

Random tessellations - some high-dimensional aspects

Daniel Hug | June 13, 2011

CORTONA

www.kit.edu

Voronoi tessellation

Let $\widetilde{X} \subset \mathbb{R}^n$ denote a point set in general position. For $x \in \widetilde{X}$,

$$C(\widetilde{X},x) := \{y \in \mathbb{R}^n : d(y,x) \le \operatorname{dist}(y,\widetilde{X})\}$$

is the Voronoi cell of \widetilde{X} with centre (nucleus) *x*. The collection *X* of all these cells constitutes a Voronoi tessellation.

Poisson Voronoi tessellation

Let X be a stationary Poisson point process in \mathbb{R}^n with intensity λ .

This is a random collection of points in space such that, for $A \subset \mathbb{R}^n$, the random variable $\widetilde{X}(A) := |\widetilde{X} \cap A|$ follows a Poisson distribution with Poisson parameter $\lambda \cdot V_d(A) = \mathbb{E}\widetilde{X}(A)$.

The constant $\lambda \geq 0$ is the intensity of \widetilde{X} .

The induced random Voronoi tessellation $X := \{C(\widetilde{X}, x) : x \in \widetilde{X}\}$ is called **Poisson Voronoi tessellation** (PVT). It also has intensity λ .

Typical Poisson Voronoi cell

Let *X* be a stationary PVT with intensity λ .

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^n$ with $\lambda^n(B) = 1$. The distribution of the **typical cell** Z of X is

$$\mathbb{P}\{Z\in\cdot\}:=\frac{1}{\lambda}\cdot\mathbb{E}\sum_{x\in\widetilde{X}}\mathbf{1}\{C(\widetilde{X},x)-x\in\cdot\}\mathbf{1}_B(x).$$

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of \widetilde{X} yield

$$\mathbb{P}\{Z \in \cdot\} = \mathbb{P}\{C(\widetilde{X} \cup \{o\}, o) \in \cdot\},\$$

Typical Poisson Voronoi cell

Let *X* be a stationary PVT with intensity λ .

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^n$ with $\lambda^n(B) = 1$. The distribution of the **typical cell** *Z* of *X* is

$$\mathbb{P}\{Z\in\cdot\}:=\frac{1}{\lambda}\cdot\mathbb{E}\sum_{x\in\widetilde{X}}\mathbf{1}\{C(\widetilde{X},x)-x\in\cdot\}\mathbf{1}_B(x).$$

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of \widetilde{X} yield

$$\mathbb{P}\{Z \in \cdot\} = \mathbb{P}\{C(\widetilde{X} \cup \{o\}, o) \in \cdot\},\$$

Typical Poisson Voronoi cell

Let *X* be a stationary PVT with intensity λ .

A 'uniform random selection' of one cell Z from the collection of infinitely many cells of X, after translation of the cell so that its nucleus is at the origin, is called typical cell of X.

Let $B \subset \mathbb{R}^n$ with $\lambda^n(B) = 1$. The distribution of the **typical cell** *Z* of *X* is

$$\mathbb{P}\{Z\in\cdot\}:=\frac{1}{\lambda}\cdot\mathbb{E}\sum_{x\in\widetilde{X}}\mathbf{1}\{C(\widetilde{X},x)-x\in\cdot\}\mathbf{1}_B(x).$$

A characteristic property of Poisson processes (due to J. Mecke) and the translation invariance of \widetilde{X} yield

$$\mathbb{P}\{Z\in\cdot\}=\mathbb{P}\{C(\widetilde{X}\cup\{o\},o)\in\cdot\},\$$

that is,

$$Z = C(\widetilde{X} \cup \{o\}, o) = Z_o(Y),$$

where *Y* is an isotropic but instationary Poisson hyperplane process:

$$Y = \left\{ H\left(rac{x}{\|x\|}, rac{1}{2}\|x\|
ight) : x \in \widetilde{X} \setminus \{o\}
ight\}$$
:

Shape of large cells: Kendall's problem

To estimate the **size** of the typical cell Z of X, we can use e.g. **intrinsic volumes**

$$V_1, \ldots, V_n$$

or the centred inradius

 R_m .

