationary PVT, $s \geq 0, v_{n} \in \mathbb{S}^{n-1}$,

$$
\mathbb{E}\left[g_{z}\left(s v_{n}\right)\right] \rightarrow c(\lambda, s) \quad \text { as } n \rightarrow \infty,
$$

where $c(\lambda, s)$ is given by an integral (rather explicitly).
Yao '10:
$\operatorname{Var}\left(g_{z}(v)\right) \leq 4 \cdot \operatorname{Var}\left(V_{n}(Z)\right)$,

Covariogram of random sets

For a set $Z \subset \mathbb{R}^{n}$ (random or not), let

$$
g_{z}(v):=V_{n}(Z \cap(Z+v)), \quad v \in \mathbb{R}^{n}
$$

be the geometric covariogram of Z.
A \& S '08: for the typical cell Z of a stationary PVT, $s \geq 0, v_{n} \in \mathbb{S}^{n-1}$,

$$
\mathbb{E}\left[g_{z}\left(s v_{n}\right)\right] \rightarrow c(\lambda, s) \quad \text { as } n \rightarrow \infty
$$

where $c(\lambda, s)$ is given by an integral (rather explicitly).
Yao '10:

$$
\operatorname{Var}\left(g_{Z}(v)\right) \leq 4 \cdot \operatorname{Var}\left(V_{n}(Z)\right), \quad v \in \mathbb{R}^{n}
$$

Are there analogous results for the volume of the zero cell of Poisson hyperplane tessellations?

Recall: Random hyperplane systems induce random tessellations.
Specifically, we consider a stationary Poisson hyperplane process X in \mathbb{R}^{n} of intensity γ and the induced PHT.

Let Z_{0} denote the cell containing the origin.

Are there analogous results for the volume of the zero cell of

 Poisson hyperplane tessellations?Recall: Random hyperplane systems induce random tessellations. Specifically, we consider a stationary Poisson hyperplane process X in \mathbb{R}^{n} of intensity γ and the induced PHT.

Let Z_{0} denote the cell containing the origin.

A hyperplane process X in \mathbb{R}^{n} is a Poisson process if

$$
\mathbb{P}\{X(A)=k\}=\frac{\Theta(A)^{k}}{k!} \cdot e^{-\Theta(A)}
$$

for all measurable $A \subset \mathcal{H}$ and $k \in \mathbb{N}_{0}$ and a locally finite measure Θ on the space \mathcal{H} of hyperplanes.

- In particular, $\mathbb{E} X(A)=\Theta(A)$.
- If X is stationary, then Θ is a translation invariant measure.
- If X is isotropic, then Θ is a rotation invariant measure.
- For a Poisson process, the converse statements are true, too.

A hyperplane process X in \mathbb{R}^{n} is a Poisson process if

$$
\mathbb{P}\{X(A)=k\}=\frac{\Theta(A)^{k}}{k!} \cdot e^{-\Theta(A)}
$$

for all measurable $A \subset \mathcal{H}$ and $k \in \mathbb{N}_{0}$ and a locally finite measure Θ on the space \mathcal{H} of hyperplanes.

- In particular, $\mathbb{E} X(A)=\Theta(A)$.
- If X is stationary, then Θ is a translation invariant measure.
- If X is isotropic, then Θ is a rotation invariant measure.
- For a Poisson process, the converse statements are true, too.

If X is a stationary (Poisson) hyperplane process in \mathbb{R}^{n}, then its translation invariant intensity measure $\mathbb{E} X(\cdot)$ is of the form

$$
\mathbb{E} X=2 \gamma \int_{0}^{\infty} \int_{\mathbb{S}^{n-1}} \mathbf{1}\left\{u^{\perp}+t u \in \cdot\right\} \varphi(d u) d t
$$

with some even probability measure φ on \mathbb{S}^{n-1} and $\gamma \geq 0$.
Terminology:

- γ : intensity of X
- φ : direction distribution of X

Special case:

- φ normalized spherical Lebesgue measure

Are there analogous results for the volume of the zero cell of Poisson hyperplane tessellations in high dimensions?

