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Basic definitions and Notation

Let X = (X(1),...,X(N)) be a random vector in RN with full dimensional support.
We say that the distribution of X is

@ log-concave, if X has density of the form e~ ") with h: RN — (—c0, o0]
convex;

@ isotropic, if EX; = 0 and EX;X; = 8 ;.
For x,y € RN we put
N\ 172
o Ixl = x|l = (£} ?)

@ (x,y) is the inner product

@ For) #A1c{1,...,N}, by P; we denote the coordinate projection onto
{y e RN: supp(y) C IL.
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Examples: log-concave random vectors

1. Let K C R™ be a convex body ( = compact convex, with non-empty interior)
(symmetric means —K = K).
X a random vector uniformly distributed in K. Then the corresponding probability

measure on RN
KN A]

K]

uk (A)

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that pyg is
isotropic.

2. The Gaussian vector G = (g1, ..., gn ), Where gi’s have N(0, 1) distribution, is
isotropic and log-concave.

3. Similarly the vector X = (&4, ..., &n), where &;’s are independent with the
exponential distribution (i.e., with density f(t) = % exp(—v/2[t]), for t € R)
is isotropic and log-concave.

Nicole Tomczak-Jaegermann () Cortona, 2011

3/21



Let n, N be integers; X € RN a random vector, Xy, ..., X,, independent,
distributed as X.
A is an n x N matrix which has X;’s as rows

ForJc{1,...,n},Ic{1,...,N}, let A(], I) be the sub-matrix with rows from ]
and columns from I. Fork <n, m < N, let

Axm = sIqu AT, T)],

over all |J| < k, |I| < m. This is maximum of norms of sub-matrices of k columns
and m rows (the operator norms from £}’ to {3).
Question: Upper bounds for Ay ., with high probability
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Example: Norms of sub-matrices, uniform version of P.

Earlier case: m = N, i.e., Ay n. We select k rows and take all columns. Solved
by ALPT (JAMS 2010); connected with length of good approximations of the
covariance matrices

Case k = 1: For any J with |J| = 1, and I with |I| < m, sub-matrix of one row has
a form
ADD = (PiX), 50 Aym = sup [PiX.

IT<m

A bound for A+ 1, will imply a uniform bound for P X, for t > 1.

sup [P1X| < bound for Aj ., (%)

[T]=m

with high probability. Compare with Paouris’ theorem for a fixed I with |I| < m.: for

s>1,
}P’(lPIXI < CS\/N> >1 —exp(— sm).

However the complexity of the family of subsets is (1) > exp(cv/N). To prove
(*) we need more advanced technique.

Nicole Tomczak-Jaegermann () Cortona, 2011 5/21



Order Statistics

For an N—dimensional random vector X by Xi > X5 > ... > X{, we denote the
nonincreasing rearrangement of |[X(1)],..., |X(N)| (in particular

X7 =max{|X(1)],...,X(N)[} and X{, = min{[X(1)],...,[X(N)[}). Random
variables X, 1 < k < N, are called order statistics of X.

Problem: Find an upper bound for P(X} > t).

If coordinates of X; are independent symmetric exponential r.v. with variance 1
then Med (X} ) ~ log(eN/k) for k < N/2.
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Order Statistics for isotropic log-concave vectors

Let X be N-dim. log-concave isotropic vector. Then for all t > Clog (%)

IE”(XT< > t) < exp (— %ﬁt)

Actually we need a stronger theorem that uses the following important “weak
parameter”
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Weak parameter

For a vector X in RN we define

ox(p) = sup (E[({t, X))/ p=>2.
teSN—1

We also let o' to be the left-inverse function.

oy '(s) :==sup {t: ox(t) <s}
Examples

@ For isotropic log-concave vectors X, ox(p) < p/v2.
@ For subgaussian vectors X, ox(p) < C/p.

@ We say that an isotropic vector X is 4 if ox(p) < Cp'/* (uniform
distributions on suitable normalized By balls are VP, with o« = min(p, 2))
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Order Statistics with weak parameter

For any N-dim. log-concave isotropic vector X, { > 1 andt > Clog (%)

P(X; >t) <exp (- o’ (%tﬂ))

This theorem implies uniform estimates for norms of projections.
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Uniform bound for norms of projections

Theorem

Let X be an isotropic log-concave vector in RN, and m < N. Then forany t > 1,
N
P( sup [P1X| > Cty/mlog (e—>
[I|l=m m

is less than or equal to

ty/mlog (<M
exp (- oy <W(m)>>> < exp (—t% log (%))

The bound is sharp, except for \/log in the probability estimate.
We conjecture this factor is not needed.
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Uniform bound for norms of projections, idea

Idea of the proof. We want to estimate

eN
P| sup |P1X| > Cty/mlog|(— ) |.
<I|—FT)11 I g ( m ))

We have ;
m 1/2 s 1/2
sup [PiX = (Y IXi) T <2( ) 2'if)

Hl=m k=1 i=0

where s = [log, m].
We then use the estimates for order statistics.
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Estimates for order statistics

Our approach to estimates for order statistics is based on the suitable estimate of
moments of the process Nx(t), where for t > 0,

N
Nx(t) == Z Tixi >4
i1

That is, Nx(t) is equal to the number of coordinates of X larger than or equal to t.
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Estimate for Ny