The **deviation from spherical shape** is measured by

$$\vartheta := \frac{R_M - R_m}{R_M + R_m},$$

R_M is the **centred circumradius**.

Shape of large cells: Kendall's problem

To estimate the **size** of the typical cell *Z* of *X*, we can use e.g. **intrinsic volumes**

$$V_1,\ldots,V_n$$

or the centred inradius

 R_m .

The deviation from spherical shape is measured by

$$\vartheta:=\frac{R_M-R_m}{R_M+R_m},$$

R_M is the **centred circumradius**.

Hug, Reitzner, Schneider '04

Let *X* be a stationary PVT with intensity λ in \mathbb{R}^n and $k \in \{1, ..., n\}$. There is a constant $c_0 = c_0(n)$ such that the following is true:

If $\epsilon \in (0, 1)$ and $a \ge 1$, then

$$\mathbb{P}\{artheta(Z) \geq \epsilon \mid V_k(Z) \geq a\} \leq c \exp\left\{-c_0 \epsilon^{(n+3)/2} a^{n/k} \lambda
ight\}$$

and

$$\mathbb{P}\{\vartheta(Z) \ge \epsilon \mid R_m(Z) \ge a\} \le c \exp\left\{-c_0 \epsilon^{(n+1)/2} a^n \lambda\right\},$$

where $c = c(n, \epsilon)$.

Hug & Schneider '11

Let $\rho \geq$ 1, and choose α with

$$0 < \alpha < \frac{n-1}{n+1}$$
, so that $\beta := \frac{n-1}{2} - \alpha \frac{n+1}{2} > 0$.

Then there exist $c_1 = c_1(n, \gamma)$ and $c_2 = c_2(n)$ such that

$$\mathbb{P}\left\{ \textit{\textit{R}}_{\textit{M}}(\textit{Z}) \leq
ho +
ho^{-lpha} \mid \textit{\textit{R}}_{\textit{m}}(\textit{Z}) \geq
ho
ight\} \geq 1 - c_{1} \exp\left\{ -c_{2} \lambda
ho^{eta}
ight\}.$$

If $\rho B^n \subset Z$, then $B^n \subset \rho^{-1}Z \subset (1 + \rho^{-1-\alpha})B^n$ w.h.p. n = 2 : Calka '02

Hug & Schneider '11

Let $\rho \geq$ 1, and choose α with

$$0 < \alpha < \frac{n-1}{n+1}$$
, so that $\beta := \frac{n-1}{2} - \alpha \frac{n+1}{2} > 0$.

Then there exist $c_1 = c_1(n, \gamma)$ and $c_2 = c_2(n)$ such that

$$\mathbb{P}\left\{ \textit{\textit{R}}_{\textit{M}}(\textit{Z}) \leq
ho +
ho^{-lpha} \mid \textit{\textit{R}}_{\textit{m}}(\textit{Z}) \geq
ho
ight\} \geq 1 - c_{1} \exp\left\{ -c_{2} \lambda
ho^{eta}
ight\}.$$

If $\rho B^n \subset Z$, then $B^n \subset \rho^{-1}Z \subset (1 + \rho^{-1-\alpha})B^n$ w.h.p. n = 2 : Calka '02

Random mosaics in high dimensions

(joint with Julia Hörrmann)

K. Alishahi, M. Sharifitabar '08

Let *Z* denote the typical cell of a Poisson Voronoi tessellation in \mathbb{R}^n with intensity λ . Then, for all $n \in \mathbb{N}$,

$$\mathbb{E}[V_n(Z)] = \frac{1}{\lambda}$$

and

$$c \cdot \frac{1}{\sqrt{n}} \left(\frac{4}{3\sqrt{3}}\right)^n \leq \operatorname{Var}[V_n(Z)] \leq C \cdot \frac{1}{\sqrt{n}} \left(\frac{4}{3\sqrt{3}}\right)^n$$

Newman, Rinott'85: Convergence in distribution via convergence of moments

Random mosaics in high dimensions

(joint with Julia Hörrmann)

K. Alishahi, M. Sharifitabar '08

Let *Z* denote the typical cell of a Poisson Voronoi tessellation in \mathbb{R}^n with intensity λ . Then, for all $n \in \mathbb{N}$,

$$\mathbb{E}[V_n(Z)] = \frac{1}{\lambda}$$

and

$$c \cdot \frac{1}{\sqrt{n}} \left(\frac{4}{3\sqrt{3}}\right)^n \leq \operatorname{Var}[V_n(Z)] \leq C \cdot \frac{1}{\sqrt{n}} \left(\frac{4}{3\sqrt{3}}\right)^n$$

Newman, Rinott'85: Convergence in distribution via convergence of moments

What can we say about the shape of the typcial cell Z?

