A measure of orthogonality in isotropic convex bodies

joint work with A. Giannopoulos and G. Paouris

National and Kapodistrian University of Athens

$$
\text { June 16, } 2011
$$

(1) Introducing the quantity in question
(2) Some general estimates
(3) The case of unconditional convex bodies

4 An extra incentive for studying such quantities

(1) Introducing the quantity in question

2 Some general estimates

(3) The case of unconditional convex bodies

4 An extra incentive for studying such quantities

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, Moment-entropy inequalities, Annals of Prob., (2004)
For every $q \geq 1$, the minimum of the quantity

$$
Y_{q}(K, M):=\left(\int_{K} \int_{M}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q},
$$

with K, M compact sets in \mathbb{R}^{n} of Lebesgue measure 1 , is attained when $K=M=D_{n}$.

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, Moment-entropy inequalities, Annals of Prob., (2004)
For every $q \geq 1$, the minimum of the quantity

$$
Y_{q}(K, M):=\left(\int_{K} \int_{M}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q},
$$

with K, M compact sets in \mathbb{R}^{n} of Lebesgue measure 1 , is attained when $K=M=D_{n}$.

* Note that $Y_{q}\left(D_{n}, D_{n}\right) \simeq \sqrt{q n}$ for all $1 \leq q \leq n$.

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, Moment-entropy inequalities, Annals of Prob., (2004)
For every $q \geq 1$, the minimum of the quantity

$$
Y_{q}(K, M):=\left(\int_{K} \int_{M}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q},
$$

with K, M compact sets in \mathbb{R}^{n} of Lebesgue measure 1 , is attained when $K=M=D_{n}$.

* Note that $Y_{q}\left(D_{n}, D_{n}\right) \simeq \sqrt{q n}$ for all $1 \leq q \leq n$.

Our aim is to study $Y_{q}(K):=Y_{q}(K, K)$ and $Y_{q}(K, M)$ when K and M are isotropic convex bodies.

Notation and definitions

- Let $K \subset \mathbb{R}^{n}$ be a convex body of volume 1. Associated with K is a family of symmetric, convex bodies $Z_{q}(K)$, $q \geq 1$, whose support function $h_{Z_{q}(K)}$ is defined as follows:

$$
h_{Z_{q}(K)}(\theta):=\left(\int_{K}|\langle x, \theta\rangle|^{q} d x\right)^{1 / q}, \quad \theta \in S^{n-1}
$$

Notation and definitions

- Let $K \subset \mathbb{R}^{n}$ be a convex body of volume 1. Associated with K is a family of symmetric, convex bodies $Z_{q}(K)$, $q \geq 1$, whose support function $h_{Z_{q}(K)}$ is defined as follows:

$$
h_{Z_{q}(K)}(\theta):=\left(\int_{K}|\langle x, \theta\rangle|^{\mid q} d x\right)^{1 / q}, \quad \theta \in S^{n-1} .
$$

- K is isotropic iff it has Lebesgue measure 1 , it is centered and there exists a constant L_{K} so that

$$
Z_{2}(K)=L_{K} B_{2}^{n}
$$

Notation and definitions (cont.)

- We denote by $I_{q}(K)$ the integral

$$
\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}, \quad-n<q<+\infty, q \neq 0
$$

If K is isotropic, then $I_{2}(K)=\sqrt{n} L_{K}$.

Notation and definitions (cont.)

- We denote by $I_{q}(K)$ the integral

$$
\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}, \quad-n<q<+\infty, q \neq 0
$$

If K is isotropic, then $I_{2}(K)=\sqrt{n} L_{K}$.

- In general, for any symmetric convex body C we write

$$
I_{q}(K, C):=\left(\int_{K}\|x\|_{C}^{q} d x\right)^{1 / q}
$$

Notation and definitions (cont.)

- We denote by $I_{q}(K)$ the integral

$$
\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}, \quad-n<q<+\infty, q \neq 0
$$

If K is isotropic, then $I_{2}(K)=\sqrt{n} L_{K}$.

- In general, for any symmetric convex body C we write

$$
I_{q}(K, C):=\left(\int_{K}\|x\|_{C}^{q} d x\right)^{1 / q}
$$

- Finally, we denote by $R(K)$ the radius of K, i.e.

$$
R(K):=\max _{x \in K}\|x\|_{2}=\max _{\theta \in S^{n-1}} h_{K}(\theta)
$$

Obviously, $K \subseteq R(K) B_{2}^{n}$.

