A measure of orthogonality in isotropic convex bodies

joint work with A. Giannopoulos and G. Paouris

National and Kapodistrian University of Athens

June 16, 2011

1 Introducing the quantity in question

- 2 Some general estimates
- 3 The case of unconditional convex bodies
- 4 An extra incentive for studying such quantities

1 Introducing the quantity in question

- 2 Some general estimates
- 3 The case of unconditional convex bodies
- 4 An extra incentive for studying such quantities

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, *Moment-entropy inequalities*, Annals of Prob., (2004)

For every $q \ge 1$, the minimum of the quantity

$$Y_q(K,M) := \left(\int_K \int_M |\langle x,y
angle|^q dy dx
ight)^{1/q},$$

with K, M compact sets in \mathbb{R}^n of Lebesgue measure 1, is attained when $K = M = D_n$.

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, *Moment-entropy inequalities*, Annals of Prob., (2004)

For every $q \ge 1$, the minimum of the quantity

$$Y_q(K,M) := \left(\int_K \int_M |\langle x,y
angle|^q dy dx
ight)^{1/q},$$

with K, M compact sets in \mathbb{R}^n of Lebesgue measure 1, is attained when $K = M = D_n$.

* Note that $Y_q(D_n, D_n) \simeq \sqrt{qn}$ for all $1 \le q \le n$.

A result of Lutwak, Yang and Zhang

Lutwak, Yang and Zhang, *Moment-entropy inequalities*, Annals of Prob., (2004)

For every $q \ge 1$, the minimum of the quantity

$$Y_q(K,M) := \left(\int_K \int_M |\langle x,y
angle|^q dy dx
ight)^{1/q},$$

with K, M compact sets in \mathbb{R}^n of Lebesgue measure 1, is attained when $K = M = D_n$.

* Note that $Y_q(D_n, D_n) \simeq \sqrt{qn}$ for all $1 \le q \le n$.

Our aim is to study $Y_q(K) := Y_q(K, K)$ and $Y_q(K, M)$ when K and M are isotropic convex bodies.

Notation and definitions

Let K ⊂ ℝⁿ be a convex body of volume 1. Associated with K is a family of symmetric, convex bodies Z_q(K), q ≥ 1, whose support function h_{Z_q(K)} is defined as follows:

$$h_{Z_q(K)}(heta) := \left(\int_K |\langle x, heta
angle|^q dx\right)^{1/q}, \quad heta \in S^{n-1}$$

Notation and definitions

Let K ⊂ ℝⁿ be a convex body of volume 1. Associated with K is a family of symmetric, convex bodies Z_q(K), q ≥ 1, whose support function h_{Z_q(K)} is defined as follows:

$$h_{Z_q(K)}(heta) := \left(\int_K |\langle x, heta
angle|^q dx\right)^{1/q}, \quad heta \in S^{n-1}$$

• *K* is isotropic iff it has Lebesgue measure 1, it is centered and there exists a constant *L_K* so that

$$Z_2(K)=L_KB_2^n.$$

Notation and definitions (cont.)

• We denote by $I_q(K)$ the integral

$$\left(\int_{\mathcal{K}} \|x\|_2^q dx\right)^{1/q}, \quad -n < q < +\infty, \ q \neq 0.$$

If K is isotropic, then $I_2(K) = \sqrt{n}L_K$.

Notation and definitions (cont.)

• We denote by $I_q(K)$ the integral

$$\left(\int_{\mathcal{K}} \|x\|_2^q dx\right)^{1/q}, \quad -n < q < +\infty, \ q \neq 0.$$

If K is isotropic, then $I_2(K) = \sqrt{n}L_K$.

• In general, for any **symmetric** convex body C we write

$$I_q(K,C) := \left(\int_K \|x\|_C^q dx\right)^{1/q}$$

Notation and definitions (cont.)

• We denote by $I_q(K)$ the integral

$$\left(\int_{\mathcal{K}} \|x\|_2^q dx\right)^{1/q}, \quad -n < q < +\infty, \ q \neq 0.$$

If K is isotropic, then $I_2(K) = \sqrt{n}L_K$.