Idea: consider $V_n(Z \cap B_u^n)$ as a function of the parameter $u \ge 0$

B_u^n : ball centred at *o* with *n*-dimensional volume *u*

K. Alishahi, M. Sharifitabar '08

$$\mathbb{E}[V_n(Z\cap B^n_u)]=rac{1}{\lambda}(1-e^{-\lambda u}), \qquad ext{for } u\in(0,\infty) ext{ and all } n,$$

 $\operatorname{Var}(V_n(Z \cap B^n_u)) \to 0, \quad \text{as } n \to \infty.$

Consequence:

$$\mathbb{E}\Delta_{s}(Z,B_{u}^{n})\geq \ln(2)/\lambda$$

and

$$\Delta_{\mathcal{S}}(Z, B_u^n) - \mathbb{E}\Delta_{\mathcal{S}}(Z, B_u^n) \to 0 \quad \text{ in } L^2 \text{ as } n \to \infty$$

Covariogram of random sets

For a set $Z \subset \mathbb{R}^n$ (random or not), let

$$g_Z(v) := V_n(Z \cap (Z + v)), \quad v \in \mathbb{R}^n,$$

be the geometric covariogram of Z.

A & S '08: for the typical cell Z of a stationary PVT, $s \ge 0$, $v_n \in \mathbb{S}^{n-1}$, $\mathbb{E}[g_Z(sv_n)] \to c(\lambda, s)$ as $n \to \infty$,

where $c(\lambda, s)$ is given by an integral (rather explicitly).

Yao '10:

 $\operatorname{Var}(g_Z(v)) \leq 4 \cdot \operatorname{Var}(V_n(Z)), \quad v \in \mathbb{R}^n.$

Covariogram of random sets

For a set $Z \subset \mathbb{R}^n$ (random or not), let

$$g_Z(v) := V_n(Z \cap (Z + v)), \quad v \in \mathbb{R}^n,$$

be the geometric covariogram of Z.

A & S '08: for the typical cell *Z* of a stationary PVT, $s \ge 0$, $v_n \in \mathbb{S}^{n-1}$,

 $\mathbb{E}[g_{Z}(sv_{n})] \rightarrow c(\lambda, s) \quad \text{as } n \rightarrow \infty,$

where $c(\lambda, s)$ is given by an integral (rather explicitly).

Yao '10:

 $\operatorname{Var}(g_Z(v)) \leq 4 \cdot \operatorname{Var}(V_n(Z)), \quad v \in \mathbb{R}^n.$

Covariogram of random sets

For a set $Z \subset \mathbb{R}^n$ (random or not), let

$$g_Z(v) := V_n(Z \cap (Z + v)), \quad v \in \mathbb{R}^n,$$

be the geometric covariogram of Z.

A & S '08: for the typical cell Z of a stationary PVT, $s \ge 0$, $v_n \in \mathbb{S}^{n-1}$,

 $\mathbb{E}[g_{Z}(sv_{n})] \to c(\lambda, s) \quad \text{as } n \to \infty,$

where $c(\lambda, s)$ is given by an integral (rather explicitly).

Yao '10:

 $\operatorname{Var}(g_Z(v)) \leq 4 \cdot \operatorname{Var}(V_n(Z)), \quad v \in \mathbb{R}^n.$

Recall: Random hyperplane systems induce random tessellations. Specifically, we consider a stationary **Poisson hyperplane process** X in \mathbb{R}^n of intensity γ and the induced PHT.

Let Z_o denote the cell containing the origin.

Recall: Random hyperplane systems induce random tessellations. Specifically, we consider a stationary **Poisson hyperplane process** X in \mathbb{R}^n of intensity γ and the induced PHT.

