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Voronoi tessellation
Let X C R" denote a point set in general position. For x € X,
C(X,x) :={y e R": d(y, x) < dist(y, X)}

is the Voronoi cell of X with centre (nucleus) x. The collection X of all
these cells constitutes a Voronoi tessellation.
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Poisson Voronoi tessellation

Let X be a stationary Poisson point process in R” with intensity A.

This is a random collection of points in space such that, for A C R", the
random variable X(A) := |X N A| follows a Poisson distribution with
Poisson parameter A - Vy(A) = EX(A).

The constant A > 0 is the intensity of X.

The induced random Voronoi tessellation X := {C(X, x) : x € X} is
called Poisson Voronoi tessellation (PVT). It also has intensity A.
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Typical Poisson Voronoi cell
Let X be a stationary PVT with intensity .

A ‘uniform random selection’ of one cell Z from the collection of infini-
tely many cells of X, after translation of the cell so that its nucleus is at
the origin, is called typical cell of X.
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Typical Poisson Voronoi cell
Let X be a stationary PVT with intensity .

A ‘uniform random selection’ of one cell Z from the collection of infini-
tely many cells of X, after translation of the cell so that its nucleus is at
the origin, is called typical cell of X.

Let B C R™ with \(B) = 1. The distribution of the typical cell Z of X is

P{Z e} = % BN 1{C(X, %) — x € Hp(x).
xeX

A characteristic property of Poisson processes (due to J. Mecke) and the
translation invariance of X yield

P{Z e} =P{C(XU{o},0) € -,



that is,
Z = ¢(Xu{o},0) = Z(Y),

where Y is an isotropic but instationary Poisson hyperplane process:

y = {H(ﬁ,%”x“) L x € )?\{o}} :

23



Shape of large cells: Kendall’s problem

To estimate the size of the typical cell Z of X, we can use e.g. intrinsic
volumes

V‘],...,Vn

or the centred inradius
Rm-
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Shape of large cells: Kendall’s problem

To estimate the size of the typical cell Z of X, we can use e.g. intrinsic
volumes

V‘],...,Vn

or the centred inradius
Rm-

The deviation from spherical shape is measured by

Y= RM - Rm
" Ry +Rn’
Ry is the centred circumradius.
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Hug, Reitzner, Schneider '04

Let X be a stationary PVT with intensity A in R” and k € {1,...,n}.
There is a constant ¢y = ¢y(n) such that the following is true:

If e € (0,1) and a > 1, then
P{9(Z) > €| Vi(2) > a} < cexp {—Co€(n+3)/ 2" kA}

and
P{(Z) > ¢ | Am(Z) > a} < cexp {—%e‘"*‘)/za”k} :

where ¢ = ¢(n,¢).
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Hug & Schneider '11

Let p > 1, and choose a with
0<a<Zi, sothat g:=21—afl>0.

Then there exist ¢; = c1(n,y) and ¢, = c(n) such that

P{Ru(Z)<p+p *|Rn(Z) = p} >1—c exp{—czkpﬁ}.

8/23



Hug & Schneider 11

Let p > 1, and choose a with
0<a<Zi, sothat g:=21—afl>0.

Then there exist ¢; = c1(n,y) and ¢, = c(n) such that

P{Ru(Z)<p+p *|Rn(Z) = p} >1—c exp{—cz)\pﬁ}.

wlipB"C Z,thenB"Cp~'ZC(1+p17*)B" whp.
man=2 : Calka’02
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Random mosaics in high dimensions

(joint with Julia Hérrmann)



Random mosaics in high dimensions

(joint with Julia Hérrmann)

K. Alishahi, M. Sharifitabar '08

Let Z denote the typical cell of a Poisson Voronoi tessellation in R” with
intensity A. Then, for all n € N,

E[Vx(2)] =
and

Newman, Rinott’85: Convergence in distribution via convergence of moments
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What can we say about the shape of the typcial cell Z?

Idea: consider V,(Z N B}) as a function of the parameter u > 0

Bj): ball centred at o with n-dimensional volume u
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K. Alishahi, M. Sharifitabar 08

1
E[Va(Z N B))] = (1 = e M),  forue (0,00)andall n,

Var(V,(Z N By)) — 0, as n — oo.

Consequence:
EAs(Z,Bj) > In(2)/A

and
A(Z,B1) —EAs(Z,B]) — 0 inl?asn— cc.
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Covariogram of random sets

For a set Z C R" (random or not), let
gz(v) == Vp(ZNn(Z+Vv)), veR",

be the geometric covariogram of Z.
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Covariogram of random sets

For a set Z C R" (random or not), let
9z(v) = Vp(ZN(Z +v)), veR",
be the geometric covariogram of Z.
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Covariogram of random sets

For a set Z C R" (random or not), let
9z(v) = Vp(ZN(Z +v)), veR",
be the geometric covariogram of Z.
A & S ’08: for the typical cell Z of a stationary PVT, s > 0, v, € Sk
E[gz(svn)] — c(N,s) asn— oo,
where c¢(, s) is given by an integral (rather explicitly).

Yao ’10:
Var(gz(v)) < 4-Var(V,(2)), veR"
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Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations?
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Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations?

Recall: Random hyperplane systems induce random tessellations.
Specifically, we consider a stationary Poisson hyperplane process X in
R" of intensity v and the induced PHT.