• In general, for any symmetric convex body C we write

$$I_q(K,C) := \left(\int_K \|x\|_C^q dx\right)^{1/q}$$

• Finally, we denote by R(K) the radius of K, i.e.

$$R(K) := \max_{x \in K} \|x\|_2 = \max_{\theta \in S^{n-1}} h_K(\theta).$$

Obviously, $K \subseteq R(K)B_2^n$.

Introducing the quantity in question

2 Some general estimates

3 The case of unconditional convex bodies

4 An extra incentive for studying such quantities

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

æ

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

Also

$$Y_q(K) = \left(\int_K \int_K |\langle x, y \rangle|^q dy dx\right)^{1/q} = \left(\int_K h_{Z_q(K)}^q(x) dx\right)^{1/q}$$

æ

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

Also

$$Y_{q}(K) = \left(\int_{K}\int_{K}|\langle x, y \rangle|^{q} dy dx\right)^{1/q} = \left(\int_{K}h_{Z_{q}(K)}^{q}(x) dx\right)^{1/q}$$

• $Y_{q}(K) \leq R(Z_{q}(K)) \cdot \left(\int_{K}||x||_{2}^{q} dx\right)^{1/q} = R(Z_{q}(K)) \cdot I_{q}(K)$

æ

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

Also

$$Y_{q}(K) = \left(\int_{K}\int_{K}|\langle x, y \rangle|^{q} dy dx\right)^{1/q} = \left(\int_{K}h_{Z_{q}(K)}^{q}(x) dx\right)^{1/q}$$

• $Y_{q}(K) \leq R(Z_{q}(K)) \cdot \left(\int_{K}||x||_{2}^{q} dx\right)^{1/q} = R(Z_{q}(K)) \cdot I_{q}(K)$
• $Y_{q}(K) = \left(\int_{K}\max_{z \in Z_{q}(K)}|\langle x, z \rangle|^{q} dx\right)^{1/q}$

æ

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

Also

$$Y_{q}(K) = \left(\int_{K}\int_{K}|\langle x, y \rangle|^{q}dydx\right)^{1/q} = \left(\int_{K}h_{Z_{q}(K)}^{q}(x)dx\right)^{1/q}$$

• $Y_{q}(K) \leq R(Z_{q}(K)) \cdot \left(\int_{K}||x||_{2}^{q}dx\right)^{1/q} = R(Z_{q}(K)) \cdot I_{q}(K)$
• $Y_{q}(K) = \left(\int_{K}\max_{z \in Z_{q}(K)}|\langle x, z \rangle|^{q}dx\right)^{1/q}$
 $\geq \max_{z \in Z_{q}(K)}\left(\int_{K}|\langle x, z \rangle|^{q}dx\right)^{1/q}$

æ

Obvious upper and lower bounds

•
$$Y_2(K) = \sqrt{n}L_K^2$$
, $Y_q(K) \ge Y_q(D_n) \simeq \sqrt{qn}$

Also

$$Y_{q}(K) = \left(\int_{K}\int_{K}|\langle x, y \rangle|^{q}dydx\right)^{1/q} = \left(\int_{K}h_{Z_{q}(K)}^{q}(x)dx\right)^{1/q}$$

• $Y_{q}(K) \leq R(Z_{q}(K)) \cdot \left(\int_{K}||x||_{2}^{q}dx\right)^{1/q} = R(Z_{q}(K)) \cdot I_{q}(K)$
• $Y_{q}(K) = \left(\int_{K}\max_{z \in Z_{q}(K)}|\langle x, z \rangle|^{q}dx\right)^{1/q}$
 $\geq \max_{z \in Z_{q}(K)}\left(\int_{K}|\langle x, z \rangle|^{q}dx\right)^{1/q}$
 $= \max_{z \in Z_{q}(K)}h_{Z_{q}(K)}(z) = [R(Z_{q}(K))]^{2}.$

joint work with A. Giannopoulos and G. Paouris

Obvious upper and lower bounds (cont.)