(1) Introducing the quantity in question

(2) Some general estimates

3 The case of unconditional convex bodies

4 An extra incentive for studying such quantities

Obvious upper and lower bounds

- $Y_{2}(K)=\sqrt{n} L_{K}^{2}$,

$$
Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Obvious upper and lower bounds

$$
\text { - } Y_{2}(K)=\sqrt{n} L_{K}^{2}, \quad Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Also

$$
Y_{q}(K)=\left(\int_{K} \int_{K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q}=\left(\int_{K} h_{Z_{q}(K)}^{q}(x) d x\right)^{1 / q}
$$

Obvious upper and lower bounds

$$
\text { - } Y_{2}(K)=\sqrt{n} L_{K}^{2}, \quad Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Also

$$
Y_{q}(K)=\left(\int_{K} \int_{K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q}=\left(\int_{K} h_{z_{q}(K)}^{q}(x) d x\right)^{1 / q}
$$

$$
\text { - } Y_{q}(K) \leq R\left(Z_{q}(K)\right) \cdot\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}=R\left(Z_{q}(K)\right) \cdot I_{q}(K)
$$

Obvious upper and lower bounds

$$
\text { - } Y_{2}(K)=\sqrt{n} L_{K}^{2}, \quad Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Also

$$
Y_{q}(K)=\left(\int_{K} \int_{K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q}=\left(\int_{K} h_{Z_{q}(K)}^{q}(x) d x\right)^{1 / q}
$$

- $Y_{q}(K) \leq R\left(Z_{q}(K)\right) \cdot\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}=R\left(Z_{q}(K)\right) \cdot I_{q}(K)$
- $Y_{q}(K)=\left(\int_{K} \max _{z \in Z_{q}(K)}|\langle x, z\rangle|^{q} d x\right)^{1 / q}$

Obvious upper and lower bounds

$$
\text { - } Y_{2}(K)=\sqrt{n} L_{K}^{2}, \quad Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Also

$$
\begin{aligned}
Y_{q}(K)= & \left(\int_{K} \int_{K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q}=\left(\int_{K} h_{Z_{q}(K)}^{q}(x) d x\right)^{1 / q} \\
\text { - } Y_{q}(K) & \leq R\left(Z_{q}(K)\right) \cdot\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}=R\left(Z_{q}(K)\right) \cdot I_{q}(K) \\
Y_{q}(K) & =\left(\int_{K} \max _{z \in Z_{q}(K)}|\langle x, z\rangle|^{q} d x\right)^{1 / q} \\
& \geq \max _{z \in Z_{q}(K)}\left(\int_{K}|\langle x, z\rangle|^{q} d x\right)^{1 / q}
\end{aligned}
$$

Obvious upper and lower bounds

$$
\text { - } Y_{2}(K)=\sqrt{n} L_{K}^{2}, \quad Y_{q}(K) \geq Y_{q}\left(D_{n}\right) \simeq \sqrt{q n}
$$

Also

$$
\begin{aligned}
Y_{q}(K)= & \left(\int_{K} \int_{K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q}=\left(\int_{K} h_{Z_{q}(K)}^{q}(x) d x\right)^{1 / q} \\
\text { - } Y_{q}(K) & \leq R\left(Z_{q}(K)\right) \cdot\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}=R\left(Z_{q}(K)\right) \cdot I_{q}(K) \\
Y_{q}(K) & =\left(\int_{K} \max _{z \in Z_{q}(K)}|\langle x, z\rangle|^{q} d x\right)^{1 / q} \\
& \geq \max _{z \in Z_{q}(K)}\left(\int_{K}|\langle x, z\rangle|^{q} d x\right)^{1 / q} \\
& =\max _{z \in Z_{q}(K)} h_{Z_{q}(K)}(z)=\left[R\left(Z_{q}(K)\right)\right]^{2} .
\end{aligned}
$$

Obvious upper and lower bounds (cont.)

