Geometry of log-concave Ensembles of random matrices

Nicole Tomczak-Jaegermann

Joint work with
Radosław Adamczak, Rafał Latała, Alexander Litvak, Alain Pajor

Cortona, June 2011

Basic definitions and Notation

Let $X=(X(1), \ldots, X(N))$ be a random vector in \mathbb{R}^{N} with full dimensional support. We say that the distribution of X is

- log-concave, if X has density of the form $\mathrm{e}^{-\mathrm{h}(x)}$ with $\mathrm{h}: \mathbb{R}^{\mathrm{N}} \rightarrow(-\infty, \infty]$ convex;
- isotropic, if $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i} X_{j}=\delta_{i, j}$.

For $x, y \in \mathbb{R}^{N}$ we put

- $|x|=\|x\|_{2}=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{1 / 2}$
- $\langle x, y\rangle$ is the inner product
- For $\emptyset \neq \mathrm{I} \subset\{1, \ldots, \mathrm{~N}\}$, by P_{I} we denote the coordinate projection onto $\left\{y \in \mathbb{R}^{N}: \operatorname{supp}(y) \subset I\right\}$.

Examples: log-concave random vectors

1. Let $\mathrm{K} \subset \mathbb{R}^{\mathrm{n}}$ be a convex body (= compact convex, with non-empty interior) (symmetric means $-\mathrm{K}=\mathrm{K}$).
X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^{N}

$$
\mu_{\mathrm{K}}(\mathrm{~A})=\frac{|\mathrm{K} \cap \mathrm{~A}|}{|\mathrm{K}|}
$$

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.
2. The Gaussian vector $G=\left(g_{1}, \ldots, g_{\mathfrak{n}}\right)$, where g_{i} 's have $\mathcal{N}(0,1)$ distribution, is isotropic and log-concave.
3. Similarly the vector $X=\left(\xi_{1}, \ldots, \xi_{n}\right)$, where ξ_{i} 's are independent with the exponential distribution (i.e., with density $f(t)=\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|t|)$, for $t \in \mathbb{R}$) is isotropic and log-concave.

Matrices

Let \mathfrak{n}, N be integers; $\mathrm{X} \in \mathbb{R}^{\mathrm{N}}$ a random vector, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ independent, distributed as X.
A is an $n \times N$ matrix which has X_{i} 's as rows

$$
A=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
X_{n}
\end{array}\right)=\left(\begin{array}{l}
\cdots \ldots \ldots \ldots \\
\cdots \cdots \ldots \ldots \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots
\end{array}\right)
$$

For $\mathrm{J} \subset\{1, \ldots, \mathrm{n}\}, \mathrm{I} \subset\{1, \ldots, \mathrm{~N}\}$, let $\mathrm{A}(\mathrm{J}, \mathrm{I})$ be the sub-matrix with rows from J and columns from I. For $k \leqslant n, m \leqslant N$, let

$$
A_{k, m}=\sup _{J, I}\|\mathcal{A}(J, I)\|,
$$

over all $|J| \leqslant k,|I| \leqslant m$. This is maximum of norms of sub-matrices of k columns and m rows (the operator norms from ℓ_{2}^{N} to ℓ_{2}^{n}).
Question: Upper bounds for $A_{k, m}$ with high probability

Example: Norms of sub-matrices, uniform version of P.