- $Y_q(K) \leq R(Z_q(K)) \cdot I_q(K)$
- $Y_q(K) \ge [R(Z_q(K))]^2$

It is known that $I_q(K) \simeq \max\{I_2(K), R(Z_q(K))\}$ (Paouris, Concentration of mass in convex bodies, GAFA, (2006))

Obvious upper and lower bounds (cont.)

- $Y_q(K) \leq R(Z_q(K)) \cdot I_q(K)$
- $Y_q(K) \ge [R(Z_q(K))]^2$

It is known that $I_q(K) \simeq \max\{I_2(K), R(Z_q(K))\}$ (Paouris, Concentration of mass in convex bodies, GAFA, (2006)) and that $I_q(K) \simeq R(Z_q(K))$ for all $q \ge q_*(K)$ $(q_*(K)$ being at least $\ge c\sqrt{n}$ for all isotropic bodies K).

Obvious upper and lower bounds (cont.)

•
$$Y_q(K) \leq R(Z_q(K)) \cdot I_q(K)$$

• $Y_q(K) \ge [R(Z_q(K))]^2$

It is known that $I_q(K) \simeq \max\{I_2(K), R(Z_q(K))\}$ (Paouris, Concentration of mass in convex bodies, GAFA, (2006)) and that $I_q(K) \simeq R(Z_q(K))$ for all $q \ge q_*(K)$ $(q_*(K)$ being at least $\ge c\sqrt{n}$ for all isotropic bodies K).

Thus, $Y_q(K) \simeq [R(Z_q(K))]^2$ for all $q \ge q_*$.

What happens for the other q?

How does $Y_q(K)$ behave when $q \leq q_*$?

Example of a ψ_1 -body close to the Euclidean ball:

Theorem (Paouris, On the Ψ_2 behavior of linear functionals on isotropic convex bodies, Studia Math., 2005)

For every $n \ge 1$, there exist $a_n, R_n \simeq \sqrt{n}$ and $b_n \simeq 1/\sqrt{n}$ such that the convex body of revolution

$$K = \{y = (x, u) : |u| \le R_n, ||x||_2 \le a_n - b_n |u|\}$$

is isotropic.

How does $Y_q(K)$ behave when $q \leq q_*$?

Example of a ψ_1 -body close to the Euclidean ball:

Theorem (Paouris, On the Ψ_2 behavior of linear functionals on isotropic convex bodies, Studia Math., 2005)

For every $n \ge 1$, there exist $a_n, R_n \simeq \sqrt{n}$ and $b_n \simeq 1/\sqrt{n}$ such that the convex body of revolution

$$K = \{y = (x, u) : |u| \le R_n, ||x||_2 \le a_n - b_n |u|\}$$

is isotropic. Moreover, one can show that $d_G(K, B_2^n) \leq C$ and that $\|\langle \cdot, e_n \rangle\|_{L^q(K)} \simeq \min\{q, \sqrt{n}\}.$

How does $Y_q(K)$ behave when $q \leq q_*$? (cont.)

• For this particular body, which is both ψ_1 and close to the Euclidean ball, we can compute that

 $Y_q(K) \simeq \min\{n, \max\{\sqrt{qn}, q^2\}\}$

for all $1 \leq q \leq n$.

How does $Y_q(K)$ behave when $q \leq q_*$? (cont.)

 $\bullet\,$ For this particular body, which is both ψ_1 and close to the Euclidean ball, we can compute that

 $Y_q(K) \simeq \min\{n, \max\{\sqrt{qn}, q^2\}\}$

for all $1 \leq q \leq n$.

• Similar behaviour on all unconditional convex bodies.

How does $Y_q(K)$ behave when $q \leq q_*$? (cont.)

 $\bullet\,$ For this particular body, which is both ψ_1 and close to the Euclidean ball, we can compute that

 $Y_q(K) \simeq \min\{n, \max\{\sqrt{qn}, q^2\}\}$

for all $1 \leq q \leq n$.