Let Z, denote the cell containing the origin.
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A hyperplane process X in R" is a Poisson process if

P {X(A) = k} = @(k‘!‘)k )

for all measurable A C H and k € Ny and a locally finite measure © on
the space H of hyperplanes.
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A hyperplane process X in R" is a Poisson process if

P{X(A) = k} = @(k/!‘)k e %),

for all measurable A C H and k € Ny and a locally finite measure © on
the space H of hyperplanes.

In particular, EX(A) = ©(A).
If X is stationary, then © is a translation invariant measure.
If X is isotropic, then © is a rotation invariant measure.

For a Poisson process, the converse statements are true, too.
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If X is a stationary (Poisson) hyperplane process in R”, then its translation
invariant intensity measure EX(-) is of the form

o0
}EX—ny/ / o+ tu e -} o(du) d
o Jsn-i

with some even probability measure ¢ on S"~' and v > 0.

Terminology:
a v:intensity of X
a : direction distribution of X

Special case:

a  normalized spherical Lebesgue measure
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Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations in high dimensions?
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Let Z, be the zero cell of a stationary and isotropic Poisson hyperplane
tessellation of intensity v in R". Then

EVh(Z,) > 00 and  Var(V,(Z,)) — oo,

as n — oQ.

16/23



Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations in high dimensions?

Let Z, be the zero cell of a stationary and isotropic Poisson hyperplane
tessellation of intensity v in R". Then

EVh(Z,) > 00 and  Var(V,(Z,)) — oo,

as n — o0.

Modification(s)?

16/23



Are there analogous results for the volume of the zero cell of
Poisson hyperplane tessellations in high dimensions?

Let Z, be the zero cell of a stationary and isotropic Poisson hyperplane
tessellation of intensity v in R". Then

EVh(Z,) > 00 and  Var(V,(Z,)) — oo,
as n — oo.

Modification(s)?

A natural first attempt is to adjust the intensity v = ~v(n, A) in such a way

However, then the variance is still divergent.
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What kind of change is happening if we pass from Poisson Voronoi
to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider '07:

Let X be a PHP with intensity measure of the form

O(A) = / / 1{H(u, f) € A} dt o (alu)
NKp Jsn—1

for A C H, with intensity v > 0 and distance exponent r € [1, o).
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What kind of change is happening if we pass from Poisson Voronoi
to Poisson hyperplane tessellations?

A parametric model was suggested in H, Schneider '07:

Let X be a PHP with intensity measure of the form

O(A) = / / 1{H(u, f) € A} dt o (alu)
NKp Jsn—1

for A C H, with intensity v > 0 and distance exponent r € [1, c0).

m X is isotropic, but stationary only for r = 1.
= Voronoi-case: Yoronoi = Nkn2" 'Aand r = n.
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Further objects of investigation

Volume of the section of Z, with
a n-dim. ball: Vn(Z, N B]), foru e (0,00)
a m-dim. ball: Vm(Zo, N B), foru e (0,00),m<n
m subspace through o:  Vjn(Z, N L), forL e G(n,m),m< n.
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Distance exponent r proportional to n:

| Va(Zo) | Vm(Zon BD)

| Va_i(ZoN B ™) | Vai(ZoNL) |

r=an, E—0 E — Vm(BRynBY) | E— 0 -
a>0 Var -0 | Var— 0 Var — 0
~ constant

T
r=an, E—-1 |[E—u E - (aul)) |E— &
a>0 Var -0 | Var — 0 Var — 0 Var — 0
r\/(a’n’)\)’
A>0

m, | € N constant, L € G(n,n — /)

y(1,n,A) =

Y Voronoi!
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Slicing problem

Let K C R" be a convex body with V,(K) = 1. 3H € H" such that

Vn_1(Kﬁ H) > c?
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Slicing problem

Let K C R" be a convex body with V,(K) = 1. 3H € H" such that

Vn_1(Kﬁ H) > c?

For a convex body K C R”, the isotropic constant Lk of K is defined by

n- L% := min (| x|I? dx.

o),
T Vo(TK)T 0 7
Is there a universal constant C such that
Ly < C

for all convex bodies K ¢ R" and all n € N?
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Some known results

a LK § C- n1 /4 |Og(n) Bourgain (1991)
algx<c- n'/4 Kiartag (2006)
a Conjecture holds for special classes of bodies (zonoids, ...)

a LP S C . (fo(P)/n)1/2 Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)
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Some known results

a LK § C- n1 /4 |Og(n) Bourgain (1991)
algx<c- n'/4 Kiartag (2006)
a Conjecture holds for special classes of bodies (zonoids, ...)
a LP S C . (fo(P)/n)1/2 Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)
a The isotropic constant of certain r.p. is bounded with high probability:
a Gaussian polytopes Klartag, Kozma (2008)
a Random polytopes whose vertices have independent coordinates
m Random polytopes spanned by r.p. from S"~ Alonso-Gutiérrez (2008)
m Random pO'ytOpeS in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)
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Yet another partial ...

— _1
Let Zo := (Va(Z)) " Z, be the normalized zero cell of a PHP in R” with
distance exponent r = an and intensity v(a, n, \). Then, for any
Le G(n,n—1),

)2 -5 (5)" (3))

for a universal constant C > 0.
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Yet another partial ...

— _1
Let Zo := (Va(Z)) " Z, be the normalized zero cell of a PHP in R” with
distance exponent r = an and intensity v(a, n, \). Then, for any
Le G(n,n—1),

o= )2 oG (3) ()

for a universal constant C > 0.

Efy(Z,) > ¢ n("=2)/2,



Some explicit formulas — based on integral geometry

Bl((2))) = i [2 [ [ e[ - 2R ZEE
0 0
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