Earlier case: $m=N$, i.e., $A_{k, N}$. We select k rows and take all columns. Solved by ALPT (JAMS 2010); connected with length of good approximations of the covariance matrices

Case $k=1$: For any J with $|J|=1$, and I with $|I| \leqslant m$, sub-matrix of one row has a form

$$
A(J, I)=\left(P_{I} X\right), \quad \text { so } \quad A_{1, m}=\sup _{|I| \leqslant m}\left|P_{I} X\right| .
$$

A bound for $A_{1, m}$ will imply a uniform bound for $P_{I} X$, for $t \geqslant 1$.

$$
\sup _{|I|=m}\left|P_{I} X\right| \leqslant \text { bound for } A_{1, m}
$$

with high probability. Compare with Paouris' theorem for a fixed I with $|\mathrm{I}| \leqslant \mathrm{m}$: for $s \geqslant 1$,

$$
\mathbb{P}\left(\left|P_{I} X\right| \leqslant C s \sqrt{N}\right) \geqslant 1-\exp (-s \sqrt{N})
$$

However the complexity of the family of subsets is $\binom{N}{m}>\exp (c \sqrt{N})$. To prove $(*)$ we need more advanced technique.

Order Statistics

For an N -dimensional random vector X by $\mathrm{X}_{1}^{*} \geqslant \mathrm{X}_{2}^{*} \geqslant \ldots \geqslant \mathrm{X}_{\mathrm{N}}^{*}$ we denote the nonincreasing rearrangement of $|\mathrm{X}(1)|, \ldots,|\mathrm{X}(\mathrm{N})|$ (in particular $X_{1}^{*}=\max \{|X(1)|, \ldots,|X(N)|\}$ and $\left.X_{N}^{*}=\min \{|X(1)|, \ldots,|X(N)|\}\right)$. Random variables $X_{k}^{*}, 1 \leqslant k \leqslant N$, are called order statistics of X.

Problem: Find an upper bound for $\mathbb{P}\left(X_{k}^{*} \geqslant t\right)$.
If coordinates of X_{i} are independent symmetric exponential r.v. with variance 1 then $\operatorname{Med}\left(X_{k}^{*}\right) \sim \log (e N / k)$ for $k \leqslant N / 2$.

Order Statistics for isotropic log-concave vectors

Theorem

Let X be N -dim. log-concave isotropic vector. Then for all $\mathrm{t} \geqslant \mathrm{C} \log \left(\frac{e \mathrm{~N}}{\mathrm{k}}\right)$,

$$
\mathbb{P}\left(X_{k}^{*} \geqslant t\right) \leqslant \exp \left(-\frac{1}{C} \sqrt{k} t\right)
$$

Actually we need a stronger theorem that uses the following important "weak parameter"

Weak parameter

For a vector X in \mathbb{R}^{N} we define

$$
\sigma_{X}(p):=\sup _{t \in S^{N-1}}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p} \quad p \geqslant 2
$$

We also let σ_{x}^{-1} to be the left-inverse function.

$$
\sigma_{x}^{-1}(s):=\sup \left\{t: \sigma_{X}(t) \leqslant s\right\}
$$

Examples

- For isotropic log-concave vectors $X, \sigma_{X}(p) \leqslant p / \sqrt{2}$.
- For subgaussian vectors $X, \sigma_{X}(p) \leqslant C \sqrt{p}$.
- We say that an isotropic vector X is ψ_{α} if $\sigma_{X}(p) \leqslant C p^{1 / \alpha}$ (uniform distributions on suitable normalized $\mathrm{B}_{\mathrm{p}}^{\mathrm{N}}$ balls are ψ_{α} with $\alpha=\min (p, 2)$)

Order Statistics with weak parameter

Theorem

For any N -dim. log-concave isotropic vector $\mathrm{X}, \ell \geqslant 1$ and $\mathrm{t} \geqslant \mathrm{C} \log \left(\frac{\mathrm{e} \mathrm{N}}{\ell}\right)$,

$$
\mathbb{P}\left(X_{\ell}^{*} \geqslant t\right) \leqslant \exp \left(-\sigma_{X}^{-1}\left(\frac{1}{C} t \sqrt{\ell}\right)\right)
$$

This theorem implies uniform estimates for norms of projections.