- Similar behaviour on all unconditional convex bodies.
- Other instances of " ψ_2 -behaviour on average":

How does $Y_q(K)$ behave when $q \leq q_*$? (cont.)

 \bullet For this particular body, which is both ψ_1 and close to the Euclidean ball, we can compute that

 $Y_q(K) \simeq \min\{n, \max\{\sqrt{qn}, q^2\}\}$

for all $1 \leq q \leq n$.

- Similar behaviour on all unconditional convex bodies.
- Other instances of " ψ_2 -behaviour on average":

 - 2 $R(Z_q(K)) \gg qL_K$ in some cases, however $[\operatorname{vol}(Z_q(K))]^{1/n} \ll \sqrt{q}L_K/\sqrt{n}$ always!

The quantity $Y_q(K, UK)$

$$Y_{q}(K, UK) = \left(\int_{K}\int_{UK}|\langle x, y\rangle|^{q}dydx\right)^{1/q}$$
$$= \left(\int_{K}\int_{K}|\langle x, Uy\rangle|^{q}dydx\right)^{1/q}$$

æ

<ロト <問 > < 臣 > < 臣 >

The quantity $Y_q(K, UK)$

$$Y_{q}(K, UK) = \left(\int_{K}\int_{UK}|\langle x, y\rangle|^{q}dydx\right)^{1/q}$$
$$= \left(\int_{K}\int_{K}|\langle x, Uy\rangle|^{q}dydx\right)^{1/q}$$

We can show that

$$\|Y_q(K, UK)\|_{L^q(O(n))} \simeq \sqrt{\frac{q}{n}} [I_q(K)]^2$$
$$\simeq \max\left\{\sqrt{qn}L_K^2, \sqrt{q/n} [R(Z_q(K))]^2\right\}.$$

æ

同 ト イ ヨ ト イ ヨ ト

The quantity $Y_q(K, UK)$ (cont.)

$$\|Y_q(K, UK)\|_{L^q(O(n))} \simeq \sqrt{\frac{q}{n}} [I_q(K)]^2$$
$$\simeq \max\left\{\sqrt{qn}L_K^2, \sqrt{q/n} [R(Z_q(K))]^2\right\}.$$

Given that $R(Z_q(K)) \ll qL_K$, we deduce that:

Corollary

joint work with A. Giannopoulos and G. Paouris

The quantity $Y_q(K, UK)$ (cont.)

$$\|Y_q(K, UK)\|_{L^q(O(n))} \simeq \sqrt{\frac{q}{n}} [I_q(K)]^2$$
$$\simeq \max\left\{\sqrt{qn}L_K^2, \sqrt{q/n} [R(Z_q(K))]^2\right\}.$$

Given that $R(Z_q(K)) \ll qL_K$, we deduce that:

Corollary

For every $1 \le q \le \sqrt{n}$, there exists a subset $A_q \subseteq O(n)$ of measure $> 1 - e^{-q}$ having the property that

$$Y_q(K, UK) \leq C\sqrt{qn}L_K^2$$
 for all $U \in A_q$.

Introducing the quantity in question

- 2 Some general estimates
- 3 The case of unconditional convex bodies
- 4 An extra incentive for studying such quantities

A question of Latala and Wojtaszczyk

Reminder. For any convex body K of volume 1 and any symmetric convex body B we write

$$I_q(K,B) := \left(\int_K \|x\|_B^q dx\right)^{1/q}.$$

A question of Latala and Wojtaszczyk (cont.)

In their paper *On the infimum convolution inequality* (Studia Math., (2008)), Latala and Wojtaszczyk posed the following

Question

Is it true that there exist absolute constants $c_1, c_2 > 0$ (independent of *n*) such that for every convex body $K \subset \mathbb{R}^n$ of volume 1 and every symmetric convex body $B \subset \mathbb{R}^n$,

$$egin{aligned} & \mathcal{I}_q(\mathcal{K}, \mathcal{B}) \leq c_1 \mathcal{I}_1(\mathcal{K}, \mathcal{B}) + c_2 \sup_{y \in \mathcal{B}^\circ} \left(\int_{\mathcal{K}} |\langle x, y
angle|^q dx
ight)^{1/q} \ &= c_1 \mathcal{I}_1(\mathcal{K}, \mathcal{B}) + c_2 \sup_{y \in \mathcal{B}^\circ} h_{Z_q(\mathcal{K})}(y) \end{aligned}$$

for all $1 < q < +\infty$?