Let Z_o denote the cell containing the origin.

A hyperplane process X in \mathbb{R}^n is a Poisson process if

$$\mathbb{P}\left\{X(A)=k\right\}=rac{\Theta(A)^k}{k!}\cdot e^{-\Theta(A)},$$

for all measurable $A \subset \mathcal{H}$ and $k \in \mathbb{N}_0$ and a locally finite measure Θ on the space \mathcal{H} of hyperplanes.

• In particular, $\mathbb{E}X(A) = \Theta(A)$.

If X is stationary, then Θ is a translation invariant measure.

- If X is isotropic, then Θ is a rotation invariant measure.
- For a Poisson process, the converse statements are true, too.

A hyperplane process X in \mathbb{R}^n is a Poisson process if

$$\mathbb{P}\left\{X(A)=k\right\}=\frac{\Theta(A)^{k}}{k!}\cdot e^{-\Theta(A)}$$

for all measurable $A \subset \mathcal{H}$ and $k \in \mathbb{N}_0$ and a locally finite measure Θ on the space \mathcal{H} of hyperplanes.

- In particular, $\mathbb{E}X(A) = \Theta(A)$.
- If X is stationary, then Θ is a translation invariant measure.
- If X is isotropic, then Θ is a rotation invariant measure.
- For a Poisson process, the converse statements are true, too.

If X is a stationary (Poisson) hyperplane process in \mathbb{R}^n , then its translation invariant **intensity measure** $\mathbb{E}X(\cdot)$ is of the form

$$\mathbb{E}X = 2\gamma \int_0^\infty \int_{\mathbb{S}^{n-1}} \mathbf{1}\{u^\perp + tu \in \cdot\} \, \varphi(du) \, dt$$

with some even probability measure φ on \mathbb{S}^{n-1} and $\gamma \geq 0$.

Terminology:

- γ : intensity of X
- φ : direction distribution of X

Special case:

• φ normalized spherical Lebesgue measure

Let Z_o be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^n . Then

 $\mathbb{E}V_n(Z_o) \to \infty$ and $\operatorname{Var}(V_n(Z_o)) \to \infty$,

as $n \to \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma = \gamma(n, \lambda)$ in such a way that $\mathbb{E}V_n(Z_o) = \lambda^{-1}$.

Let Z_o be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^n . Then

 $\mathbb{E}V_n(Z_o) \to \infty$ and $\operatorname{Var}(V_n(Z_o)) \to \infty$,

as $n \to \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma = \gamma(n, \lambda)$ in such a way that $\mathbb{E}V_n(Z_o) = \lambda^{-1}$.

Let Z_o be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^n . Then

 $\mathbb{E}V_n(Z_o) \to \infty$ and $\operatorname{Var}(V_n(Z_o)) \to \infty$,

as $n \to \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma = \gamma(n, \lambda)$ in such a way that $\mathbb{E}V_n(Z_o) = \lambda^{-1}$.

Let Z_o be the zero cell of a stationary and isotropic Poisson hyperplane tessellation of intensity γ in \mathbb{R}^n . Then

 $\mathbb{E}V_n(Z_o) \to \infty$ and $\operatorname{Var}(V_n(Z_o)) \to \infty$,

as $n \to \infty$.

Modification(s)?

A natural first attempt is to adjust the intensity $\gamma = \gamma(n, \lambda)$ in such a way that $\mathbb{E}V_n(Z_o) = \lambda^{-1}$.

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider '07:

Let X be a PHP with intensity measure of the form

$$\Theta(\mathcal{A}) = \frac{2\gamma}{n\kappa_n} \int_{\mathbb{S}^{n-1}} \int_0^\infty \mathbf{1} \{ H(u,t) \in \mathcal{A} \} t^{r-1} \, dt \, \sigma(du)$$

for $A \subset \mathcal{H}$, with intensity $\gamma > 0$ and distance exponent $r \in [1, \infty)$.