- $Y_{q}(K) \leq R\left(Z_{q}(K)\right) \cdot I_{q}(K)$
- $Y_{q}(K) \geq\left[R\left(Z_{q}(K)\right)\right]^{2}$

It is known that $I_{q}(K) \simeq \max \left\{I_{2}(K), R\left(Z_{q}(K)\right)\right\}$ (Paouris,
Concentration of mass in convex bodies, GAFA, (2006))

Obvious upper and lower bounds (cont.)

- $Y_{q}(K) \leq R\left(Z_{q}(K)\right) \cdot I_{q}(K)$
- $Y_{q}(K) \geq\left[R\left(Z_{q}(K)\right)\right]^{2}$

It is known that $I_{q}(K) \simeq \max \left\{I_{2}(K), R\left(Z_{q}(K)\right)\right\}$ (Paouris,
Concentration of mass in convex bodies, GAFA, (2006)) and that $I_{q}(K) \simeq R\left(Z_{q}(K)\right)$ for all $q \geq q_{*}(K)$
($q_{*}(K)$ being at least $\geq c \sqrt{n}$ for all isotropic bodies K).

Obvious upper and lower bounds (cont.)

- $Y_{q}(K) \leq R\left(Z_{q}(K)\right) \cdot I_{q}(K)$
- $Y_{q}(K) \geq\left[R\left(Z_{q}(K)\right)\right]^{2}$

It is known that $I_{q}(K) \simeq \max \left\{I_{2}(K), R\left(Z_{q}(K)\right)\right\}$ (Paouris,
Concentration of mass in convex bodies, GAFA, (2006)) and that $I_{q}(K) \simeq R\left(Z_{q}(K)\right)$ for all $q \geq q_{*}(K)$
($q_{*}(K)$ being at least $\geq c \sqrt{n}$ for all isotropic bodies K).

$$
\text { Thus, } Y_{q}(K) \simeq\left[R\left(Z_{q}(K)\right)\right]^{2} \text { for all } q \geq q_{*} .
$$

What happens for the other q ?

How does $Y_{q}(K)$ behave when $q \leq q_{*}$?

Example of a ψ_{1}-body close to the Euclidean ball:
Theorem (Paouris, On the Ψ_{2} behavior of linear functionals on isotropic convex bodies, Studia Math., 2005)
For every $n \geq 1$, there exist $a_{n}, R_{n} \simeq \sqrt{n}$ and $b_{n} \simeq 1 / \sqrt{n}$ such that the convex body of revolution

$$
K=\left\{y=(x, u):|u| \leq R_{n},\|x\|_{2} \leq a_{n}-b_{n}|u|\right\}
$$

is isotropic.

How does $Y_{q}(K)$ behave when $q \leq q_{*}$?

Example of a ψ_{1}-body close to the Euclidean ball:
Theorem (Paouris, On the Ψ_{2} behavior of linear functionals on isotropic convex bodies, Studia Math., 2005)
For every $n \geq 1$, there exist $a_{n}, R_{n} \simeq \sqrt{n}$ and $b_{n} \simeq 1 / \sqrt{n}$ such that the convex body of revolution

$$
K=\left\{y=(x, u):|u| \leq R_{n},\|x\|_{2} \leq a_{n}-b_{n}|u|\right\}
$$

is isotropic. Moreover, one can show that $d_{G}\left(K, B_{2}^{n}\right) \leq C$ and that $\left\|\left\langle\cdot, e_{n}\right\rangle\right\|_{L q(K)} \simeq \min \{q, \sqrt{n}\}$.

How does $Y_{q}(K)$ behave when $q \leq q_{*}$? (cont.)

- For this particular body, which is both ψ_{1} and close to the Euclidean ball, we can compute that

$$
\begin{aligned}
& \qquad Y_{q}(K) \simeq \min \left\{n, \max \left\{\sqrt{q n}, q^{2}\right\}\right\} \\
& \text { for all } 1 \leq q \leq n
\end{aligned}
$$

How does $Y_{q}(K)$ behave when $q \leq q_{*}$? (cont.)

- For this particular body, which is both ψ_{1} and close to the Euclidean ball, we can compute that

$$
Y_{q}(K) \simeq \min \left\{n, \max \left\{\sqrt{q n}, q^{2}\right\}\right\}
$$

$$
\text { for all } 1 \leq q \leq n
$$

- Similar behaviour on all unconditional convex bodies.

How does $Y_{q}(K)$ behave when $q \leq q_{*}$? (cont.)