A result in this direction

Latala has recently proven a slightly weaker version of their question (*Weak and strong moments of random vectors*, preprint, (2010)), which applies to all **unconditional** isotropic convex bodies K.

Theorem

A result in this direction

Latala has recently proven a slightly weaker version of their question (*Weak and strong moments of random vectors*, preprint, (2010)), which applies to all **unconditional** isotropic convex bodies K.

Theorem

Let μ be the product exponential measure in \mathbb{R}^n , with density

$$d\mu(x) := 2^{-n/2} \exp(-\sqrt{2} ||x||_1) dx.$$

A result in this direction

Latala has recently proven a slightly weaker version of their question (*Weak and strong moments of random vectors*, preprint, (2010)), which applies to all **unconditional** isotropic convex bodies K.

Theorem

Let μ be the product exponential measure in \mathbb{R}^n , with density

$$d\mu(x) := 2^{-n/2} \exp(-\sqrt{2} \|x\|_1) dx.$$

Then, $I_q(K, B) \leq c_1 \int_{\mathbb{R}^n} ||x||_B d\mu(x) + c_2 \sup_{y \in B^\circ} h_{Z_q(K)}(y)$ for all unconditional isotropic bodies K and all symmetric bodies B.

Connection with $Y_q(K)$

Since

$$Y_q(K) = \left(\int_K h_{Z_q(K)}^q dx\right)^{1/q} = I_q(K, Z_q^{\circ}(K)),$$

if Latala and Wojtaszczyk's question is answered in the affirmative, we will have for all $1 < q < +\infty$,

$$egin{aligned} Y_q({\cal K}) &\leq c_1 I_1({\cal K}, Z_q^\circ({\cal K})) + c_2 \sup_{y \in Z_q({\cal K})} h_{Z_q({\cal K})}(y) \ &= c_1 I_1({\cal K}, Z_q^\circ({\cal K})) + c_2 [R(Z_q({\cal K}))]^2. \end{aligned}$$

$Y_q(K, M)$ when K, M are unconditional

• When both K and M are unconditional and isotropic,

$$Y_q(K,M) \leq c_1 \int_{\mathbb{R}^n} h_{Z_q(M)}(x) d\mu(x) + c_2 \sup_{y \in Z_q(M)} h_{Z_q(K)}(y)$$

→ □ → → □ →

A 10

$Y_q(K, M)$ when K, M are unconditional

• When both K and M are unconditional and isotropic,

$$egin{aligned} Y_q(K,M) &\leq c_1 \int_{\mathbb{R}^n} h_{Z_q(M)}(x) d\mu(x) + c_2 \sup_{y \in Z_q(M)} h_{Z_q(K)}(y) \ &\leq c_1' \sqrt{qn} \log n + c_2 R(Z_q(K)) \cdot R(Z_q(M)), \end{aligned}$$

where we have also used the estimate $h_{Z_q(M)}(x) \ll \sqrt{qn} \|x\|_{\infty}$ by Bobkov and Nazarov.

$Y_q(K, M)$ when K, M are unconditional

• When both K and M are unconditional and isotropic,

$$egin{aligned} Y_q(K,M) &\leq c_1 \int_{\mathbb{R}^n} h_{Z_q(M)}(x) d\mu(x) + c_2 \sup_{y \in Z_q(M)} h_{Z_q(K)}(y) \ &\leq c_1' \sqrt{qn} \log n + c_2 R(Z_q(K)) \cdot R(Z_q(M)), \end{aligned}$$

where we have also used the estimate

 $h_{Z_q(M)}(x) \ll \sqrt{qn} \|x\|_{\infty}$ by Bobkov and Nazarov.

