Geometry of log-concave Ensembles of random matrices

Nicole Tomczak-Jaegermann

Joint work with Radosław Adamczak, Rafał Latała, Alexander Litvak, Alain Pajor

Cortona, June 2011

Let X = (X(1), ..., X(N)) be a random vector in \mathbb{R}^N with full dimensional support. We say that the distribution of X is

- *log-concave*, if X has density of the form $e^{-h(x)}$ with $h: \mathbb{R}^N \to (-\infty, \infty]$ convex;
- isotropic, if $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i X_j = \delta_{i,j}$.

For $x,y\in \mathbb{R}^N$ we put

- $|\mathbf{x}| = \|\mathbf{x}\|_2 = \left(\sum_{i=1}^N x_i^2\right)^{1/2}$
- $\langle x, y \rangle$ is the inner product
- For $\emptyset \neq I \subset \{1, ..., N\}$, by P_I we denote the coordinate projection onto $\{y \in \mathbb{R}^N : \text{ supp}(y) \subset I\}.$

1. Let $K \subset \mathbb{R}^n$ be a convex body (= compact convex, with non-empty interior) (symmetric means -K = K).

X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^{N}

$$\mu_{\mathsf{K}}(\mathsf{A}) = \frac{|\mathsf{K} \cap \mathsf{A}|}{|\mathsf{K}|}$$

is log-concave (by Brunn-Minkowski).

Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.

2. The Gaussian vector $G = (g_1, ..., g_n)$, where g_i 's have $\mathcal{N}(0, 1)$ distribution, is isotropic and log-concave.

3. Similarly the vector $X = (\xi_1, ..., \xi_n)$, where ξ_i 's are independent with the exponential distribution (i.e., with density $f(t) = \frac{1}{\sqrt{2}} \exp(-\sqrt{2}|t|)$, for $t \in \mathbb{R}$) is isotropic and log-concave.

Matrices

Let n,N be integers; $X\in \mathbb{R}^N$ a random vector, X_1,\ldots,X_n independent, distributed as X.

A is an $n \times N$ matrix which has X_i 's as rows

$$A = \begin{pmatrix} X_1 \\ X_2 \\ \cdots \\ X_n \end{pmatrix} = \begin{pmatrix} \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \end{pmatrix}$$

For $J \subset \{1, ..., n\}$, $I \subset \{1, ..., N\}$, let A(J, I) be the sub-matrix with rows from J and columns from I. For $k \leq n$, $m \leq N$, let

$$A_{k,m} = \sup_{J,I} \|A(J,I)\|,$$

over all $|J| \leq k$, $|I| \leq m$. This is maximum of norms of sub-matrices of k columns and m rows (the operator norms from ℓ_2^N to ℓ_2^n). **Question:** Upper bounds for $A_{k,m}$ with high probability

Example: Norms of sub-matrices, uniform version of P.

Earlier case: m = N, i.e., $A_{k,N}$. We select k rows and take *all* columns. Solved by ALPT (JAMS 2010); connected with length of good approximations of the covariance matrices

Case k = 1: For any J with |J| = 1, and I with $|I| \leq m$, sub-matrix of one row has a form

$$\mathsf{A}(\mathsf{J},\mathsf{I}) = \Big(\mathsf{P}_\mathsf{I} \mathsf{X} \Big), \qquad \text{so} \quad \mathsf{A}_{\mathsf{1},\mathfrak{m}} = \sup_{|\mathsf{I}| \leqslant \mathfrak{m}} |\mathsf{P}_\mathsf{I} \mathsf{X}|.$$

A bound for $A_{1,m}$ will imply a uniform bound for P_IX , for $t \ge 1$.

$$\sup_{|I|=\mathfrak{m}} |P_I X| \leqslant \text{ bound for } A_{1,\mathfrak{m}}, \qquad (*)$$

with high probability. Compare with Paouris' theorem for a *fixed* I with $|I|\leqslant m$: for $s\geqslant 1,$

$$\mathbb{P}\Big(|\mathsf{P}_{\mathrm{I}}X|\leqslant Cs\sqrt{N}\Big)\geqslant 1-\text{exp}\,\Big(-s\sqrt{N}\Big).$$

However the complexity of the family of subsets is $\binom{N}{m} \gg \exp(c\sqrt{N})$. To prove (*) we need more advanced technique.