- For this particular body, which is both ψ_{1} and close to the Euclidean ball, we can compute that

$$
Y_{q}(K) \simeq \min \left\{n, \max \left\{\sqrt{q n}, q^{2}\right\}\right\}
$$

$$
\text { for all } 1 \leq q \leq n
$$

- Similar behaviour on all unconditional convex bodies.
- Other instances of " ψ_{2}-behaviour on average":
(1) $h_{Z_{q}(K)}(\theta) \mapsto w\left(Z_{q}(K)\right):=\int_{S^{n-1}} h_{Z_{q}(K)}(\theta) d \sigma(\theta)$

How does $Y_{q}(K)$ behave when $q \leq q_{*}$? (cont.)

- For this particular body, which is both ψ_{1} and close to the Euclidean ball, we can compute that

$$
Y_{q}(K) \simeq \min \left\{n, \max \left\{\sqrt{q n}, q^{2}\right\}\right\}
$$

$$
\text { for all } 1 \leq q \leq n \text {. }
$$

- Similar behaviour on all unconditional convex bodies.
- Other instances of " ψ_{2}-behaviour on average":
(1) $h_{Z_{q}(K)}(\theta) \mapsto w\left(Z_{q}(K)\right):=\int_{S^{n-1}} h_{Z_{q}(K)}(\theta) d \sigma(\theta)$
(2) $R\left(Z_{q}(K)\right) \gg q L_{K}$ in some cases, however

$$
\left[\operatorname{vol}\left(Z_{q}(K)\right)\right]^{1 / n} \ll \sqrt{q} L_{K} / \sqrt{n} \text { always! }
$$

The quantity $Y_{q}(K, U K)$

$$
\begin{aligned}
Y_{q}(K, U K) & =\left(\int_{K} \int_{U K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q} \\
& =\left(\int_{K} \int_{K}|\langle x, U y\rangle|^{q} d y d x\right)^{1 / q}
\end{aligned}
$$

The quantity $Y_{q}(K, U K)$

$$
\begin{aligned}
Y_{q}(K, U K) & =\left(\int_{K} \int_{U K}|\langle x, y\rangle|^{q} d y d x\right)^{1 / q} \\
& =\left(\int_{K} \int_{K}|\langle x, U y\rangle|^{q} d y d x\right)^{1 / q}
\end{aligned}
$$

We can show that

$$
\begin{aligned}
\left\|Y_{q}(K, U K)\right\|_{L^{q}(O(n))} & \simeq \sqrt{\frac{q}{n}}\left[I_{q}(K)\right]^{2} \\
& \simeq \max \left\{\sqrt{q n} L_{K}^{2}, \sqrt{q / n}\left[R\left(Z_{q}(K)\right)\right]^{2}\right\} .
\end{aligned}
$$

The quantity $Y_{q}(K, U K)$ (cont.)

$$
\begin{aligned}
\left\|Y_{q}(K, U K)\right\|_{L_{q}(O(n))} & \simeq \sqrt{\frac{q}{n}}\left[I_{q}(K)\right]^{2} \\
& \simeq \max \left\{\sqrt{q n} L_{K}^{2}, \sqrt{q / n}\left[R\left(Z_{q}(K)\right)\right]^{2}\right\} .
\end{aligned}
$$

Given that $R\left(Z_{q}(K)\right) \ll q L_{K}$, we deduce that:
Corollary

The quantity $Y_{q}(K, U K)$ (cont.)

$$
\begin{aligned}
\left\|Y_{q}(K, U K)\right\|_{L^{q}(O(n))} & \simeq \sqrt{\frac{q}{n}}\left[I_{q}(K)\right]^{2} \\
& \simeq \max \left\{\sqrt{q n} L_{K}^{2}, \sqrt{q / n}\left[R\left(Z_{q}(K)\right)\right]^{2}\right\} .
\end{aligned}
$$

Given that $R\left(Z_{q}(K)\right) \ll q L_{K}$, we deduce that:

Corollary

For every $1 \leq q \leq \sqrt{n}$, there exists a subset $A_{q} \subseteq O(n)$ of measure $>1-e^{-q}$ having the property that

$$
Y_{q}(K, U K) \leq C \sqrt{q n} L_{K}^{2} \quad \text { for all } U \in A_{q} .
$$

(1) Introducing the quantity in question

2 Some general estimates
(3) The case of unconditional convex bodies

4 An extra incentive for studying such quantities

A question of Latala and Wojtaszczyk

Reminder. For any convex body K of volume 1 and any symmetric convex body B we write

$$
I_{q}(K, B):=\left(\int_{K}\|x\|_{B}^{q} d x\right)^{1 / q} .
$$

A question of Latala and Wojtaszczyk (cont.)