• Apart from the logarithmic term, this is the best we can hope for:

e.g.
$$Y_q(\bar{B}^n_1) \geq c \max\{\sqrt{qn}, q^2\}$$
 for all $1 \leq q \leq n$.

The quantity $I_1(K, Z_q^{\circ}(K))$

•
$$l_1(K, Z_q^{\circ}(K)) = \int_K h_{Z_q(K)}(x) dx \le \sqrt{n} L_K R(Z_q(K))$$

• $l_1(K, Z_q^{\circ}(K)) \ge c L_K R(Z_q(K))$

æ

- 《圖》 《문》 《문》

The quantity $I_1(K, Z_q^{\circ}(K))$

•
$$I_1(K, Z_q^{\circ}(K)) = \int_K h_{Z_q(K)}(x) dx \le \sqrt{n} L_K R(Z_q(K))$$

• $I_1(K, Z_q^{\circ}(K)) \ge c L_K R(Z_q(K))$

A few more lower bounds for $I_1(K, Z_a^{\circ}(K))$

For all $1 \leq q \leq n$, $l_1(K, Z_q^{\circ}(K)) \geq c \max\{\sqrt{n}L_K^2, \sqrt{qn}\}.$

(人間) ト く ヨ ト く ヨ ト

The quantity $I_1(K, Z_q^{\circ}(K))$

•
$$I_1(K, Z_q^{\circ}(K)) = \int_K h_{Z_q(K)}(x) dx \le \sqrt{n} L_K R(Z_q(K))$$

• $I_1(K, Z_q^{\circ}(K)) \ge c L_K R(Z_q(K))$

A few more lower bounds for $I_1(K, Z_q^{\circ}(K))$

For all $1 \le q \le n$, $l_1(K, Z_q^{\circ}(K)) \ge c \max\{\sqrt{n}L_K^2, \sqrt{qn}\}$. Also, for $q \le \sqrt{n}$, $l_1(K, Z_q^{\circ}(K)) \ge c\sqrt{qn}L_K$.

The quantity $I_1(K, Z_q^{\circ}(K))$

•
$$l_1(K, Z_q^{\circ}(K)) = \int_K h_{Z_q(K)}(x) dx \le \sqrt{n} L_K R(Z_q(K))$$

• $l_1(K, Z_q^{\circ}(K)) \ge c L_K R(Z_q(K))$

A few more lower bounds for $I_1(K, Z_q^{\circ}(K))$

For all $1 \le q \le n$, $I_1(K, Z_q^{\circ}(K)) \ge c \max\{\sqrt{n}L_K^2, \sqrt{qn}\}$. Also, for $q \le \sqrt{n}$, $I_1(K, Z_q^{\circ}(K)) \ge c\sqrt{qn}L_K$.

In the case of unconditional convex bodies:

$$c_1\sqrt{qn} \leq I_1(K, Z_q^{\circ}(K)) \leq c_2\sqrt{qn}\log n.$$

Introducing the quantity in question

- 2 Some general estimates
- 3 The case of unconditional convex bodies
- An extra incentive for studying such quantities

Connection with the slicing problem

Definition. Let $\kappa, \tau > 0$ be absolute constants. We say that a convex body $K \subset \mathbb{R}^n$ is (κ, τ) -regular if

*
$$\log N(K, tB_2^n) \leq \frac{\kappa n^2 \log^2 n}{t^2}$$
 for all $t \geq \tau \sqrt{n \log n}$.

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in (0, 1)$ with the following property: suppose we are given $\kappa, \tau \ge 1$, a sufficiently large integer $n \ge n_0(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^n$ which is (κ, τ) -regular.

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in (0, 1)$ with the following property: suppose we are given $\kappa, \tau \ge 1$, a sufficiently large integer $n \ge n_0(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^n$ which is (κ, τ) -regular. Then, for every q satisfying

$$2 \leq q \leq
ho^2 n$$
 and $I_1(K, Z^\circ_q(K)) \leq
ho n L^2_K$

Connection with the slicing problem (cont.)