For an N-dimensional random vector X by $X_1^* \ge X_2^* \ge \ldots \ge X_N^*$ we denote the nonincreasing rearrangement of $|X(1)|, \ldots, |X(N)|$ (in particular $X_1^* = max\{|X(1)|, \ldots, |X(N)|\}$ and $X_N^* = min\{|X(1)|, \ldots, |X(N)|\}$). Random variables X_k^* , $1 \le k \le N$, are called order statistics of X.

Problem: Find an upper bound for $\mathbb{P}(X_k^* \ge t)$.

If coordinates of X_i are independent symmetric exponential r.v. with variance 1 then $Med(X_k^*) \sim log(eN/k)$ for $k \leq N/2$.

Let X be N-dim. log-concave isotropic vector. Then for all $t \ge C \log \left(\frac{eN}{k}\right)$,

$$\mathbb{P}\Big(X_k^* \ge t\Big) \leqslant \exp\Big(-\frac{1}{C}\sqrt{k}t\Big).$$

Actually we need a stronger theorem that uses the following important "weak parameter"

For a vector X in \mathbb{R}^N we define

$$\sigma_X(p) := \sup_{t \in S^{N-1}} (\mathbb{E}|\langle t, X \rangle|^p)^{1/p} \quad p \geqslant 2.$$

We also let σ_{χ}^{-1} to be the left-inverse function.

$$\sigma_X^{-1}(s) := \text{sup}\left\{t \colon \sigma_X(t) \leqslant s\right\}$$

Examples

- For isotropic log-concave vectors X, $\sigma_X(p) \leq p/\sqrt{2}$.
- For subgaussian vectors X, $\sigma_X(p) \leq C\sqrt{p}$.
- We say that an isotropic vector X is ψ_{α} if $\sigma_X(p) \leq Cp^{1/\alpha}$ (uniform distributions on suitable normalized B_p^N balls are ψ_{α} with $\alpha = \min(p, 2)$)

For any N-dim. log-concave isotropic vector X, $\ell \ge 1$ and $t \ge C \log \left(\frac{eN}{\ell}\right)$,

$$\mathbb{P}\Big(X_{\ell}^* \geqslant t\Big) \leqslant exp\left(-\sigma_X^{-1}\Big(\frac{1}{C}t\sqrt{\ell}\Big)\right)$$

This theorem implies uniform estimates for norms of projections.

Let X be an isotropic log-concave vector in $\mathbb{R}^N,$ and $m\leqslant N.$ Then for any $t\geqslant 1,$

$$\mathbb{P}\left(\sup_{|I|=\mathfrak{m}}|\mathsf{P}_{I}X| \geqslant Ct\sqrt{\mathfrak{m}}\log\left(\frac{e\mathsf{N}}{\mathfrak{m}}\right)\right)$$

is less than or equal to

$$\exp{\left(-\sigma_X^{-1}\Big(\frac{t\sqrt{m}\log\left(\frac{eN}{m}\right)}{\sqrt{\log(em)}}\Big)\right)} \leqslant \exp{\left(-t\frac{\sqrt{m}}{\sqrt{\log(em)}}\log\left(\frac{eN}{m}\right)\right)}.$$

The bound is sharp, except for $\sqrt{\log}$ in the probability estimate. We conjecture this factor is not needed. Idea of the proof. We want to estimate

$$\mathbb{P}\Bigg(\sup_{|I|=m} |P_I X| \geqslant Ct \sqrt{m} \log \Big(\frac{eN}{m}\Big) \Bigg).$$

We have

$$\sup_{|I|=m} |P_I X| = \Big(\sum_{k=1}^m |X_k^*|^2\Big)^{1/2} \leqslant 2\Big(\sum_{i=0}^{s-1} 2^i |X_{2^i}^*|^2\Big)^{1/2},$$

where $s = \lceil \log_2 m \rceil$. We then use the estimates for order statistics. Our approach to estimates for order statistics is based on the suitable estimate of moments of the process $N_X(t)$, where for $t \ge 0$,

$$N_X(t) := \sum_{i=1}^N \mathbb{1}_{\{X_i \geqslant t\}}$$

That is, $N_X(t)$ is equal to the number of coordinates of X larger than or equal to t.