Let Z_{o} be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^{n}. Then

$$
\mathbb{E} V_{n}\left(Z_{0}\right) \rightarrow \infty \quad \text { and } \quad \operatorname{Var}\left(V_{n}\left(Z_{0}\right)\right) \rightarrow \infty
$$

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma=\gamma(n, \lambda)$ in such a way that $\mathbb{E} V_{n}\left(Z_{0}\right)=\lambda^{-1}$.

However, then the variance is still divergent.

Are there analogous results for the volume of the zero cell of Poisson hyperplane tessellations in high dimensions?

Let Z_{0} be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^{n}. Then

$$
\mathbb{E} V_{n}\left(Z_{0}\right) \rightarrow \infty \quad \text { and } \quad \operatorname{Var}\left(V_{n}\left(Z_{0}\right)\right) \rightarrow \infty
$$

as $n \rightarrow \infty$.

Modification(s)?
A natural first attemn is to adjust the intensity $\gamma=\gamma(n, \lambda)$ in such a way that $\mathbb{E} V_{n}\left(Z_{0}\right)=\lambda^{-1}$

However, then the variance is still divergent.

Are there analogous results for the volume of the zero cell of Poisson hyperplane tessellations in high dimensions?

Let Z_{o} be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^{n}. Then

$$
\mathbb{E} V_{n}\left(Z_{0}\right) \rightarrow \infty \quad \text { and } \quad \operatorname{Var}\left(V_{n}\left(Z_{0}\right)\right) \rightarrow \infty
$$

as $n \rightarrow \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma=\gamma(n, \lambda)$ in such a way that $\mathbb{E} V_{n}\left(Z_{o}\right)=\lambda^{-1}$

However then the variznce is still divergent.

Are there analogous results for the volume of the zero cell of Poisson hyperplane tessellations in high dimensions?

Let Z_{o} be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^{n}. Then

$$
\mathbb{E} V_{n}\left(Z_{0}\right) \rightarrow \infty \quad \text { and } \quad \operatorname{Var}\left(V_{n}\left(Z_{0}\right)\right) \rightarrow \infty
$$

as $n \rightarrow \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma=\gamma(n, \lambda)$ in such a way that $\mathbb{E} V_{n}\left(Z_{0}\right)=\lambda^{-1}$.

However, then the variance is still divergent.

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H , Schneider '07:

Let X be a PHP with intensity measure of the form

$$
\Theta(\mathcal{A})=\frac{2 \gamma}{n \kappa_{n}} \int_{\mathbb{S}^{n-1}} \int_{0}^{\infty} \mathbf{1}\{H(u, t) \in A\} t^{r-1} d t \sigma(d u)
$$

for $A \subset \mathcal{H}$, with intensity $\gamma>0$ and distance exponent $r \in[1, \infty)$.

- X is isotropic, but stationary only for $r=1$.
- Voronoi-case: $\gamma_{\text {Voronoi }}=n \kappa_{n} 2^{n-1} \lambda$ and $r=n$.

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H , Schneider '07:

Let X be a PHP with intensity measure of the form

$$
\Theta(\mathcal{A})=\frac{2 \gamma}{n \kappa_{n}} \int_{\mathbb{S}^{n-1}} \int_{0}^{\infty} \mathbf{1}\{H(u, t) \in A\} t^{r-1} d t \sigma(d u)
$$

for $A \subset \mathcal{H}$, with intensity $\gamma>0$ and distance exponent $r \in[1, \infty)$.

- X is isotropic, but stationary only for $r=1$.
- Voronoi-case: γ Voronoi $=n \kappa_{n} 2^{n-1} \lambda$ and $r=n$.

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H , Schneider '07:

Let X be a PHP with intensity measure of the form

$$
\Theta(\mathcal{A})=\frac{2 \gamma}{n \kappa_{n}} \int_{\mathbb{S}^{n-1}} \int_{0}^{\infty} \mathbf{1}\{H(u, t) \in A\} t^{r-1} d t \sigma(d u)
$$

for $A \subset \mathcal{H}$, with intensity $\gamma>0$ and distance exponent $r \in[1, \infty)$.

