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Standard definition.

Radial function: ρK (ξ) = sup{a : aξ ∈ K}, for ξ ∈ Sn−1.

0
K

ρ (ξ)

Also ρK (ξ) = ‖ξ‖−1K , where ‖ξ‖−1K is a Minkowski functional, or, in convex
symmetric case, just a norm for which K is a unit ball.

K is a star body if ρK (ξ) is positive and continuous function on Sn−1.
ξ⊥ = {x ∈ Rn : x · ξ = 0}.
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Intersection Body

E. Lutwak: Intersection body, of a body K

K IK

u

|K ∩ u⊥|

|K ∩ u⊥|ρIK(u) = ∀u ∈ Sn−1

u

R. Gardner, G. Zhang: More general definition: L is intersection body if it is
limit in radial metric of IK .

Why do we need them?
Solution of Busemann-Petty problem. Definition of L−1. Very nice questions in
Harmonic Analysis & just for fun.
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R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in
radial metric of IK .

K ⊂ R2, symmetric, then IK is just a rotation of 2K by π/2.
Bn
2 = {x ∈ Rn : |x | ≤ 1}, then IBn

2 = |Bn−1
2 |Bn

2 = cnBn
2 .

R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are
intersection bodies in Rn, n ≤ 4. NOT true for n ≥ 5.
A. Koldobsky: Bn

p - intersection body for p ∈ (0,2]; NOT intersection body for
p > 2, n ≥ 5.

Books: Gardner; Koldobsky; Koldobsky & Yaskin. Papers: Lutwak, Gardner,
Zhang, Koldobsky, Goodey, Weil, Nazarov, Ludwig, Campi, Ryabogin, Berck,
Yaskin, Grinberg, E. Milman, Kalton, Fish, Haberl, Paouris, Alfonseca, Kim,
Zymonopoulou, Yaskina, Rubin, . . .
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Connection to Spherical Radon Transform

Spherical coordinates in ξ⊥

ρIK (ξ) = |K ∩ ξ⊥|= 1
n−1

∫
Sn−1∩ξ⊥

ρn−1
K (θ)dθ = 1

n−1Rρn−1
K (ξ).

Spherical Radon Transform:

Rf (ξ) =
∫

Sn−1∩ξ⊥

f (θ)dθ

Many geometric questions about intersection bodies can be rewritten as
questions about R.

More general definition of Intersection Body (C∞-case).

A symmetric star body L is an intersection body if R−1ρL ≥ 0.
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Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix ε ∈ (0,1/10)

Consider body K such that for every u ∈ Sn−1 there exits an intersection body
Ku, which coincide with K on a ε-neighborhood of u. Is it true that K must be
an intersection body itself?

Radon Transform: Fix ε ∈ (0,1/10)

Consider a symmetric function f on Sn−1, such that for every u ∈ Sn−1 there
exits a function fu, which is equal to f on a ε-neighborhood of u and
R−1fu > 0. Is it true that R−1f > 0?

F. Nazarov, D. Ryabogin, A. Z., 2008:
NO!
If we instead of regular neighborhoods around points would take
neighborhood around equators then YES for even n and NO for odd n!!!

Original Dual problem for Zonoids: The same answer: Local - W. Weil; Local
equatorial: G. Panina; W. Weil and P. Goodey – even dimensions; F. Nazarov,
D. Ryabogin, A.Z. – odd dimensions. J. Schlaerth - generalizations of
subspaces of Lp . W. Weil and P. Goodey - other generalizations.
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Busemann’s Theorem

H. Busemann, 1949.
Let K be a symmetric convex body in Rn. Then its intersection body IK is
convex.

Not true without symmetry assumption

K
IK

O

Not true without convexity assumption (easy examples, but we will talk
about "not so easy" example in a couple of slides).
There are a lot of "nice" intersection bodies which are convex, but not an
intersection body of a convex body (Bn

p , p ∈ [1,2), n-big, we will explain it
in a funny way soon). So what we should assume about K to guarantee
that IK is convex?
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Intersection bodies and Linear Transformations.

K IK

u

|K ∩ u⊥|

|K ∩ u⊥|ρIK(u) = ∀u ∈ Sn−1

u

Take T ∈ GL(n), then I(TK) = |detT |(T∗)−1IK .
E = TBn

2 - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: dBM(K ,L) = inf{b/a : ∃T ∈ GL(n) : aK ⊂ TL⊂ bK}.
dBM(IT1K , IT2L) = dBM(IK , IL), where T1,T2 ∈ GL(n).
dBM(Bn

2 , IBn
2 ) = 1 and

dBM(E , IE) = 1.
So Banach-Mazur distance is logical to measure the "difference" between
intersection bodies.
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D. Hesley theorem

D. Hensley
There are absolute positive constants c and C such that for every convex
symmetric body K ⊂ Rn, there exists a T ∈ GL(n) such that

c ≤ |TK ∩u⊥|
|TK ∩ v⊥|

≤ C , ∀u,v ∈ Sn−1.

