Intersection bodies and some generalizations of the Busemann's Theorem.

Artem Zvavitch (with a BIG help from my friends)

Kent State University

Convex Geometry - Analytic Aspects, Cortona, Italy, June 12-18, 2011.

(日) (部) (E) (E) (E)

-

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

• K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

K is a star body if ρ_K(ξ) is positive and continuous function on Sⁿ⁻¹.
ξ[⊥] = {x ∈ ℝⁿ : x ⋅ ξ = 0}.

Intersection Body

E. Lutwak: Intersection body, of a body K

 $|K \cap u^{\perp}| \quad \forall u \in S^{n-1}$

Artem Zvavitch Intersection bodies and some generalizations of the Busemann's Theorem

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

Artem Zvavitch Intersection bodies and some generalizations of the Busemann's Theorem.

Intersection Body

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

• $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = |B_2^{n-1}|B_2^n = c_n B_2^n$.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = |B_2^{n-1}|B_2^n = c_n B_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in ℝⁿ, n ≤ 4. NOT true for n ≥ 5.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = |B_2^{n-1}|B_2^n = c_n B_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in ℝⁿ, n ≤ 4. NOT true for n ≥ 5.
- A. Koldobsky: Bⁿ_p intersection body for p ∈ (0,2]; NOT intersection body for p > 2, n ≥ 5.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = |B_2^{n-1}|B_2^n = c_n B_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in ℝⁿ, n ≤ 4. NOT true for n ≥ 5.
- A. Koldobsky: B_p^n intersection body for $p \in (0,2]$; NOT intersection body for $p > 2, n \ge 5$.
- Books: Gardner; Koldobsky; Koldobsky & Yaskin. Papers: Lutwak, Gardner, Zhang, Koldobsky, Goodey, Weil, Nazarov, Ludwig, Campi, Ryabogin, Berck, Yaskin, Grinberg, E. Milman, Kalton, Fish, Haberl, Paouris, Alfonseca, Kim, Zymonopoulou, Yaskina, Rubin, ...

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = |K \cap \xi^{\perp}| = \frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Artem Zvavitch Intersection bodies and some generalizations of the Busemann's Theorem

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = |K \cap \xi^{\perp}| = \frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$\mathcal{R}f(\xi) = \int\limits_{\mathbb{S}^{n-1}\cap\xi^{\perp}} f(heta)d heta$$

Many geometric questions about intersection bodies can be rewritten as questions about $\mathcal{R}.$

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = |K \cap \xi^{\perp}| = \frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$\mathcal{R}f(\xi) = \int\limits_{\mathbb{S}^{n-1}\cap\xi^{\perp}} f(heta)d heta$$

Many geometric questions about intersection bodies can be rewritten as questions about \mathcal{R} .

More general definition of Intersection Body (C^{∞} -case).

A symmetric star body *L* is an intersection body if $\mathcal{R}^{-1}\rho_L \ge 0$.

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on \mathbb{S}^{n-1} , such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $\mathcal{R}^{-1}f_u > 0$. Is it true that $\mathcal{R}^{-1}f > 0$?

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on \mathbb{S}^{n-1} , such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $\mathcal{R}^{-1}f_u > 0$. Is it true that $\mathcal{R}^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

• NO!

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on \mathbb{S}^{n-1} , such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $\mathcal{R}^{-1}f_u > 0$. Is it true that $\mathcal{R}^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

• NO!

• If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even *n* and NO for odd *n*!!!

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on \mathbb{S}^{n-1} , such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $\mathcal{R}^{-1}f_u > 0$. Is it true that $\mathcal{R}^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

• NO!

 If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd n!!!

Original Dual problem for Zonoids: The same answer: Local - W. Weil; Local equatorial: G. Panina; W. Weil and P. Goodey – even dimensions; F. Nazarov, D. Ryabogin, A.Z. – odd dimensions. J. Schlaerth - generalizations of subspaces of L_p . W. Weil and P. Goodey - other generalizations.

Let K be a symmetric convex body in $\mathbb{R}^n.$ Then its intersection body $\mathrm{I}K$ is convex.

Let K be a symmetric convex body in $\mathbb{R}^n.$ Then its intersection body IK is convex.