- X is isotropic, but stationary only for $r=1$.
- Voronoi-case: $\gamma_{\text {Voronoi }}=n \kappa_{n} 2^{n-1} \lambda$ and $r=n$.

Further objects of investigation

Volume of the section of Z_{0} with

- n-dim. ball:
$V_{n}\left(Z_{o} \cap B_{u}^{n}\right)$, for $u \in(0, \infty)$
- m-dim. ball:
$V_{m}\left(Z_{o} \cap B_{u}^{m}\right)$, for $u \in(0, \infty), m \leq n$
- subspace through $o: \quad V_{m}\left(Z_{o} \cap L\right)$, for $L \in G(n, m), m \leq n$.

Distance exponent r proportional to n :

	$V_{n}\left(Z_{0}\right)$	$V_{m}\left(Z_{0} \cap B_{u}^{m}\right)$	$V_{n-l}\left(Z_{0} \cap B_{u}^{n-1}\right)$	$V_{n-l}\left(Z_{0} \cap L\right)$
$\begin{aligned} & r=a n, \\ & a>0 \\ & \gamma \text { constant } \end{aligned}$	$\begin{aligned} & \hline \hline \mathbb{E} \rightarrow 0 \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	$\begin{aligned} & \mathbb{E} \rightarrow V_{m}\left(B_{P(a)}^{m} \cap B_{u}^{m}\right) \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	$\begin{aligned} & \hline \mathbb{E} \rightarrow 0 \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	-
$\begin{aligned} & r=a n, \\ & a>0 \\ & \gamma(a, n, \lambda), \\ & \lambda>0 \end{aligned}$	$\begin{aligned} & \mathbb{E} \rightarrow \frac{1}{\lambda} \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	$\begin{aligned} & \mathbb{E} \rightarrow u \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	$\begin{aligned} & \mathbb{E} \rightarrow I(a, u, l, \lambda) \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$	$\begin{aligned} & \mathbb{E} \rightarrow \frac{e^{\frac{1}{2}}}{\lambda} \\ & \operatorname{Var} \rightarrow 0 \end{aligned}$

$m, I \in \mathbb{N}$ constant, $L \in G(n, n-l)$
$\gamma(1, n, \lambda)=\gamma_{\text {Voronoi }}!$

Slicing problem

Let $K \subset \mathbb{R}^{n}$ be a convex body with $V_{n}(K)=1 . \exists H \in \mathcal{H}^{n}$ such that

$$
V_{n-1}(K \cap H) \geq c ?
$$

For a convex body $K \subset \mathbb{R}^{n}$, the isotropic constant L_{K} of K is defined by

Is there a universal constant C such that
for all convex bodies $K \subset \mathbb{R}^{n}$ and all $n \in \mathbb{N}$?

Slicing problem

Let $K \subset \mathbb{R}^{n}$ be a convex body with $V_{n}(K)=1 . \exists H \in \mathcal{H}^{n}$ such that

$$
V_{n-1}(K \cap H) \geq c ?
$$

For a convex body $K \subset \mathbb{R}^{n}$, the isotropic constant L_{K} of K is defined by

$$
n \cdot L_{K}^{2}:=\min _{T} \frac{1}{V_{n}(T K)^{1+\frac{2}{n}}} \int_{T K}\|x\|^{2} d x
$$

Is there a universal constant C such that

$$
L_{K} \leq C
$$

for all convex bodies $K \subset \mathbb{R}^{n}$ and all $n \in \mathbb{N}$?