In their paper On the infimum convolution inequality (Studia Math., (2008)), Latala and Wojtaszczyk posed the following

Question

Is it true that there exist absolute constants $c_{1}, c_{2}>0$ (independent of n) such that for every convex body $K \subset \mathbb{R}^{n}$ of volume 1 and every symmetric convex body $B \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
I_{q}(K, B) & \leq c_{1} I_{1}(K, B)+c_{2} \sup _{y \in B^{\circ}}\left(\int_{K}|\langle x, y\rangle|^{q} d x\right)^{1 / q} \\
& =c_{1} I_{1}(K, B)+c_{2} \sup _{y \in B^{\circ}} h_{z_{q}(K)}(y)
\end{aligned}
$$

for all $1<q<+\infty$?

A result in this direction

Latala has recently proven a slightly weaker version of their question (Weak and strong moments of random vectors, preprint, (2010)), which applies to all unconditional isotropic convex bodies K.

Theorem

A result in this direction

Latala has recently proven a slightly weaker version of their question (Weak and strong moments of random vectors, preprint, (2010)), which applies to all unconditional isotropic convex bodies K.

Theorem

Let μ be the product exponential measure in \mathbb{R}^{n}, with density

$$
d \mu(x):=2^{-n / 2} \exp \left(-\sqrt{2}\|x\|_{1}\right) d x
$$

A result in this direction

Latala has recently proven a slightly weaker version of their question (Weak and strong moments of random vectors, preprint, (2010)), which applies to all unconditional isotropic convex bodies K.

Theorem

Let μ be the product exponential measure in \mathbb{R}^{n}, with density

$$
d \mu(x):=2^{-n / 2} \exp \left(-\sqrt{2}\|x\|_{1}\right) d x
$$

Then, $I_{q}(K, B) \leq c_{1} \int_{\mathbb{R}^{n}}\|x\|_{B} d \mu(x)+c_{2} \sup _{y \in B^{\circ}} h_{Z_{q}(K)}(y)$
for all unconditional isotropic bodies K and all symmetric bodies B.

Connection with $Y_{q}(K)$

Since

$$
Y_{q}(K)=\left(\int_{K} h_{Z_{q}(K)}^{q} d x\right)^{1 / q}=I_{q}\left(K, Z_{q}^{\circ}(K)\right),
$$

if Latala and Wojtaszczyk's question is answered in the affirmative, we will have for all $1<q<+\infty$,

$$
\begin{aligned}
Y_{q}(K) & \leq c_{1} I_{1}\left(K, Z_{q}^{\circ}(K)\right)+c_{2} \sup _{y \in Z_{q}(K)} h_{Z_{q}(K)}(y) \\
& =c_{1} I_{1}\left(K, Z_{q}^{\circ}(K)\right)+c_{2}\left[R\left(Z_{q}(K)\right)\right]^{2} .
\end{aligned}
$$

$Y_{q}(K, M)$ when K, M are unconditional

- When both K and M are unconditional and isotropic,

$$
Y_{q}(K, M) \leq c_{1} \int_{\mathbb{R}^{n}} h_{Z_{q}(M)}(x) d \mu(x)+c_{2} \sup _{y \in Z_{q}(M)} h_{Z_{q}(K)}(y)
$$

$Y_{q}(K, M)$ when K, M are unconditional

- When both K and M are unconditional and isotropic,

$$
\begin{aligned}
Y_{q}(K, M) & \leq c_{1} \int_{\mathbb{R}^{n}} h_{Z_{q}(M)}(x) d \mu(x)+c_{2} \sup _{y \in Z_{q}(M)} h_{Z_{q}(K)}(y) \\
& \leq c_{1}^{\prime} \sqrt{q n} \log n+c_{2} R\left(Z_{q}(K)\right) \cdot R\left(Z_{q}(M)\right),
\end{aligned}
$$

where we have also used the estimate $h_{Z_{q}(M)}(x) \ll \sqrt{q n}\|x\|_{\infty}$ by Bobkov and Nazarov.