• Not true without symmetry assumption

Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

• Not true without symmetry assumption

• Not true without convexity assumption (easy examples, but we will talk about "not so easy" example in a couple of slides).

Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

• Not true without symmetry assumption

- Not true without convexity assumption (easy examples, but we will talk about "not so easy" example in a couple of slides).
- There are a lot of "nice" intersection bodies which are convex, but not an intersection body of a convex body (Bⁿ_p, p ∈ [1,2), n-big, we will explain it in a funny way soon). So what we should assume about K to guarantee that IK is convex?

• Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

• Take
$$T \in GL(n)$$
, then $I(TK) = |\det T|(T^*)^{-1}IK$.

• $E = TB_2^n$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

• Take
$$T \in GL(n)$$
, then $I(TK) = |\det T|(T^*)^{-1}IK$.

• $E = TB_2^n$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

• $d_{BM}(IT_1K, IT_2L) = d_{BM}(IK, IL)$, where $T_1, T_2 \in GL(n)$.

• Take
$$T \in GL(n)$$
, then $I(TK) = |\det T|(T^*)^{-1}IK$.

• $E = TB_2^n$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}$.

- $d_{BM}(IT_1K, IT_2L) = d_{BM}(IK, IL)$, where $T_1, T_2 \in GL(n)$.
- $d_{BM}(B_2^n, IB_2^n) = 1$ and
- $d_{BM}(E, IE) = 1.$
Intersection bodies and Linear Transformations.

• Take
$$T \in GL(n)$$
, then $I(TK) = |\det T|(T^*)^{-1}IK$.

• $E = TB_2^n$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}$.

- $d_{BM}(IT_1K, IT_2L) = d_{BM}(IK, IL)$, where $T_1, T_2 \in GL(n)$.
- $d_{BM}(B_2^n, IB_2^n) = 1$ and
- $d_{BM}(E, IE) = 1.$
- So Banach-Mazur distance is logical to measure the "difference" between intersection bodies.

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|\mathcal{T}K \cap u^{\perp}|}{|\mathcal{T}K \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|TK \cap u^{\perp}|}{|TK \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor).

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|TK \cap u^{\perp}|}{|TK \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor).

So what is it for intersection bodies?

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|TK \cap u^{\perp}|}{|TK \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor).

So what is it for intersection bodies?

 There is an absolute positive constant C such that for every convex symmetric body K ⊂ ℝⁿ: d_{BM}(IK, Bⁿ₂) ≤ C.

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|TK \cap u^{\perp}|}{|TK \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor).

So what is it for intersection bodies?

 There is an absolute positive constant C such that for every convex symmetric body K ⊂ ℝⁿ: d_{BM}(IK, Bⁿ₂) ≤ C. (thus, b.t.w. Bⁿ_p is not an intersection body of a convex body for n-large)!

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^n$, there exists a $T \in GL(n)$ such that

$$c \leq \frac{|TK \cap u^{\perp}|}{|TK \cap v^{\perp}|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}.$$

This is an amazing and very useful fact (Ball/Bourgain/Milman & Pajor).

So what is it for intersection bodies?

- There is an absolute positive constant C such that for every convex symmetric body K ⊂ ℝⁿ: d_{BM}(IK, Bⁿ₂) ≤ C. (thus, b.t.w. Bⁿ_p is not an intersection body of a convex body for n-large)!
- This is very cool! Do not forget that there are convex, symmetric $K \subset \mathbb{R}^n$ such that $d_{BM}(K, B_2^n) = \sqrt{n}$.

- $d_{BM}(E, IE) = 1.$
- $d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$ -symmetric.

•
$$d_{BM}(E, IE) = 1$$

•
$$d_{BM}(K, IK) = 1, \ K \subset \mathbb{R}^2, \ K$$
-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \ge 3$?

•
$$d_{BM}(E, IE) = 1$$
.

•
$$d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$$
-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \ge 3$?

• $d_{BM}(IK, B_2^n) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^n$.

•
$$d_{BM}(E, IE) = 1$$

•
$$d_{BM}(K, \mathrm{I}K) = 1, \ K \subset \mathbb{R}^2, \ K$$
-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \geq 3$?