Theorem (GPV)

There exists an absolute constant $\rho \in (0, 1)$ with the following property: suppose we are given $\kappa, \tau \ge 1$, a sufficiently large integer $n \ge n_0(\tau)$, and an isotropic convex body $K \subset \mathbb{R}^n$ which is (κ, τ) -regular. Then, for every q satisfying

$$2 \leq q \leq
ho^2 n$$
 and $I_1(K, Z_q^{\circ}(K)) \leq
ho n L_K^2$

we have:

$$L_{K}^{2} \leq C\kappa \frac{\sqrt{n}\log^{2}n}{\sqrt{q}} \max\left\{1, \frac{l_{1}(K, Z_{q}^{\circ}(K))}{\sqrt{qn}L_{K}^{2}}\right\}$$

Obtaining a general upper bound

Let
$$L_n := \sup_{K \in \mathcal{IK}_{[n]}} L_K$$
.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Obtaining a general upper bound

Let
$$L_n := \sup_{K \in \mathcal{IK}_{[n]}} L_K$$
.

Dafnis, Paouris, Small ball probability estimates, ψ_2 -behavior and the hyperplane conjecture, J. of Funct. Anal., (2010)

For some explicit absolute constants $\kappa, \tau \ge 1$ and $\delta < 1$ and for every integer $n \ge 1$, we can find isotropic convex bodies $K \subset \mathbb{R}^{2n}$ which are (κ, τ) -regular and also satisfy

$$L_{K} \geq \delta L_{2n}.$$

Obtaining a general upper bound (cont.)

That gives us for any admissible q:

$$L_n^2 \le C\delta^{-2}\kappa \frac{\sqrt{n}\log^2 n}{\sqrt{q}} \max\left\{1, \inf_{\mathcal{K}} \frac{l_1(\mathcal{K}, Z_q^{\circ}(\mathcal{K}))}{\sqrt{qn}L_{\mathcal{K}}^2}\right\}$$

.≣ →

Obtaining a general upper bound (cont.)

That gives us for any admissible q:

$$L_n^2 \le C\delta^{-2}\kappa \frac{\sqrt{n}\log^2 n}{\sqrt{q}} \max\left\{1, \inf_K \frac{l_1(K, Z_q^{\circ}(K))}{\sqrt{qn}L_K^2}\right\}$$

where the infimum is taken over all isotropic bodies K whose existence was established in the previous theorem.

Conclusion

To put it more simply,

$$L_n \leq C' \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup_{K \in \mathcal{IK}_{[n]}} \sqrt{\frac{I_1(K, Z_q^{\circ}(K))}{\sqrt{qn}L_K^2}}$$

æ

э

Conclusion

To put it more simply,

$$L_n \leq C' \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup_{K \in \mathcal{IK}_{[n]}} \sqrt{\frac{I_1(K, Z_q^{\circ}(K))}{\sqrt{qn} L_K^2}} \\ \leq C'' \frac{\sqrt[4]{n} \log n}{q^{(1-s)/2}}$$

for all admissible q and every $s \in [\frac{1}{2}, 1]$ such that the inequality

$$I_1(K, Z_q^{\circ}(K)) \ll q^s \sqrt{n} L_K^2$$

holds true for all isotropic bodies K.

Conclusion

To put it more simply,

$$L_n \leq C' \frac{\sqrt[4]{n} \log n}{\sqrt[4]{q}} \cdot \sup_{K \in \mathcal{IK}_{[n]}} \sqrt{\frac{I_1(K, Z_q^{\circ}(K))}{\sqrt{qn} L_K^2}} \\ \leq C'' \frac{\sqrt[4]{n} \log n}{q^{(1-s)/2}}$$

for all admissible q and every $s \in [\frac{1}{2}, 1]$ such that the inequality

$$I_1(K, Z_q^{\circ}(K)) \ll q^s \sqrt{n} L_K^2$$

holds true for all isotropic bodies K. Grazie mille!