$Y_{q}(K, M)$ when K, M are unconditional

- When both K and M are unconditional and isotropic,

$$
\begin{aligned}
Y_{q}(K, M) & \leq c_{1} \int_{\mathbb{R}^{n}} h_{Z_{q}(M)}(x) d \mu(x)+c_{2} \sup _{y \in Z_{q}(M)} h_{Z_{q}(K)}(y) \\
& \leq c_{1}^{\prime} \sqrt{q n} \log n+c_{2} R\left(Z_{q}(K)\right) \cdot R\left(Z_{q}(M)\right),
\end{aligned}
$$

where we have also used the estimate $h_{Z_{q}(M)}(x) \ll \sqrt{q n}\|x\|_{\infty}$ by Bobkov and Nazarov.

- Apart from the logarithmic term, this is the best we can hope for:

$$
\text { e.g. } Y_{q}\left(\bar{B}_{1}^{n}\right) \geq c \max \left\{\sqrt{q n}, q^{2}\right\} \text { for all } 1 \leq q \leq n \text {. }
$$

The quantity $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

- $I_{1}\left(K, Z_{q}^{0}(K)\right)=\int_{K} h_{Z_{q}(K)}(x) d x \leq \sqrt{n} L_{K} R\left(Z_{q}(K)\right)$
- $I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c L_{k} R\left(Z_{q}(K)\right)$

The quantity $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

$$
\begin{aligned}
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right)=\int_{K} h_{Z_{q}(K)}(x) d x \leq \sqrt{n} L_{\kappa} R\left(Z_{q}(K)\right) \\
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c L_{K} R\left(Z_{q}(K)\right)
\end{aligned}
$$

A few more lower bounds for $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

For all $1 \leq q \leq n, \quad l_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c \max \left\{\sqrt{n} L_{K}^{2}, \sqrt{q n}\right\}$.

The quantity $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

$$
\begin{aligned}
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right)=\int_{K} h_{Z_{q}(K)}(x) d x \leq \sqrt{n} L_{K} R\left(Z_{q}(K)\right) \\
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c L_{K} R\left(Z_{q}(K)\right)
\end{aligned}
$$

A few more lower bounds for $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

For all $1 \leq q \leq n, \quad I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c \max \left\{\sqrt{n} L_{K}^{2}, \sqrt{q n}\right\}$. Also, for $q \leq \sqrt{n}, \quad l_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c \sqrt{q n} L_{K}$.

The quantity $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

$$
\begin{aligned}
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right)=\int_{K} h_{Z_{q}(K)}(x) d x \leq \sqrt{n} L_{\kappa} R\left(Z_{q}(K)\right) \\
& \text { - } I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c L_{K} R\left(Z_{q}(K)\right)
\end{aligned}
$$

A few more lower bounds for $I_{1}\left(K, Z_{q}^{\circ}(K)\right)$

For all $1 \leq q \leq n, \quad I_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c \max \left\{\sqrt{n} L_{K}^{2}, \sqrt{q n}\right\}$.
Also, for $q \leq \sqrt{n}, \quad l_{1}\left(K, Z_{q}^{\circ}(K)\right) \geq c \sqrt{q n} L_{K}$.
In the case of unconditional convex bodies:

$$
c_{1} \sqrt{q n} \leq I_{1}\left(K, Z_{q}^{\circ}(K)\right) \leq c_{2} \sqrt{q n} \log n .
$$

(1) Introducing the quantity in question

(2) Some general estimates
(3) The case of unconditional convex bodies

4 An extra incentive for studying such quantities

Connection with the slicing problem

Definition. Let $\kappa, \tau>0$ be absolute constants. We say that a convex body $K \subset \mathbb{R}^{n}$ is (κ, τ)-regular if

$$
* \log N\left(K, t B_{2}^{n}\right) \leq \frac{\kappa n^{2} \log ^{2} n}{t^{2}} \text { for all } t \geq \tau \sqrt{n \log n}
$$

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in(0,1)$ with the following property: suppose we are given $\kappa, \tau \geq 1$, a sufficiently large integer $n \geq n_{0}(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^{n}$ which is (κ, τ)-regular.