Estimate for N_X

Theorem

For any isotropic log-concave vector X and $p \geqslant 2$ we have

$$\begin{split} \mathbb{E}(t^2N_X(t))^p &\leqslant (Cp)^{2p} \quad \textit{ for } t \geqslant C\log\Big(\frac{Nt^2}{p^2}\Big). \\ \mathbb{E}(t^2N_X(t))^p &\leqslant (C\sigma_X(p))^{2p} \quad \textit{ for } t \geqslant C\log\Big(\frac{Nt^2}{\sigma_X^2(p)}\Big). \end{split}$$

For any isotropic log-concave vector X and $p \geqslant 2$ we have

$$\begin{split} \mathbb{E}(t^2N_X(t))^p &\leqslant (Cp)^{2p} \quad \textit{ for } t \geqslant C\log\Big(\frac{Nt^2}{p^2}\Big). \\ \mathbb{E}(t^2N_X(t))^p &\leqslant (C\sigma_X(p))^{2p} \quad \textit{ for } t \geqslant C\log\Big(\frac{Nt^2}{\sigma_X^2(p)}\Big). \end{split}$$

To get estimate for order statistics we observe that $X_k^* \ge t$ implies that $N_X(t) \ge k/2$ or $N_{-X}(t) \ge k/2$ and vector -X is also isotropic and log-concave, and $\sigma_X = \sigma_{-X}$. Estimates for N_X and Chebyshev's inequality give

$$\mathbb{P}(X_k^* \geqslant t) \leqslant \Big(\frac{2}{k}\Big)^p \Big(\mathbb{E} N_X(t)^p + \mathbb{E} N_{-X}(t)^p \Big) \leqslant \Big(\frac{C\sigma_X(p)}{t\sqrt{k}}\Big)^{2p}$$

provided that $t \ge C \log(Nt^2/\sigma_X^2(p))$. Set $p = \sigma_X^{-1}\left(\frac{1}{eC}t\sqrt{k}\right)$ and notice that the restriction on t follows by the assumption that $t \ge C \log(eN/k)$.

Let X_1,\ldots,X_n be independent isotropic log-concave vectors in $\mathbb{R}^N,$ and let $x=(x_i)\in\mathbb{R}^n.$ Consider the vector

$$Y = \sum_{i=1}^{n} x_i X_i \in \mathbb{R}^N.$$

Probability for bounds of the process

 $\sup_{|I|=\mathfrak{m}} |P_I Y|$

depends on the vector x. Specifically, it is convenient to assume the normalization $|x|\leqslant 1$ and $\|x\|_{\infty}\leqslant b\leqslant 1.$

Let $Y=\sum_{i=1}^n x_iX_i$, where X_1,\ldots,X_n are independent isotropic N-dimensional log-concave vectors. Assume that $|x|\leqslant 1$ and $\|x\|_{\infty}\leqslant b\leqslant 1$. i) If $b\geqslant \frac{1}{\sqrt{m}}$, then for any $t\geqslant 1$,

$$\mathbb{P}\left(\sup_{|I|=m} |\mathsf{P}_I\mathsf{Y}| \geqslant \mathsf{Ct}\sqrt{m}\log\left(\frac{e\mathsf{N}}{m}\right)\right) \leqslant \exp\left(-\frac{\mathsf{t}\sqrt{m}\log\left(\frac{e\mathsf{N}}{m}\right)}{b\sqrt{\mathsf{log}(e^2b^2m)}}\right)$$

ii) If
$$b \leqslant \frac{1}{\sqrt{m}}$$
 then for any $t \geqslant 1$,

$$\begin{split} \mathbb{P} \Bigg(\sup_{|I|=m} |P_I Y| \geqslant Ct \sqrt{m} \log \Big(\frac{eN}{m} \Big) \Bigg) \\ \leqslant exp \, \Big(- \min \Big\{ t^2 m \log^2 \Big(\frac{eN}{m} \Big), \frac{t}{b} \sqrt{m} \log \Big(\frac{eN}{m} \Big) \Big\} \Big). \end{split}$$

Uniform bound for norms of submatrices

Let A be an $n \times N$ random matrix with independent log-concave isotropic rows $X_1, \ldots, X_n \in \mathbb{R}^N$. For $k \leqslant n, m \leqslant N$ we let

 $A_{k,m}$ = the maximal operator norm of a $k \times m$ submatrix of A.

For simplicity assume $n \leq N$.

