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Basic definitions and Notation

Let X = (X(1), . . . ,X(N)) be a random vector in RN with full dimensional support.
We say that the distribution of X is

log-concave, if X has density of the form e−h(x) with h : RN → (−∞,∞]
convex;

isotropic, if EXi = 0 and EXiXj = δi,j.

For x,y ∈ RN we put

|x| = ‖x‖2 =
(∑N

i=1 x
2
i

)1/2

〈x,y〉 is the inner product

For ∅ 6= I ⊂ {1, . . . ,N}, by PI we denote the coordinate projection onto
{y ∈ RN : supp(y) ⊂ I}.
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Examples: log-concave random vectors

1. Let K ⊂ Rn be a convex body ( = compact convex, with non-empty interior)
(symmetric means −K = K).
X a random vector uniformly distributed in K. Then the corresponding probability
measure on RN

µK(A) =
|K ∩A|

|K|

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that µTK is
isotropic.

2. The Gaussian vector G = (g1, ...,gn), where gi’s have N(0, 1) distribution, is
isotropic and log-concave.

3. Similarly the vector X = (ξ1, ..., ξn), where ξi’s are independent with the
exponential distribution (i.e., with density f(t) = 1√

2
exp(−

√
2|t|), for t ∈ R)

is isotropic and log-concave.
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Matrices

Let n,N be integers; X ∈ RN a random vector, X1, . . . ,Xn independent,
distributed as X.
A is an n×N matrix which has Xi’s as rows

A =


X1

X2

· · ·
Xn

 =


· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


For J ⊂ {1, . . . ,n}, I ⊂ {1, . . . ,N}, let A(J, I) be the sub-matrix with rows from J

and columns from I. For k 6 n , m 6 N, let

Ak,m = sup
J,I
‖A(J, I)‖,

over all |J| 6 k, |I| 6 m. This is maximum of norms of sub-matrices of k columns
and m rows (the operator norms from `N2 to `n2 ).
Question: Upper bounds for Ak,m with high probability
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Example: Norms of sub-matrices, uniform version of P.

Earlier case: m = N, i.e., Ak,N. We select k rows and take all columns. Solved
by ALPT (JAMS 2010); connected with length of good approximations of the
covariance matrices

Case k = 1: For any J with |J| = 1, and I with |I| 6 m, sub-matrix of one row has
a form

A(J, I) =
(
PIX

)
, so A1,m = sup

|I|6m
|PIX|.

A bound for A1,m will imply a uniform bound for PIX, for t > 1.

sup
|I|=m

|PIX| 6 bound for A1,m, (∗)

with high probability. Compare with Paouris’ theorem for a fixed I with |I| 6 m: for
s > 1,

P
(
|PIX| 6 Cs

√
N
)

> 1 − exp
(

− s
√
N
)

.

However the complexity of the family of subsets is
(
N
m

)
� exp(c

√
N). To prove

(∗) we need more advanced technique.
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Order Statistics

For an N–dimensional random vector X by X∗1 > X∗2 > . . . > X∗N we denote the
nonincreasing rearrangement of |X(1)|, . . . , |X(N)| (in particular
X∗1 = max{|X(1)|, . . . , |X(N)|} and X∗N = min{|X(1)|, . . . , |X(N)|}). Random
variables X∗k, 1 6 k 6 N, are called order statistics of X.

Problem: Find an upper bound for P(X∗k > t).

If coordinates of Xi are independent symmetric exponential r.v. with variance 1
then Med(X∗k) ∼ log(eN/k) for k 6 N/2.
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Order Statistics for isotropic log-concave vectors

Theorem

Let X be N-dim. log-concave isotropic vector. Then for all t > C log
(
eN
k

)
,

P
(
X∗k > t

)
6 exp

(
−

1
C

√
kt
)

.