Uniform bound for norms of projections

Theorem

Let X be an isotropic log-concave vector in \mathbb{R}^{N}, and $\mathrm{m} \leqslant \mathrm{N}$. Then for any $\mathrm{t} \geqslant 1$,

$$
\mathbb{P}\left(\sup _{|I|=m}\left|P_{I} X\right| \geqslant C t \sqrt{m} \log \left(\frac{e N}{m}\right)\right)
$$

is less than or equal to

$$
\exp \left(-\sigma_{x}^{-1}\left(\frac{\mathrm{t} \sqrt{m} \log \left(\frac{e N}{m}\right)}{\sqrt{\log (e m)}}\right)\right) \leqslant \exp \left(-\mathrm{t} \frac{\sqrt{m}}{\sqrt{\log (e m)}} \log \left(\frac{e N}{m}\right)\right) .
$$

The bound is sharp, except for $\sqrt{\log }$ in the probability estimate. We conjecture this factor is not needed.

Uniform bound for norms of projections, idea

Idea of the proof. We want to estimate

$$
\mathbb{P}\left(\sup _{|I|=m}\left|P_{I} X\right| \geqslant C t \sqrt{m} \log \left(\frac{e N}{m}\right)\right) .
$$

We have

$$
\sup _{|I|=m}\left|P_{I} X\right|=\left(\sum_{k=1}^{m}\left|X_{k}^{*}\right|^{2}\right)^{1 / 2} \leqslant 2\left(\sum_{i=0}^{s-1} 2^{i}\left|X_{2 i}^{*}\right|^{2}\right)^{1 / 2},
$$

where $s=\left\lceil\log _{2} m\right\rceil$.
We then use the estimates for order statistics.

Estimates for order statistics

Our approach to estimates for order statistics is based on the suitable estimate of moments of the process $N_{X}(t)$, where for $t \geqslant 0$,

$$
N_{X}(\mathrm{t}):=\sum_{i=1}^{\mathrm{N}} \mathbb{1}_{\left\{\mathrm{X}_{\mathrm{i}} \geqslant \mathrm{t}\right\}}
$$

That is, $N_{X}(t)$ is equal to the number of coordinates of X larger than or equal to t.

Estimate for N_{X}

Theorem

For any isotropic log-concave vector X and $\mathrm{p} \geqslant 2$ we have

$$
\begin{gathered}
\mathbb{E}\left(t^{2} N_{X}(t)\right)^{p} \leqslant(C p)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{N t^{2}}{p^{2}}\right) . \\
\mathbb{E}\left(t^{2} N_{X}(t)\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{N t^{2}}{\sigma_{X}^{2}(p)}\right) .
\end{gathered}
$$

Estimate for N_{X}

Theorem

For any isotropic log-concave vector X and $\mathrm{p} \geqslant 2$ we have

$$
\begin{gathered}
\mathbb{E}\left(t^{2} N_{X}(t)\right)^{p} \leqslant(C p)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{N t^{2}}{p^{2}}\right) . \\
\mathbb{E}\left(t^{2} N_{X}(t)\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{N t^{2}}{\sigma_{X}^{2}(p)}\right) .
\end{gathered}
$$

To get estimate for order statistics we observe that $X_{k}^{*} \geqslant \mathrm{t}$ implies that $\mathrm{N}_{\mathrm{X}}(\mathrm{t}) \geqslant \mathrm{k} / 2$ or $\mathrm{N}_{-\mathrm{X}}(\mathrm{t}) \geqslant \mathrm{k} / 2$ and vector -X is also isotropic and log-concave, and $\sigma_{X}=\sigma_{-\mathrm{X}}$. Estimates for N_{X} and Chebyshev's inequality give

$$
\mathbb{P}\left(X_{k}^{*} \geqslant t\right) \leqslant\left(\frac{2}{k}\right)^{p}\left(\mathbb{E N}_{X}(t)^{p}+\mathbb{E} N_{-X}(t)^{p}\right) \leqslant\left(\frac{C \sigma_{X}(p)}{t \sqrt{k}}\right)^{2 p}
$$

provided that $t \geqslant C \log \left(\mathrm{Nt}^{2} / \sigma_{X}^{2}(p)\right)$. Set $p=\sigma_{X}^{-1}\left(\frac{1}{e C} t \sqrt{k}\right)$ and notice that the restriction on t follows by the assumption that $t \geqslant C \log (e N / k)$.