Theorem

For any integers $n \leq N$, $k \leq n$, $m \leq N$ and any $t \geq 1$, we have

$$\mathbb{P}\Big(A_{k,\mathfrak{m}} \geqslant Ct\lambda_{\mathfrak{m}k}\Big) \leqslant \text{exp}\,\Big(-\frac{t\lambda_{\mathfrak{m}k}}{\sqrt{\text{log}(3\mathfrak{m})}}\Big),$$

where

$$\lambda_{mk} = \sqrt{\log \log(3m)} \sqrt{m} \log \left(\frac{eN}{m}\right) + \sqrt{k} \log \left(\frac{en}{k}\right)$$

The threshold value of λ_{km} is optimal, up to the factor $\sqrt{\log \log(3m)}$. Under the additional assumption of unconditionality of the rows we can remove this factor and get the sharp estimate. For example, for expectations:

Theorem

Let A be an $n\times N$ matrix whose rows are independent isotropic log-concave unconditional random vectors. Then

$$\mathbb{E} A_{k\mathfrak{m}} \leqslant C\left(\sqrt{\mathfrak{m}} \, \log \frac{3 \mathsf{N}}{\mathfrak{m}} + \sqrt{k} \, \log \frac{3 \mathfrak{n}}{k}\right),$$

Let n, N be integers; $X \in \mathbb{R}^N$ a random vector, X_1, \ldots, X_n independent, distributed as X. A is an $n \times N$ matrix which has X_i 's as rows

$$A = \begin{pmatrix} X_1 \\ X_2 \\ \cdots \\ X_n \end{pmatrix} = \begin{pmatrix} \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \end{pmatrix}$$

We can treat $A : \mathbb{R}^N \to \mathbb{R}^n$ given by $x \leftarrow (\langle X_i, x \rangle) \in \mathbb{R}^n$.

Let $m \leq N$. A vector $x \in \mathbb{R}^N$ is m-sparse if $|\operatorname{supp} x| \leq m$. **Problem from Compressed Sensing theory:** Reconstruct any m-sparse vector $x \in \mathbb{R}^N$ from the data $Ax \in \mathbb{R}^n$, with a fast algorithm.

Given Ax, find x, knowing that it is sparse. Note that of course A is not-invertible.

Define $\delta_m=\delta_m(A)$ as the infimum of $\delta>0$ such that

$$\left| |Ax|^2 - \mathbb{E} |Ax|^2 \right| \leqslant \delta \, n \, |x|^2$$

holds for all m-sparse vectors $x \in \mathbb{R}^{N}$.

 δ_m is the Restricted Isometry Property (RIP) parameter of order m.

Candes and Tao (2006): if δ_{2m} is sufficiently small then

(*) whenever y = Ax has a m-sparse solution x, then x is the unique solution of the ℓ_1 -minimization program: min $||t||_{\ell_1}$ with the min over all t such that At = y.

Geometry of Polytopes: By Donoho (2005), (*) is equivalent to the condition that the centrally symmetric polytope $A(B_1^N)$ is m-centrally neighborly (i.e., any set of less than m vertices containing no opposite pairs, is a vertex set of a face).

Lemma

Let X_1, \ldots, X_n be independent isotropic random vectors in \mathbb{R}^N . Let $0 < \theta < 1$ and $B \ge 1$. Then with probability at least

$$1 - \binom{N}{m} \exp\left(-3\theta^2 n/8B^2\right)$$

one has

$$\delta_{\mathfrak{m}} \leqslant \theta + rac{1}{\mathfrak{n}} \left(A_{k,\mathfrak{m}}^{2} + \mathbb{E} A_{k,\mathfrak{m}}^{2} \right),$$

where $k \leq n$ is the largest integer satisfying $k \leq (A_{k,m}/B)^2$;

Let $n \leq N$ and $0 < \theta < 1$. Let A be an $n \times N$ matrix, whose rows are independent isotropic log-concave random vectors X_i , $i \leq n$. There exists an absolute constant c > 0, such that if $m \leq N$ satisfies

$$\mathfrak{m} \ \text{log} \ \text{log}(3\mathfrak{m}) \left(\text{log} \ \frac{3N}{\mathfrak{m}} \right)^2 \leqslant c \left(\frac{\theta}{\text{log}(3/\theta)} \right)^2 \ \mathfrak{n}$$

then

$$\delta_{\mathfrak{m}}\leqslant \theta$$

with overwhelming probability.

Optimal up to a log log factor.

For unconditional distributions can be removed