• $d_{BM}(IK, B_2^n) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^n$.

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^n$, $n \ge 3$, is it true that

 $d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$, as $m \to \infty$?

•
$$d_{BM}(E, IE) = 1$$

•
$$d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$$
-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \geq 3$?

• $d_{BM}(IK, B_2^n) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^n$.

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^n$, $n \ge 3$, is it true that

 $d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$, as $m \to \infty$?

Or even simpler.....

Consider a star body $K \subset \mathbb{R}^n$, is it true that

 $d_{BM}(IK, B_2^n) \leq d_{BM}(K, B_2^n)?$

э

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

 $d_{BM}(\mathbf{I}^m K, B_2^n) \to 1$, as $m \to \infty$.

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\mathbb{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

Remarks:

• We do not assume convexity of *K*. Such an assumption will much simplify the proofs, through Busemann's theorem.

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \le \sqrt{n}$, which is very far from ε_n .
- Yes, yes ... we may say by Hensley's theorem after one step of iteration , $d_{BM}(K, B_2^n) \leq C$, but this is still very, very far from ε_n .

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \le \sqrt{n}$, which is very far from ε_n .
- Yes, yes ... we may say by Hensley's theorem after one step of iteration , $d_{BM}(K, B_2^n) \leq C$, but this is still very, very far from ε_n .
- So, we do not use Hensley's theorem or any theorem of this type! We have No idea how to start using it for this question!

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K \text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get}$

$$d_{BM}(\operatorname{I}^m K, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \le \sqrt{n}$, which is very far from ε_n .
- Yes, yes ... we may say by Hensley's theorem after one step of iteration , $d_{BM}(K, B_2^n) \leq C$, but this is still very, very far from ε_n .
- So, we do not use Hensley's theorem or any theorem of this type! We have No idea how to start using it for this question!
- We do NOT show d_{BM}(IK, Bⁿ₂) ≤ d_{BM}(K, Bⁿ₂). We really DO need a lot of iterations to make I^mK better, before computing the distance to Bⁿ₂.

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 \mathcal{H}_k - space of Spherical Harmonics of degree k.

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap \xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)=\mathsf{v}_{n,k}H_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1} \cap \xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}\mathcal{H}_k(\xi)= \mathsf{v}_{n,k}\mathcal{H}_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap \xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}\mathcal{H}_k(\xi)= \mathsf{v}_{n,k}\mathcal{H}_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

• $\mathcal{R}f = \mathcal{R}g$, then f = g.

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap \xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)=\mathsf{v}_{n,k}H_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

- $\mathcal{R}f = \mathcal{R}g$, then f = g.
- $\mathcal{R}f = f$, then f = 1

(Normalized) Spherical Radon Transform:

$$\mathcal{R}f(\xi) = rac{1}{|S^{n-1}|} \int\limits_{S^{n-1}\cap \xi^{\perp}} f(heta) d heta$$

Question: $(n \ge 3)$

Consider even function $f: S^{n-1} \to \mathbb{R}^+$: $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 $\begin{array}{l} \mathcal{H}_k \text{-} \text{ space of Spherical Harmonics of degree } k. \\ H^f_k \text{ the projection of } f \text{ to } \mathcal{H}_k \text{, so } f \sim \sum_{k \geq 0} H^f_k \end{array}$

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)=\mathsf{v}_{n,k}H_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

• $\mathcal{R}f = \mathcal{R}g$, then f = g.

•
$$\mathcal{R}f = f$$
, then $f = 1$ (o.k. $f = const$).

THE MAIN PROBLEM:

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$

Artem Zvavitch Intersection bodies and some generalizations of the Busemann's Theorem.

イロト イヨト イヨト

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$
$$f^{n-1} \sim ????$$

ヘロト ヘ回ト ヘヨト ヘヨト

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$.

-

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$

4 E b

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

$$\begin{split} f &= 1 + \phi \text{, where } \phi \text{ is even with small } L_\infty \text{ norm, } \int_{S^{n-1}} \phi = 0.\\ \mathcal{R}f^{n-1} &= 1 + (n-1)\mathcal{R}\phi + \mathcal{R}\mathcal{O}(\phi^2)\\ \text{So our main goal is to show that } (n-1)\mathcal{R}\phi + \mathcal{R}\mathcal{O}(\phi^2) \text{ is "very small".} \end{split}$$

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

 $\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.
$f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

 $\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$).