Actually we need a stronger theorem that uses the following important “weak
parameter”
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Weak parameter

For a vector X in RN we define

σX(p) := sup
t∈SN−1

(E|〈t,X〉|p)1/p p > 2.

We also let σ−1
X to be the left-inverse function.

σ−1
X (s) := sup

{
t : σX(t) 6 s

}
Examples

For isotropic log-concave vectors X, σX(p) 6 p/
√

2.

For subgaussian vectors X, σX(p) 6 C
√
p.

We say that an isotropic vector X is ψα if σX(p) 6 Cp1/α (uniform
distributions on suitable normalized BNp balls are ψα with α = min(p, 2))
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Order Statistics with weak parameter

Theorem

For any N-dim. log-concave isotropic vector X, ` > 1 and t > C log
(
eN
`

)
,

P
(
X∗` > t

)
6 exp

(
− σ−1

X

( 1
C
t
√
`
))

This theorem implies uniform estimates for norms of projections.
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Uniform bound for norms of projections

Theorem

Let X be an isotropic log-concave vector in RN, and m 6 N. Then for any t > 1,

P

(
sup

|I|=m

|PIX| > Ct
√
m log

(eN
m

))

is less than or equal to

exp

(
− σ−1

X

(t√m log
(
eN
m

)
√

log(em)

))
6 exp

(
− t

√
m√

log(em)
log
(eN
m

))
.

The bound is sharp, except for
√

log in the probability estimate.
We conjecture this factor is not needed.
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Uniform bound for norms of projections, idea

Idea of the proof. We want to estimate

P

(
sup

|I|=m

|PIX| > Ct
√
m log

(eN
m

))
.

We have

sup
|I|=m

|PIX| =
( m∑
k=1

|X∗k|
2
)1/2

6 2
( s−1∑
i=0

2i|X∗2i |
2
)1/2

,

where s = dlog2me.
We then use the estimates for order statistics.
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Estimates for order statistics

Our approach to estimates for order statistics is based on the suitable estimate of
moments of the process NX(t), where for t > 0,

NX(t) :=

N∑
i=1

1{Xi>t}

That is, NX(t) is equal to the number of coordinates of X larger than or equal to t.
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Estimate for NX

Theorem

For any isotropic log-concave vector X and p > 2 we have

E(t2NX(t))p 6 (Cp)2p for t > C log
(Nt2
p2

)
.

E(t2NX(t))p 6 (CσX(p))2p for t > C log
( Nt2

σ2
X(p)

)
.

To get estimate for order statistics we observe that X∗k > t implies that
NX(t) > k/2 or N−X(t) > k/2 and vector −X is also isotropic and log-concave,
and σX = σ−X. Estimates for NX and Chebyshev’s inequality give

P(X∗k > t) 6
(2
k

)p(
ENX(t)p + EN−X(t)p

)
6
(CσX(p)

t
√
k

)2p

provided that t > C log(Nt2/σ2
X(p)). Set p = σ−1

X

(
1
eCt
√
k
)

and notice that the

restriction on t follows by the assumption that t > C log(eN/k).
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√
k
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X
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1
eCt
√
k
)
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Convolutions of measures

Let X1, . . . ,Xn be independent isotropic log-concave vectors in RN, and let
x = (xi) ∈ Rn. Consider the vector

Y =

n∑
i=1

xiXi ∈ RN.

Probability for bounds of the process

sup
|I|=m

|PIY|

depends on the vector x. Specifically, it is convenient to assume the normalization
|x| 6 1 and ‖x‖∞ 6 b 6 1.
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Uniform bound for projections of convolutions

Theorem

Let Y =
∑n
i=1 xiXi, where X1, . . . ,Xn are independent isotropic N-dimensional

log-concave vectors. Assume that |x| 6 1 and ‖x‖∞ 6 b 6 1.
i) If b > 1√

m
, then for any t > 1,

P

(
sup

|I|=m

|PIY| > Ct
√
m log

(eN
m

))
6 exp

(
−
t
√
m log

(
eN
m

)
b
√

log(e2b2m)