Convolutions of measures

Let X_{1}, \ldots, X_{n} be independent isotropic log-concave vectors in \mathbb{R}^{N}, and let $x=\left(x_{i}\right) \in \mathbb{R}^{n}$. Consider the vector

$$
Y=\sum_{i=1}^{n} x_{i} x_{i} \in \mathbb{R}^{N}
$$

Probability for bounds of the process

$$
\sup _{|\mathrm{I}|=\mathrm{m}}\left|\mathrm{P}_{\mathrm{I}} \mathrm{Y}\right|
$$

depends on the vector x. Specifically, it is convenient to assume the normalization $|x| \leqslant 1$ and $\|x\|_{\infty} \leqslant b \leqslant 1$.

Uniform bound for projections of convolutions

Theorem

Let $\mathrm{Y}=\sum_{i=1}^{n} x_{i} X_{i}$, where $\mathrm{X}_{1}, \ldots, X_{n}$ are independent isotropic N -dimensional log-concave vectors. Assume that $|x| \leqslant 1$ and $\|x\|_{\infty} \leqslant b \leqslant 1$.
i) If $b \geqslant \frac{1}{\sqrt{m}}$, then for any $t \geqslant 1$,

$$
\mathbb{P}\left(\sup _{|I|=m}\left|P_{I} Y\right| \geqslant C t \sqrt{m} \log \left(\frac{e N}{m}\right)\right) \leqslant \exp \left(-\frac{t \sqrt{m} \log \left(\frac{e N}{m}\right)}{b \sqrt{\log \left(e^{2} b^{2} m\right)}}\right) .
$$

ii) If $\mathrm{b} \leqslant \frac{1}{\sqrt{m}}$ then for any $\mathrm{t} \geqslant 1$,

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{|I|=m}\left|P_{I} Y\right| \geqslant C t \sqrt{m} \log \left(\frac{e N}{m}\right)\right) \\
& \quad \leqslant \exp \left(-\min \left\{t^{2} m \log ^{2}\left(\frac{e N}{m}\right), \frac{t}{b} \sqrt{m} \log \left(\frac{e N}{m}\right)\right\}\right)
\end{aligned}
$$

Uniform bound for norms of submatrices

Let A be an $n \times N$ random matrix with independent log-concave isotropic rows $X_{1}, \ldots, X_{n} \in \mathbb{R}^{N}$. For $k \leqslant n, m \leqslant N$ we let

$$
A_{k, m}=\text { the maximal operator norm of a } k \times m \text { submatrix of } A .
$$

For simplicity assume $n \leqslant N$.

Theorem

For any integers $\mathrm{n} \leqslant \mathrm{N}, \mathrm{k} \leqslant \mathrm{n}, \mathrm{m} \leqslant \mathrm{N}$ and any $\mathrm{t} \geqslant 1$, we have

$$
\mathbb{P}\left(A_{k, m} \geqslant C t \lambda_{m k}\right) \leqslant \exp \left(-\frac{t \lambda_{m k}}{\sqrt{\log (3 m)}}\right)
$$

where

$$
\lambda_{m k}=\sqrt{\log \log (3 m)} \sqrt{m} \log \left(\frac{e N}{m}\right)+\sqrt{k} \log \left(\frac{e n}{k}\right) .
$$

Uniform bound for norms of submatrices, cont.