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

 $\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi}$$

$$\begin{split} f &= 1 + \phi, \text{ where } \phi \text{ is even with small } L_\infty \text{ norm, } \int_{S^{n-1}} \phi = 0.\\ \mathcal{R}f^{n-1} &= 1 + (n-1)\mathcal{R}\phi + \mathcal{R}\mathcal{O}(\phi^2)\\ \text{So our main goal is to show that } (n-1)\mathcal{R}\phi + \mathcal{R}\mathcal{O}(\phi^2) \text{ is "very small".} \end{split}$$

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$$
, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H^{\phi}_{2k}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)v_{n,2k}H^{\phi}_{2k}.$

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

 $\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H^{\phi}_{2k}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)\mathsf{v}_{n,2k}H^{\phi}_{2k}.$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2} = 1$ (but $(n-1)v_{n,2k} \le 3/4$ for all k > 1).

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game in non-convex case.

2) The crucial step is to show that

 $\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H^{\phi}_{2k}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)\mathsf{v}_{n,2k}H^{\phi}_{2k}.$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2} = 1$ (but $(n-1)v_{n,2k} \le 3/4$ for all k > 1). Thus we need to KILL H_2^{ϕ} .

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$. $\mathcal{R}f^{n-1} = 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2)$ is "very small".

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}$$
, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)v_{n,2k}H_{2k}^{\phi}$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2} = 1$ (but $(n-1)v_{n,2k} \le 3/4$ for all k > 1). **Thus we need to KILL** H_2^{ϕ} . HOW ? Main idea – in the end of the day, H_2^{ϕ} is just quadratic polynomial make it constant on S^{n-1} , using linear transformation. YES, "like" isotropic position, BUT in Fourier coordinates.

 $t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

or, equivalently, $\|x+y\|_K^q \leq \|x\|_K^q + \|y\|_K^q$.

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

or, equivalently, $||x + y||_{K}^{q} \le ||x||_{K}^{q} + ||y||_{K}^{q}$.

 $|x|^{1/2} + |y|^{1/2} \le 1$ $q = \frac{1}{2}$

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

 $t^{rac{1}{q}}x+(1-t)^{rac{1}{q}}y\in K$ whenever $x,y\in K,t\in [0,1]$

or, equivalently, $||x + y||_{K}^{q} \le ||x||_{K}^{q} + ||y||_{K}^{q}$.

I learned it from works of:

Aoki, Bastero, Bernues, Peña, Dilworth, Gordon, Kalton, Koldobsky, Guedon, Litvak, Peck, Rolewicz, Roberts, Tam, Milman, Schechtman, Pajor, ...

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

or, equivalently, $||x + y||_{K}^{q} \le ||x||_{K}^{q} + ||y||_{K}^{q}$.

Questions and Dreams:

If K is q-convex, for which q' the intersection body IK is q'-convex?

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

or, equivalently, $||x + y||_{K}^{q} \le ||x||_{K}^{q} + ||y||_{K}^{q}$.

Questions and Dreams:

If K is q-convex, for which q' the intersection body IK is q'-convex?

• Is it true that q' > q.

 $t^{rac{1}{q}}x + (1-t)^{rac{1}{q}}y \in K$ whenever $x, y \in K, t \in [0,1]$

or, equivalently, $||x + y||_{K}^{q} \le ||x||_{K}^{q} + ||y||_{K}^{q}$.

Questions and Dreams:

If K is q-convex, for which q' the intersection body IK is q'-convex?

- Is it true that q' > q.
- Does there exists q for which q' = 1 (i.e. IK is convex)?

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q - 1)(n-1) + 1]^{-1}$.

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q - 1)(n-1) + 1]^{-1}$.

• Similar to Busemann's original proof.

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q - 1)(n - 1) + 1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q' does not look nice!

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q - 1)(n - 1) + 1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q' does not look nice!
- Is q' optimal?