• X is isotropic, but stationary only for r = 1. • Voronoi-case: $\gamma_{Voronoi} = n\kappa_n 2^{n-1} \lambda$ and r = n

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider '07:

Let X be a PHP with intensity measure of the form

$$\Theta(\mathcal{A}) = \frac{2\gamma}{n\kappa_n} \int_{\mathbb{S}^{n-1}} \int_0^\infty \mathbf{1} \{ H(u,t) \in A \} t^{r-1} \, dt \, \sigma(du)$$

for $A \subset \mathcal{H}$, with intensity $\gamma > 0$ and distance exponent $r \in [1, \infty)$.

X is isotropic, but stationary only for r = 1.
 Voronoi-case: γ_{Voronoi} = nκ_n2ⁿ⁻¹λ and r = n.

What kind of change is happening if we pass from Poisson Voronoi to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider '07:

Let X be a PHP with intensity measure of the form

$$\Theta(\mathcal{A}) = \frac{2\gamma}{n\kappa_n} \int_{\mathbb{S}^{n-1}} \int_0^\infty \mathbf{1} \{ H(u,t) \in \mathcal{A} \} t^{r-1} \, dt \, \sigma(du)$$

for $A \subset \mathcal{H}$, with intensity $\gamma > 0$ and distance exponent $r \in [1, \infty)$.

- X is isotropic, but stationary only for r = 1.
- Voronoi-case: $\gamma_{Voronoi} = n\kappa_n 2^{n-1}\lambda$ and r = n.

Further objects of investigation

Volume of the section of Z_o with

- n-dim. ball:
- *m*-dim. ball:

- $V_n(Z_o \cap B_u^n)$, for $u \in (0, \infty)$ $V_m(Z_o \cap B_u^m)$, for $u \in (0, \infty), m \le n$
- subspace through o: $V_m(Z_o \cap L)$, for $L \in G(n, m), m \le n$.

Distance exponent *r* **proportional to** *n*:

	$V_n(Z_o)$	$V_m(Z_o \cap B^m_u)$	$V_{n-l}(Z_o \cap B_u^{n-l})$	$V_{n-l}(Z_o\cap L)$
r = an,	$\mathbb{E} ightarrow 0$	$\mathbb{E} o V_m(B^m_{R(a)} \cap B^m_u)$	$\mathbb{E} ightarrow 0$	-
<i>a</i> > 0	$Var \rightarrow 0$	$Var \rightarrow 0$	Var ightarrow 0	
γ constant				
r = an,	$\mathbb{E} o rac{1}{\lambda}$	$\mathbb{E} ightarrow u$	$\mathbb{E} ightarrow I(a, u, I, \lambda)$	$\mathbb{E} \to \frac{e^{\frac{l}{2}}}{\lambda}$
<i>a</i> > 0	$Var \rightarrow 0$	Var $ ightarrow$ 0	Var ightarrow 0	$Var \rightarrow 0$
$\gamma(a, n, \lambda),$				
$\lambda > 0$				

 $m, l \in \mathbb{N}$ constant, $L \in G(n, n - l)$

 $\gamma(\mathbf{1}, \mathbf{n}, \lambda) = \gamma_{Voronoi}!$

Slicing problem

Let $K \subset \mathbb{R}^n$ be a convex body with $V_n(K) = 1$. $\exists H \in \mathcal{H}^n$ such that $V_{n-1}(K \cap H) \ge c$?

For a convex body $K \subset \mathbb{R}^n$, the isotropic constant L_K of K is defined by

$$n \cdot L_{K}^{2} := \min_{T} \frac{1}{V_{n}(TK)^{1+\frac{2}{n}}} \int_{TK} \|x\|^{2} dx.$$

Is there a universal constant C such that

 $L_K \leq C$

for all convex bodies $K \subset \mathbb{R}^n$ and all $n \in \mathbb{N}$?

Slicing problem

Let $K \subset \mathbb{R}^n$ be a convex body with $V_n(K) = 1$. $\exists H \in \mathcal{H}^n$ such that $V_{n-1}(K \cap H) \ge c$?

For a convex body $K \subset \mathbb{R}^n$, the isotropic constant L_K of K is defined by

$$n \cdot L_{K}^{2} := \min_{T} \frac{1}{V_{n}(TK)^{1+\frac{2}{n}}} \int_{TK} \|x\|^{2} dx.$$

Is there a universal constant C such that

 $L_K \leq C$

for all convex bodies $K \subset \mathbb{R}^n$ and all $n \in \mathbb{N}$?