)
.

ii) If b 6 1√
m

then for any t > 1,

P

(
sup

|I|=m

|PIY| > Ct
√
m log

(eN
m

))

6 exp
(

− min
{
t2m log2

(eN
m

)
,
t

b

√
m log

(eN
m

)})
.
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Uniform bound for norms of submatrices

Let A be an n×N random matrix with independent log-concave isotropic rows
X1, . . . ,Xn ∈ RN. For k 6 n,m 6 N we let

Ak,m = the maximal operator norm of a k×m submatrix of A.

For simplicity assume n 6 N.

Theorem

For any integers n 6 N, k 6 n, m 6 N and any t > 1, we have

P
(
Ak,m > Ctλmk

)
6 exp

(
−

tλmk√
log(3m)

)
,

where

λmk =
√

log log(3m)
√
m log

(eN
m

)
+
√
k log

(en
k

)
.
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Uniform bound for norms of submatrices, cont.

The threshold value of λkm is optimal, up to the factor
√

log log(3m).
Under the additional assumption of unconditionality of the rows we can remove
this factor and get the sharp estimate. For example, for expectations:

Theorem

Let A be an n×N matrix whose rows are independent isotropic log-concave
unconditional random vectors. Then

EAkm 6 C

(√
m log

3N
m

+
√
k log

3n
k

)
.

Nicole Tomczak-Jaegermann () Cortona, 2011 17 / 21



Reconstruction

Let n,N be integers; X ∈ RN a random vector, X1, . . . ,Xn independent,
distributed as X. A is an n×N matrix which has Xi’s as rows

A =


X1

X2

· · ·
Xn

 =


· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


We can treat A : RN → Rn given by x←

(
〈Xi, x〉

)
∈ Rn.

Let m 6 N. A vector x ∈ RN is m-sparse if | supp x| 6 m.
Problem from Compressed Sensing theory: Reconstruct any m-sparse vector
x ∈ RN from the data Ax ∈ Rn, with a fast algorithm.

Given Ax, find x, knowing that it is sparse. Note that of course A is not-invertible.
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RIP and Geometry pf Polytopes

Define δm = δm(A) as the infimum of δ > 0 such that∣∣|Ax|2 − E|Ax|2
∣∣ 6 δn |x|2

holds for all m-sparse vectors x ∈ RN.
δm is the Restricted Isometry Property (RIP) parameter of order m.

Candes and Tao (2006): if δ2m is sufficiently small then
(∗) whenever y = Ax has a m-sparse solution x, then x is the unique

solution of the `1-minimization program: min ‖t‖`1 with the min over
all t such that At = y.

Geometry of Polytopes: By Donoho (2005), (∗) is equivalent to the condition
that the centrally symmetric polytope A(BN1 ) is m-centrally neighborly (i.e., any
set of less than m vertices containing no opposite pairs, is a vertex set of a face).
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Estimate for δm

Lemma

Let X1, . . . ,Xn be independent isotropic random vectors in RN. Let 0 < θ < 1 and
B > 1. Then with probability at least

1 −

(
N

m

)
exp

(
−3θ2n/8B2)

one has
δm 6 θ+

1
n

(
A2
k,m + EA2

k,m

)
,

where k 6 n is the largest integer satisfying k 6 (Ak,m/B)2;
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RIP theorem for matrices with independent rows:

Theorem

Let n 6 N and 0 < θ < 1. Let A be an n×N matrix, whose rows are
independent isotropic log-concave random vectors Xi, i 6 n.
There exists an absolute constant c > 0, such that if m 6 N satisfies

m log log(3m)

(
log

3N
m

)2

6 c

(
θ

log(3/θ)

)2

n

then
δm 6 θ

with overwhelming probability.

Optimal up to a log log factor.
For unconditional distributions can be removed
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