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q' does not look nice!
- Is q' optimal? It is sharp asymptotically (next slide), thus q-convexity alone can not work as a condition for IK to be convex.

Let K be an origin-symmetric q-convex body in \mathbb{R}^n , $q \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \le k \le n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q'-convex body in E^{\perp} with $q' = [(1/q - 1)k + 1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \leq 1$. Then, if K is q-convex, IK is q'-convex where $q' = [(1/q - 1)(n - 1) + 1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q' does not look nice!
- Is q' optimal? It is sharp asymptotically (next slide), thus q-convexity alone can not work as a condition for IK to be convex.
- By K. Ball's theorem, the classical Busemann's theorem can be generalized to **log-concave measure**. The same is true for *q*-convex case, but requires more work then just direct generalization of K. Ball's result!

$$\mathcal{K} = \left\{ t^{\frac{1}{q}} x + (1-t)^{\frac{1}{q}} y \, \middle| \, x \in C, y \in -C, 0 \le t \le 1 \right\}, \quad C = \{1\} \times [-1,1]^{n-1}$$

K

$$\mathcal{K} = \left\{ t^{\frac{1}{q}} x + (1-t)^{\frac{1}{q}} y \, \middle| \, x \in C, y \in -C, 0 \le t \le 1 \right\}, \quad C = \{1\} \times [-1,1]^{n-1}$$

•
$$|K \cap e_1^{\perp}| = 2^{(2-\frac{1}{q})(n-1)}$$

 $K\cap e_1^\perp$

$$K = \left\{ t^{\frac{1}{q}} x + (1-t)^{\frac{1}{q}} y \, \middle| \, x \in C, y \in -C, 0 \le t \le 1 \right\}, \quad C = \{1\} \times [-1,1]^{n-1}$$

•
$$|K \cap e_1^{\perp}| = 2^{(2-\frac{1}{q})(n-1)}$$

•
$$\left| K \cap \left(\frac{\mathbf{e}_1 + \mathbf{e}_2}{\sqrt{2}} \right)^{\perp} \right| \ge 2^{n - \frac{1}{2} - \log_2 n}$$

$$K = \left\{ t^{\frac{1}{q}} x + (1-t)^{\frac{1}{q}} y \, \middle| \, x \in C, y \in -C, 0 \le t \le 1 \right\}, \quad C = \{1\} \times [-1,1]^{n-1}$$

•
$$|K \cap e_1^{\perp}| = 2^{(2-\frac{1}{q})(n-1)}$$

•
$$\left| K \cap \left(\frac{e_1 + e_2}{\sqrt{2}} \right)^{\perp} \right| \ge 2^{n - \frac{1}{2} - \log_2 n}$$

It means $\|e_1\|_{IK} = 2^{(\frac{1}{q}-2)(n-1)},$ $\|\frac{e_1+e_2}{2}\|_{IK} \le 2^{1-n+\log_2 n}$

K

$$\mathcal{K} = \left\{ t^{\frac{1}{q}} x + (1-t)^{\frac{1}{q}} y \, \middle| \, x \in C, y \in -C, 0 \le t \le 1 \right\}, \quad C = \{1\} \times [-1,1]^{n-1}$$

$$\left| K \cap e_1^{\perp} \right| = 2^{\left(2 - \frac{1}{q}\right)\left(n - 1\right)}$$

•
$$\left| K \cap \left(\frac{e_1 + e_2}{\sqrt{2}} \right)^{\perp} \right| \ge 2^{n - \frac{1}{2} - \log_2 n}$$

It means $\|e_1\|_{IK} = 2^{(\frac{1}{q}-2)(n-1)},$ $\|\frac{e_1+e_2}{2}\|_{IK} \le 2^{1-n+\log_2 n}$

From
$$\|e_1\|_{IK}^{q'} \le \|\frac{e_1+e_2}{2}\|_{IK}^{q'} + \|\frac{e_1-e_2}{2}\|_{IK}^{q'}$$
,
 $q' \le [(1/q-1)(n-1)+1-\log_2 n]^{-1}$
 $\approx [(1/q-1)(n-1)+1]^{-1}$

Question: $d_{BM}(IK, \overline{B_2^n}) \le d_{BM}(K, B_2^n)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