Some known results

- $L_{K} \leq c \cdot n^{1 / 4} \log (n)$

Bourgain (1991)

- $L_{K} \leq c \cdot n^{1 / 4}$

Klartag (2006)

- Conjecture holds for special classes of bodies (zonoids, ...)
- $L_{P} \leq C \cdot\left(f_{0}(P) / n\right)^{1 / 2}$

Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

- The isotropic constant of certain r.p. is bounded with high probability:
- Gaussian polytopes Klartag, Kozma (2008)
- Random polytopes whose vertices have independent coordinates
- Random polytopes spanned by r.p. from $\mathbb{S}^{n-1} \quad$ Alonso-Gutiérez (2008)
- Random polytopes in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)

Some known results

- $L_{K} \leq c \cdot n^{1 / 4} \log (n)$
- $L_{K} \leq c \cdot n^{1 / 4}$ Klartag (2006)
- Conjecture holds for special classes of bodies (zonoids, ...)
- $L_{P} \leq C \cdot\left(f_{0}(P) / n\right)^{1 / 2}$

Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

- The isotropic constant of certain r.p. is bounded with high probability:
- Gaussian polytopes

Klartag, Kozma (2008)

- Random polytopes whose vertices have independent coordinates
- Random polytopes spanned by r.p. from \mathbb{S}^{n-1}

Alonso-Gutiérrez (2008)

- Random polytopes in 1 -unconditional bodies

Yet another partial ...

Let $\bar{Z}_{o}:=\left(V_{n}\left(Z_{o}\right)\right)^{-\frac{1}{n}} Z_{o}$ be the normalized zero cell of a PHP in \mathbb{R}^{n} with distance exponent $r=a n$ and intensity $\gamma(a, n, \lambda)$. Then, for any $L \in G(n, n-1)$,

$$
\mathbb{P}\left\{V_{n-1}\left(\bar{Z}_{o} \cap L\right)>\frac{\sqrt{e}}{2}\right\} \geq 1-C\left(\frac{1}{\sqrt{n}}\left(\frac{2}{\sqrt{5}}\right)^{a n}+\left(\frac{2}{\sqrt{5}}\right)^{n}\right)
$$

for a universal constant $C>0$.
$\mathbb{E} f_{0}\left(Z_{0}\right)$

Yet another partial ...

Let $\bar{Z}_{o}:=\left(V_{n}\left(Z_{o}\right)\right)^{-\frac{1}{n}} Z_{o}$ be the normalized zero cell of a PHP in \mathbb{R}^{n} with distance exponent $r=a n$ and intensity $\gamma(a, n, \lambda)$. Then, for any $L \in G(n, n-1)$,

$$
\mathbb{P}\left\{V_{n-1}\left(\bar{Z}_{o} \cap L\right)>\frac{\sqrt{e}}{2}\right\} \geq 1-C\left(\frac{1}{\sqrt{n}}\left(\frac{2}{\sqrt{5}}\right)^{a n}+\left(\frac{2}{\sqrt{5}}\right)^{n}\right)
$$

for a universal constant $C>0$.

$$
\mathbb{E} f_{0}\left(Z_{o}\right) \geq c \cdot n^{(n-2) / 2}
$$

Some explicit formulas - based on integral geometry

$$
\begin{aligned}
& \mathbb{E}\left[V_{n}\left(Z_{o}\right)\right]=\Gamma\left(\frac{n}{r}+1\right) \kappa_{n}\left(\frac{n \kappa_{n} r}{2 \gamma c(n, r)}\right)^{\frac{n}{r}} \\
& \mathbb{E}\left[\left(V_{n}\left(Z_{0}\right)\right)^{2}\right]=b_{n, 2} 4 \pi \int_{0}^{\pi} 2 \int_{0}^{\infty} \int_{0}^{1} \exp \left[-\frac{2 \gamma c(n, r)}{n \kappa_{n} r} s^{r} \frac{\Gamma\left(\frac{r}{2}+1\right)}{\sqrt{\pi} \Gamma\left(\frac{r+1}{2}\right)}\right. \\
& \left.\times\left(\int_{-\frac{\pi}{2}}^{\alpha(\varphi, t)}(\cos \theta)^{r} d \theta t^{r}+\int_{\alpha(\varphi, t)-\varphi}^{\frac{\pi}{2}}(\cos \theta)^{r} d \theta\right)\right] s^{2 n-1} t^{n-1}(\sin \varphi)^{n-2} d t d s d \varphi
\end{aligned}
$$