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor ......).

So what is it for intersection bodies?
There is an absolute positive constant C such that for every convex
symmetric body K ⊂ Rn: dBM(IK ,Bn

2 )≤ C . (thus, b.t.w. Bn
p is not an

intersection body of a convex body for n-large)!
This is very cool! Do not forget that there are convex, symmetric K ⊂ Rn

such that dBM(K ,Bn
2 ) =

√
n.
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Intersection bodies, fixed points and convergence:

dBM(E , IE) = 1.
dBM(K , IK) = 1, K ⊂ R2, K -symmetric.

E. Lutwak:
Do there exists other fixed points (with respect to dBM) of I in Rn, n ≥ 3?

dBM(IK ,Bn
2 )≤ C , for all convex, symmetric bodies K ⊂ Rn.

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:
Consider a star body K ⊂ Rn, n ≥ 3, is it true that

dBM(ImK ,Bn
2 )→ 1, as m→∞?

Or even simpler.....
Consider a star body K ⊂ Rn, is it true that

dBM(IK ,Bn
2 )≤ dBM(K ,Bn

2 )?
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Is it true that dBM(ImK ,Bn
2 )→ 1, as m→∞ ?

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

∃εn > 0 such that ∀K ⊂ Rn such that K -start body, dBM(K ,Bn
2 )< 1+εn, we

get
dBM(ImK ,Bn

2 )→ 1, as m→∞.

Remarks:
We do not assume convexity of K . Such an assumption will much simplify
the proofs, through Busemann’s theorem.
Even if K is convex symmetric, then dBM(K ,Bn

2 )≤
√

n, which is very far
from εn.
Yes, yes ... we may say by Hensley’s theorem after one step of iteration ,
dBM(K ,Bn

2 )≤ C , but this is still very, very far from εn.
So, we do not use Hensley’s theorem or any theorem of this type! We
have No idea how to start using it for this question!
We do NOT show dBM(IK ,Bn

2 )≤ dBM(K ,Bn
2 ). We really DO need a lot

of iterations to make ImK better, before computing the distance to Bn
2 .
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Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥

f (θ)dθ

Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .
Rf = f , then f = 1 (o.k. f = const).
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Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥
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Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and

vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .
Rf = f , then f = 1 (o.k. f = const).

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥

f (θ)dθ

Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .
Rf = f , then f = 1 (o.k. f = const).

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥

f (θ)dθ

Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .

Rf = f , then f = 1 (o.k. f = const).

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥

f (θ)dθ

Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .
Rf = f , then f = 1

(o.k. f = const).

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

Rf (ξ) = 1
|Sn−1|

∫
Sn−1∩ξ⊥

f (θ)dθ

Question: (n ≥ 3)

Consider even function f : Sn−1→ R+: f =Rf n−1, is it true that then f = 1?

Hk– space of Spherical Harmonics of degree k.
H f

k the projection of f to Hk , so f ∼
∑

k≥0H f
k

Assume that n ≥ 3. If Hk ∈Hk , k-even, then

RHk(ξ) = vn,kHk(ξ), for all ξ ∈ Sn−1,

where vn,0 = 1 and vn,2 =
1

n−1 and vn,k ≈ k−n−2.

Rf =Rg , then f = g .
Rf = f , then f = 1 (o.k. f = const).

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



THE MAIN PROBLEM:

f ∼
∑
k≥0

H f
k ⇒

f n−1 ∼ ????
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Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.

Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)

So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.

2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1).

Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k

then (n−1)Rφ∼
∑

(n−1)vn,2kHφ
2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).

Thus we need to KILL Hφ
2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

Problems:
1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game in
non-convex case.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 .

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Back to our result: f ≈ 1

f = 1+φ, where φ is even with small L∞ norm,
∫

Sn−1 φ= 0.
Rf n−1 = 1+(n−1)Rφ+RO(φ2)
So our main goal is to show that (n−1)Rφ+RO(φ2) is "very small".

1) Working with Spherical Harmonics we need to talk about L2 norm! If we
assume convexity, then those are "almost" equivalent. Much more work
required to "prepare" the function to be ready for the L2, L∞ game.
2) The crucial step is to show that

‖(n−1)Rφ‖L2 ≤ λ‖φ‖L2 , for some λ < 1.

Indeed, then ‖Rφ2‖L2 ≤ ‖φ‖L∞‖φ‖L2 (do not forget ‖R‖L2→L2 ≤ 1). Write

φ∼
∑

Hφ
2k then (n−1)Rφ∼

∑
(n−1)vn,2kHφ

2k .