Question: $d_{BM}(IK, B_2^n) \le d_{BM}(K, \overline{B_2^n})$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

•
$$\|e_1\|_{IK} = 2^{(\frac{1}{p}-2)(n-1)}$$

• $\|\frac{e_1+e_2}{2}\|_{IK} \le 2^{1-n+\log_2 n}$

Question: $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

• From
$$2^{1-1/q}B_2^n \subset K \subset \sqrt{n}B_2^n$$
,

• $||e_1||_{IK} = 2^{(\frac{1}{p}-2)(n-1)}$ • $||\frac{e_1+e_2}{2}||_{IK} \le 2^{1-n+\log_2 n}$

Banach-Mazur distance to B_2^n

Question: $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

• From
$$2^{1-1/q}B_2^n \subset K \subset \sqrt{n}B_2^n$$
, $d_{BM}(K,B_2^n) \leq 2^{1/q-1}\sqrt{n}$

Question: $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

• From
$$2^{1-1/q}B_2^n \subset K \subset \sqrt{n}B_2^n$$
,
 $d_{BM}(K, B_2^n) \leq 2^{1/q-1}\sqrt{n}$
• Let $d = d_{BM}(IK, B_2^n)$, i.e,
 $IK \subset TB_2^n \subset dIK$. So we have
 $IK \subset conv(IK) \subset dIK$.
 $d_{BM}(IK, B_2^n) = d \geq \frac{\|e_1\|_{IK}}{\|e_1\|_{conv(IK)}}$
 $\geq \frac{\|e_1\|_{IK}}{\|e_1\|_{conv(IK)}} + \frac{\|e_1\|_{IK}}{\|e_1+e_2\|_{IK}}$
 $\geq 2(\frac{1}{q}-1)(n-1)-1-\log_2 n$

• $\|e_1\|_{IK} = 2^{(\frac{1}{p}-2)(n-1)}$ • $\|\frac{e_1+e_2}{2}\|_{IK} \le 2^{1-n+\log_2 n}$

Question: $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

•
$$\|e_1\|_{IK} = 2^{(\frac{1}{p}-2)(n-1)}$$

• $\|\frac{e_1+e_2}{2}\|_{IK} \le 2^{1-n+\log_2 n}$

• From
$$2^{1-1/q} B_2^n \subset K \subset \sqrt{n} B_2^n$$
,
 $d_{BM}(K, B_2^n) \leq 2^{1/q-1} \sqrt{n}$
• Let $d = d_{BM}(IK, B_2^n)$, i.e,
 $IK \subset TB_2^n \subset dIK$. So we have
 $IK \subset conv(IK) \subset dIK$.
 $d_{BM}(IK, B_2^n) = d \geq \frac{\|e_1\|_{IK}}{\|e_1\|_{conv(IK)}}$
 $\geq \frac{\|e_1\|_{IK}}{\|\frac{e_1+e_2}{2}\|_{conv(IK)} + \|\frac{e_1-e_2}{2}\|_{conv(IK)}} \geq \frac{\|e_1\|_{IK}}{\|e_1+e_2\|_{IK}}$
 $\geq 2^{(\frac{1}{q}-1)(n-1)-1-\log_2 n}$

• $d_{BM}(IK, B_2^n) >> d_{BM}(K, B_2^n)$

Assume IK is convex, what can we say about K?

Do there exists other then $c_n B_2^n$ fixed points of I in \mathbb{R}^n , $n \ge 3$?

Consider a star body $K \subset \mathbb{R}^n$, $n \ge 3$, is it true that

 $d_{BM}(I^m K, B_2^n) \rightarrow 1$, as $m \rightarrow \infty$?

Consider a **convex** body $K \subset \mathbb{R}^n$, is it true that

```
d_{BM}(\mathsf{I}K,B_2^n) \leq d_{BM}(K,B_2^n),
```

with equality iff K is an Ellipsoid.

Do not like intersection bodies? Want to do harmonic analysis?

Consider an even function $f : \mathbb{S}^{n-1} \to \mathbb{R}^+$, such that $f = \mathcal{R}f^{n-1}$, is it true that then f is a constant?