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in(0,1)$ with the following property: suppose we are given $\kappa, \tau \geq 1$, a sufficiently large integer $n \geq n_{0}(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^{n}$ which is $(\kappa, \tau)-$ regular. Then, for every q satisfying

$$
2 \leq q \leq \rho^{2} n \text { and } I_{1}\left(K, Z_{q}^{\circ}(K)\right) \leq \rho n L_{K}^{2}
$$

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in(0,1)$ with the following property: suppose we are given $\kappa, \tau \geq 1$, a sufficiently large integer $n \geq n_{0}(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^{n}$ which is $(\kappa, \tau)-$ regular. Then, for every q satisfying

$$
2 \leq q \leq \rho^{2} n \text { and } I_{1}\left(K, Z_{q}^{\circ}(K)\right) \leq \rho n L_{K}^{2}
$$

we have:

$$
L_{K}^{2} \leq C_{K} \frac{\sqrt{n} \log ^{2} n}{\sqrt{q}} \max \left\{1, \frac{I_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}\right\} .
$$

Obtaining a general upper bound

Let $L_{n}:=\sup _{K \in \mathcal{I} \mathcal{K}_{[n]}} L_{K}$.

Obtaining a general upper bound

$$
\text { Let } L_{n}:=\sup _{K \in \mathcal{I}} \mathcal{K}_{[n]} L_{K} \text {. }
$$

Dafnis, Paouris, Small ball probability estimates, ψ_{2}-behavior and the hyperplane conjecture, J. of Funct. Anal., (2010)
For some explicit absolute constants $\kappa, \tau \geq 1$ and $\delta<1$ and for every integer $n \geq 1$, we can find isotropic convex bodies $K \subset \mathbb{R}^{2 n}$ which are (κ, τ)-regular and also satisfy

$$
L_{K} \geq \delta L_{2 n}
$$

Obtaining a general upper bound (cont.)

That gives us for any admissible q :

$$
L_{n}^{2} \leq C \delta^{-2} \kappa \frac{\sqrt{n} \log ^{2} n}{\sqrt{q}} \max \left\{1, \inf _{K} \frac{I_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}\right\}
$$

Obtaining a general upper bound (cont.)

That gives us for any admissible q :

$$
L_{n}^{2} \leq C \delta^{-2} \kappa \frac{\sqrt{n} \log ^{2} n}{\sqrt{q}} \max \left\{1, \inf _{K} \frac{I_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}\right\}
$$

where the infimum is taken over all isotropic bodies K whose existence was established in the previous theorem.

Conclusion

To put it more simply,

$$
L_{n} \leq C^{\prime} \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup _{K \in \mathcal{I} \mathcal{K}_{[n]}} \sqrt{\frac{\Lambda_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}}
$$

Conclusion

To put it more simply,

$$
\begin{aligned}
L_{n} & \leq C^{\prime} \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup _{K \in \mathcal{I} \mathcal{K}_{[n]}} \sqrt{\frac{I_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}} \\
& \leq C^{\prime \prime} \frac{\sqrt[4]{n} \log n}{q^{(1-s) / 2}}
\end{aligned}
$$

for all admissible q and every $s \in\left[\frac{1}{2}, 1\right]$ such that the inequality

$$
I_{1}\left(K, Z_{q}^{\circ}(K)\right) \ll q^{s} \sqrt{n} L_{K}^{2}
$$

holds true for all isotropic bodies K.

Conclusion

To put it more simply,

$$
\begin{aligned}
L_{n} & \leq C^{\prime} \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup _{K \in \mathcal{I} \mathcal{K}_{[n]}} \sqrt{\frac{I_{1}\left(K, Z_{q}^{\circ}(K)\right)}{\sqrt{q n} L_{K}^{2}}} \\
& \leq C^{\prime \prime} \frac{\sqrt[4]{n} \log n}{q^{(1-s) / 2}}
\end{aligned}
$$

for all admissible q and every $s \in\left[\frac{1}{2}, 1\right]$ such that the inequality

$$
I_{1}\left(K, Z_{q}^{\circ}(K)\right) \ll q^{s} \sqrt{n} L_{K}^{2}
$$

holds true for all isotropic bodies K. Grazie mille!