Some known results

- $L_K \leq c \cdot n^{1/4} \log(n)$ Bourgain (1991)
- $L_K \leq c \cdot n^{1/4}$ Klartag (2006)
- Conjecture holds for special classes of bodies (zonoids, ...)
- $L_P \leq C \cdot (f_0(P)/n)^{1/2}$

Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

The isotropic constant of certain r.p. is bounded with high probability:

- Gaussian polytopes Klartag, Kozma (2008)
- Random polytopes whose vertices have independent coordinates
- Random polytopes spanned by r.p. from Sⁿ⁻¹

- Alonso-Gutiérrez (2008)
- Random polytopes in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)

Some known results

- $L_K \leq c \cdot n^{1/4} \log(n)$ Bourgain (1991)
- $L_K \leq c \cdot n^{1/4}$ Klartag (2006)
- Conjecture holds for special classes of bodies (zonoids, ...)
- $L_P \leq C \cdot (f_0(P)/n)^{1/2}$

Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

- The isotropic constant of certain r.p. is bounded with high probability:
 - Gaussian polytopes
 Klartag, Kozma (2008)
 - Random polytopes whose vertices have independent coordinates
 - Random polytopes spanned by r.p. from \mathbb{S}^{n-1}
- Alonso-Gutiérrez (2008)
- Random polytopes in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)

Yet another partial ...

Let $\overline{Z}_o := (V_n(Z_o))^{-\frac{1}{n}} Z_o$ be the normalized zero cell of a PHP in \mathbb{R}^n with distance exponent r = an and intensity $\gamma(a, n, \lambda)$. Then, for any $L \in G(n, n-1)$,

$$\mathbb{P}\left\{V_{n-1}(\overline{Z}_o\cap L)>\frac{\sqrt{e}}{2}\right\} \geq 1-C\left(\frac{1}{\sqrt{n}}\left(\frac{2}{\sqrt{5}}\right)^{an}+\left(\frac{2}{\sqrt{5}}\right)^n\right)$$

for a universal constant C > 0.

$$\mathbb{E}f_0(Z_o) \geq c \cdot n^{(n-2)/2}.$$

Yet another partial ...

Let $\overline{Z}_o := (V_n(Z_o))^{-\frac{1}{n}} Z_o$ be the normalized zero cell of a PHP in \mathbb{R}^n with distance exponent r = an and intensity $\gamma(a, n, \lambda)$. Then, for any $L \in G(n, n-1)$,

$$\mathbb{P}\left\{V_{n-1}(\overline{Z}_o\cap L)>\frac{\sqrt{e}}{2}\right\} \geq 1-C\left(\frac{1}{\sqrt{n}}\left(\frac{2}{\sqrt{5}}\right)^{an}+\left(\frac{2}{\sqrt{5}}\right)^n\right)$$

for a universal constant C > 0.

$$\mathbb{E}f_0(Z_o) \geq c \cdot n^{(n-2)/2}.$$

Some explicit formulas – based on integral geometry

$$\mathbb{E}[V_n(Z_o)] = \Gamma\left(\frac{n}{r}+1\right)\kappa_n\left(\frac{n\kappa_n r}{2\gamma c(n,r)}\right)^{\frac{n}{r}}$$

$$\mathbb{E}[(V_n(Z_o))^2] = b_{n,2}4\pi \int_0^{\pi} 2\int_0^{\infty} \int_0^1 \exp\left[-\frac{2\gamma c(n,r)}{n\kappa_n r} s^r \frac{\Gamma(\frac{r}{2}+1)}{\sqrt{\pi}\Gamma(\frac{r+1}{2})} \times \left(\int_{-\frac{\pi}{2}}^{\alpha(\varphi,t)} (\cos\theta)^r d\theta t^r + \int_{\alpha(\varphi,t)-\varphi}^{\frac{\pi}{2}} (\cos\theta)^r d\theta\right)\right] s^{2n-1} t^{n-1} (\sin\varphi)^{n-2} dt \, ds \, d\varphi$$