For any isotropic log-concave vector X andp > 2 we have

N 2
E(2Nx(t))” < (Cp)?*  fort > Clog (p—

7)

2

E(*Nx(6)" < (Cox())*"  fort > Clog ().
Ox
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Estimate for Nx

For any isotropic log-concave vector X andp > 2 we have

N 2
E(2Nx(t))” < (Cp)?*  fort > Clog (p—

7)

2

i(p))

E(*Nx(£))” < (Cox(p))® fort > Clog (

To get estimate for order statistics we observe that X} > t implies that
Nx(t) > k/2 or N_x(t) > k/2 and vector —X is also isotropic and log-concave,
and ox = o_x. Estimates for Nx and Chebyshev’s inequality give

2\p

PG > 0 < () (ENx(1)7 +EN (1) < (

CGX(P)>2’D
tvk

provided that t > Clog(Nt2/0%(p)). Setp = oy’ (itx/l?) and notice that the
restriction on t follows by the assumption that t > Clog(eN/k).

Nicole Tomczak-Jaegermann () Cortona, 2011 13/21



Convolutions of measures

Let Xy, ..., X, be independent isotropic log-concave vectors in RN, and let
x = (x¢) € R™. Consider the vector

mn
Y = inxi c RN,
i=1

Probability for bounds of the process

sup [P1Y]

[T]=m

depends on the vector x. Specifically, it is convenient to assume the normalization
x| <1and|x|le <b <.
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Uniform bound for projections of convolutions

Theorem

LetY = Z{; xiXi, where X4,. .., X, are independent isotropic N -dimensional
log-concave vectors. Assume that |x| < 1 and ||x||cc < b < 1.
i) Ifb > \;—ﬁ then forany t > 1,

eN ty/mlog (%)
Pl sup |[P1Y| > Ctymlog(— ) | <exp| — —————=% |.
(II—% 2l g(m)) p( b+/log(e2b2m)

. 1
i) Ifb < = then for any t > 1,

N
]P’( sup |P1Y| > Cty/mlog <em)>

[I]l=m
< exp ( — min {t2m|092 (%) %\/ﬁlog (%) })

Nicole Tomczak-Jaegermann () Cortona, 2011 15/21



Uniform bound for norms of submatrices

Let A be an n x N random matrix with independent log-concave isotropic rows
X1, ..., Xn € RN, For k < n,m < N we let

Ak m = the maximal operator norm of a k x m submatrix of A.
For simplicity assume n < N.

Theorem

For any integersn < N, k<mn,m<Nandanyt > 1, we have

P(Ak,m > Ct)\mk> < exp (— U\—mk))

log(3m

where

A = /logloglam) g () + Viclog ().
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Uniform bound for norms of submatrices, cont.

The threshold value of Ay, is optimal, up to the factor /loglog(3m).
Under the additional assumption of unconditionality of the rows we can remove
this factor and get the sharp estimate. For example, for expectations:

Let A be ann x N matrix whose rows are independent isotropic log-concave
unconditional random vectors. Then

N
EAkmsc(\/n_l Iog%—i—ﬁlog%).
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Reconstruction

Letn, N be integers; X € RN a random vector, Xy, ..., X,, independent,
distributed as X. A is an n x N matrix which has X;’s as rows

We can treat A : RN — R™ given by x < ((Xj,x)) € R™

Let m < N. A vector x € RN is m-sparse if | supp x| < m.
Problem from Compressed Sensing theory: Reconstruct any m-sparse vector
x € RN from the data Ax € R™, with a fast algorithm.

Given Ax, find x, knowing that it is sparse. Note that of course A is not-invertible.
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RIP and Geometry pf Polytopes

Define 6,n = d,,(A) as the infimum of & > 0 such that
||Ax|2 - ]Ele\z‘ <onlx?

holds for all m-sparse vectors x € RN,
Om is the Restricted Isometry Property (RIP) parameter of order m.

Candes and Tao (2006): if 821, is sufficiently small then
(*) whenever y = Ax has a m-sparse solution x, then x is the unique
solution of the {4-minimization program: min ||t||¢, with the min over
all t such that At =vy.

Geometry of Polytopes: By Donocho (2005), (x) is equivalent to the condition
that the centrally symmetric polytope A (B}) is m-centrally neighborly (i.e., any
set of less than m vertices containing no opposite pairs, is a vertex set of a face).
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Estimate for 6.,

Lemma

Let X4, ..., Xy be independent isotropic random vectors inR™N. Let0 < 6 < 1 and
B > 1. Then with probability at least

1— (:D exp (—36°n/8B?)

one has .
S <O+ - (A2 +EAL ),

where k < n is the largest integer satisfying k < (Ax.m/B)?;
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RIP theorem for matrices with independent rows:

Theorem

Letn < N and0 < 0 < 1. Let A be ann x N matrix, whose rows are
independent isotropic log-concave random vectors X;, i < n.
There exists an absolute constant ¢ > 0, such that if m < N satisfies

3N\ ? 6 \°
m loglog(3m) (Iog F) <c <W> n

dm <06

then

with overwhelming probability.

Optimal up to a log log factor.
For unconditional distributions can be removed
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