The threshold value of λ_{km} is optimal, up to the factor $\sqrt{\log \log (3 \mathrm{~m})}$. Under the additional assumption of unconditionality of the rows we can remove this factor and get the sharp estimate. For example, for expectations:

Theorem

Let A be an $\mathrm{n} \times \mathrm{N}$ matrix whose rows are independent isotropic log-concave unconditional random vectors. Then

$$
\mathbb{E} A_{k m} \leqslant C\left(\sqrt{m} \log \frac{3 N}{m}+\sqrt{k} \log \frac{3 n}{k}\right)
$$

Reconstruction

Let \mathfrak{n}, N be integers; $\mathrm{X} \in \mathbb{R}^{\mathrm{N}}$ a random vector, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ independent, distributed as X. A is an $n \times N$ matrix which has X_{i} 's as rows

$$
A=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
X_{n}
\end{array}\right)=\left(\begin{array}{l}
\cdots \ldots \ldots \ldots \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots
\end{array}\right)
$$

We can treat $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ given by $x \leftarrow\left(\left\langle X_{i}, x\right\rangle\right) \in \mathbb{R}^{n}$.
Let $m \leqslant N$. A vector $x \in \mathbb{R}^{N}$ is m-sparse if $|\operatorname{supp} x| \leqslant m$.
Problem from Compressed Sensing theory: Reconstruct any m-sparse vector $x \in \mathbb{R}^{N}$ from the data $A x \in \mathbb{R}^{n}$, with a fast algorithm.

Given $A x$, find x, knowing that it is sparse. Note that of course A is not-invertible.

RIP and Geometry pf Polytopes

Define $\delta_{m}=\delta_{m}(\mathcal{A})$ as the infimum of $\delta>0$ such that

$$
\left.\left.\left||A x|^{2}-\mathbb{E}\right| A x\right|^{2}|\leqslant \delta \mathfrak{n}| x\right|^{2}
$$

holds for all m-sparse vectors $x \in R^{N}$.
$\delta_{\mathfrak{m}}$ is the Restricted Isometry Property (RIP) parameter of order m.
Candes and Tao (2006): if $\delta_{2 m}$ is sufficiently small then
$(*)$ whenever $y=A x$ has a m-sparse solution x, then x is the unique solution of the ℓ_{1}-minimization program: $\min \|t\|_{\ell_{1}}$ with the min over all t such that $\mathrm{At}=\mathrm{y}$.

Geometry of Polytopes: By Donoho (2005), (*) is equivalent to the condition that the centrally symmetric polytope $A\left(B_{1}^{N}\right)$ is m-centrally neighborly (i.e., any set of less than m vertices containing no opposite pairs, is a vertex set of a face).

Estimate for δ_{m}

Lemma

Let X_{1}, \ldots, X_{n} be independent isotropic random vectors in \mathbb{R}^{N}. Let $0<\theta<1$ and $B \geqslant 1$. Then with probability at least

$$
1-\binom{N}{m} \exp \left(-3 \theta^{2} n / 8 B^{2}\right)
$$

one has

$$
\delta_{m} \leqslant \theta+\frac{1}{n}\left(A_{k, m}^{2}+\mathbb{E} \mathcal{A}_{k, m}^{2}\right),
$$

where $k \leqslant n$ is the largest integer satisfying $k \leqslant\left(A_{k, m} / B\right)^{2}$;

RIP theorem for matrices with independent rows:

Theorem

Let $\mathrm{n} \leqslant \mathrm{N}$ and $0<\theta<1$. Let A be an $\mathrm{n} \times \mathrm{N}$ matrix, whose rows are independent isotropic log-concave random vectors $X_{i}, i \leqslant n$.
There exists an absolute constant $\mathrm{c}>0$, such that if $\mathrm{m} \leqslant \mathrm{N}$ satisfies

$$
m \log \log (3 m)\left(\log \frac{3 N}{m}\right)^{2} \leqslant c\left(\frac{\theta}{\log (3 / \theta)}\right)^{2} n
$$

then

$$
\delta_{m} \leqslant \theta
$$

with overwhelming probability.

Optimal up to a log log factor.
For unconditional distributions can be removed