If (n−1)vn,2k are small then we are DONE! Unfortunately this is NOT the
case (n−1)vn,2 = 1 (but (n−1)vn,2k ≤ 3/4 for all k > 1).
Thus we need to KILL Hφ

2 . HOW ? Main idea – in the end of the day, Hφ
2 is

just quadratic polynomial make it constant on Sn−1, using linear
transformation. YES, "like" isotropic position, BUT in Fourier coordinates.
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Quasi-convexity:

K be a star body in Rn, 0< q ≤ 1. K is called q-convex if

t
1
q x +(1− t)

1
q y ∈ K whenever x ,y ∈ K , t ∈ [0,1]

or, equivalently, ‖x + y‖qK ≤ ‖x‖
q
K +‖y‖qK .

q = 1
2

|x|1/2 + |y|1/2 ≤ 1

q = 1
4 q = 3

4
q = 1

(convex)

I learned it from works of:
Aoki, Bastero, Bernues, Peña, Dilworth, Gordon, Kalton, Koldobsky, Guedon,
Litvak, Peck, Rolewicz, Roberts, Tam, Milman, Schechtman, Pajor, . . .
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Questions and Dreams:

If K is q-convex, for which q′ the intersection body IK is q′-convex?

Is it true that q′ > q.
Does there exists q for which q′ = 1 (i.e. IK is convex)?
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Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!
Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!
Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.

Yes, q′ does not look nice!
Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!

Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!
Is q′ optimal?

It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!
Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.

By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity for Intersection bodies

J. Kim, V. Yaskin, A. Z., 2010
Let K be an origin-symmetric q-convex body in Rn, q ∈ (0,1], and E a
(k−1)-dimensional subspace of Rn for 1≤ k ≤ n. Then the map

u 7−→ |u|∣∣K ∩ span(u,E)
∣∣
k
, u ∈ E⊥

defines the Minkowski functional of a q′-convex body in E⊥ with
q′ = [(1/q−1)k +1]−1.

Let K be a symmetric star body in Rn and 0< q ≤ 1. Then, if K is q-convex,
IK is q′-convex where q′ = [(1/q−1)(n−1)+1]−1.

Similar to Busemann’s original proof.
Yes, q′ does not look nice!
Is q′ optimal? It is sharp asymptotically (next slide), thus q-convexity
alone can not work as a condition for IK to be convex.
By K. Ball’s theorem, the classical Busemann’s theorem can be
generalized to log-concave measure. The same is true for q-convex case,
but requires more work then just direct generalization of K. Ball’s result!

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.



Quasi-convexity: Example

K =
{

t
1
q x +(1− t)

1
q y
∣∣∣x ∈ C ,y ∈ −C ,0≤ t ≤ 1

}
, C = {1}× [−1,1]n−1

K

C

−C

K is q-convex

∣∣K ∩ e⊥1
∣∣= 2(2−

1
q )(n−1)∣∣∣∣K ∩( e1+e2√

2

)⊥∣∣∣∣≥ 2n− 1
2−log2 n

It means
‖e1‖IK = 2(

1
q−2)(n−1),

‖ e1+e2
2 ‖IK ≤ 21−n+log2 n

From ‖e1‖q′
IK ≤ ‖

e1+e2
2 ‖

q′
IK +‖ e1−e2

2 ‖q′
IK ,

q′ ≤ [(1/q−1)(n−1)+1− log2 n]−1

≈ [(1/q−1)(n−1)+1]−1
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Banach-Mazur distance to Bn
2

Question: dBM(IK ,Bn
2 )≤ dBM(K ,Bn

2 )?
Not known for symmetric convex case.
VERY Not true without convexity!

‖e1‖IK = 2(
1
p−2)(n−1)

‖ e1+e2
2 ‖IK ≤ 21−n+log2 n

From 21−1/qBn
2 ⊂ K ⊂

√
nBn

2 ,

dBM(K ,Bn
2 )≤ 21/q−1√n

Let d = dBM(IK ,Bn
2 ), i.e,

IK ⊂ TBn
2 ⊂ d IK . So we have

IK ⊂ conv(IK)⊂ d IK .
dBM(IK ,Bn

2 ) = d ≥ ‖e1‖IK
‖e1‖conv(IK)

≥ ‖e1‖IK

‖ e1+e2
2 ‖conv(IK)+‖

e1−e2
2 ‖conv(IK)

≥ ‖e1‖IK
‖e1+e2‖IK

≥ 2(
1
q−1)(n−1)−1−log2 n

dBM(IK ,Bn
2 )>> dBM(K ,Bn

2 )
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Questions:

Assume IK is convex, what can we say about K?

Do there exists other then cnBn
2 fixed points of I in Rn, n ≥ 3?

Consider a star body K ⊂ Rn, n ≥ 3, is it true that

dBM(ImK ,Bn
2 )→ 1, as m→∞?

Consider a convex body K ⊂ Rn, is it true that

dBM(IK ,Bn
2 )≤ dBM(K ,Bn

2 ),

with equality iff K is an Ellipsoid.

Do not like intersection bodies? Want to do harmonic analysis?

Consider an even function f : Sn−1→ R+, such that f =Rf n−1, is it true that
then f is a constant?

Artem Zvavitch Intersection bodies and some generalizations of the Busemann’s Theorem.


