Intersection bodies and some generalizations of the Busemann's Theorem.

Artem Zvavitch
(with a BIG help from my friends)

Kent State University

Convex Geometry - Analytic Aspects, Cortona, Italy, June 12-18, 2011.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in \mathbb{S}^{n-1}$.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in \mathbb{S}^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in \mathbb{S}^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in \mathbb{S}^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.
- $\xi^{\perp}=\left\{x \in \mathbb{R}^{n}: x \cdot \xi=0\right\}$.

E. Lutwak: Intersection body, of a body K

Intersection Body
E. Lutwak: Intersection body, of a body K

Intersection Body

E. Lutwak: Intersection body, of a body K

$$
\left|K \cap u^{\perp}\right| \quad \forall u \in S^{n-1}
$$

E. Lutwak: Intersection body, of a body K

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of $I K$.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $I B_{2}^{n}=\left|B_{2}^{n-1}\right| B_{2}^{n}=c_{n} B_{2}^{n}$.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $I B_{2}^{n}=\left|B_{2}^{n-1}\right| B_{2}^{n}=c_{n} B_{2}^{n}$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in $\mathbb{R}^{n}, n \leq 4$. NOT true for $n \geq 5$.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $I B_{2}^{n}=\left|B_{2}^{n-1}\right| B_{2}^{n}=c_{n} B_{2}^{n}$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in $\mathbb{R}^{n}, n \leq 4$. NOT true for $n \geq 5$.
- A. Koldobsky: B_{p}^{n} - intersection body for $p \in(0,2]$; NOT intersection body for $p>2, n \geq 5$.

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $I B_{2}^{n}=\left|B_{2}^{n-1}\right| B_{2}^{n}=c_{n} B_{2}^{n}$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in $\mathbb{R}^{n}, n \leq 4$. NOT true for $n \geq 5$.
- A. Koldobsky: B_{p}^{n} - intersection body for $p \in(0,2]$; NOT intersection body for $p>2, n \geq 5$.
- Books: Gardner; Koldobsky; Koldobsky \& Yaskin. Papers: Lutwak, Gardner, Zhang, Koldobsky, Goodey, Weil, Nazarov, Ludwig, Campi, Ryabogin, Berck, Yaskin, Grinberg, E. Milman, Kalton, Fish, Haberl, Paouris, Alfonseca, Kim, Zymonopoulou, Yaskina, Rubin, ...

Connection to Spherical Radon Transform

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\left|K \cap \xi^{\perp}\right|=\frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\left|K \cap \xi^{\perp}\right|=\frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Many geometric questions about intersection bodies can be rewritten as questions about \mathcal{R}.

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\left|K \cap \xi^{\perp}\right|=\frac{1}{n-1} \int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\int_{\mathbb{S}^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Many geometric questions about intersection bodies can be rewritten as questions about \mathcal{R}.

More general definition of Intersection Body (C^{∞}-case).

A symmetric star body L is an intersection body if $\mathcal{R}^{-1} \rho_{L} \geq 0$.

Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$
Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on \mathbb{S}^{n-1}, such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $\mathcal{R}^{-1} f_{u}>0$. Is it true that $\mathcal{R}^{-1} f>0$?

Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on \mathbb{S}^{n-1}, such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $\mathcal{R}^{-1} f_{u}>0$. Is it true that $\mathcal{R}^{-1} f>0$?
F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!

Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on \mathbb{S}^{n-1}, such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $\mathcal{R}^{-1} f_{u}>0$. Is it true that $\mathcal{R}^{-1} f>0$?
F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!
- If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd $n!!!$

Example (of something that we can do): Local/Equatorial characterization.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in \mathbb{S}^{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on \mathbb{S}^{n-1}, such that for every $u \in \mathbb{S}^{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $\mathcal{R}^{-1} f_{u}>0$. Is it true that $\mathcal{R}^{-1} f>0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!
- If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd $n!!!$

Original Dual problem for Zonoids: The same answer: Local - W. Weil; Local equatorial: G. Panina; W. Weil and P. Goodey - even dimensions; F. Nazarov, D. Ryabogin, A.Z. - odd dimensions. J. Schlaerth - generalizations of subspaces of L_{p}. W. Weil and P . Goodey - other generalizations.

Busemann's Theorem

H. Busemann, 1949.

Let K be a symmetric convex body in \mathbb{R}^{n}. Then its intersection body $\mathrm{I} K$ is convex.

H. Busemann, 1949.

Let K be a symmetric convex body in \mathbb{R}^{n}. Then its intersection body $\mathrm{I} K$ is convex.

- Not true without symmetry assumption

H. Busemann, 1949.

Let K be a symmetric convex body in \mathbb{R}^{n}. Then its intersection body $\mathrm{I} K$ is convex.

- Not true without symmetry assumption

- Not true without convexity assumption (easy examples, but we will talk about "not so easy" example in a couple of slides).

H. Busemann, 1949.

Let K be a symmetric convex body in \mathbb{R}^{n}. Then its intersection body $\mathrm{I} K$ is convex.

- Not true without symmetry assumption

- Not true without convexity assumption (easy examples, but we will talk about "not so easy" example in a couple of slides).
- There are a lot of "nice" intersection bodies which are convex, but not an intersection body of a convex body ($B_{p}^{n}, p \in[1,2$), n-big, we will explain it in a funny way soon). So what we should assume about K to guarantee that $I K$ is convex?

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}\left(\mathrm{I} T_{1} K, \mathrm{I} T_{2} L\right)=d_{B M}(\mathrm{I} K, \mathrm{IL})$, where $T_{1}, T_{2} \in G L(n)$.

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}\left(I T_{1} K, I T_{2} L\right)=d_{B M}(I K, I L)$, where $T_{1}, T_{2} \in G L(n)$.
- $d_{B M}\left(B_{2}^{n}, I B_{2}^{n}\right)=1$ and
- $d_{B M}(E, I E)=1$.

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then $I E$ is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}\left(\mathrm{I} T_{1} K, \mathrm{I} T_{2} L\right)=d_{B M}(\mathrm{I} K, \mathrm{I} L)$, where $T_{1}, T_{2} \in G L(n)$.
- $d_{B M}\left(B_{2}^{n}, I B_{2}^{n}\right)=1$ and
- $d_{B M}(E, I E)=1$.
- So Banach-Mazur distance is logical to measure the "difference" between intersection bodies.

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

This is an amazing and very useful fact (Ball/Bourgain/Milman \& Pajor).

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

This is an amazing and very useful fact (Ball/Bourgain/Milman \& Pajor).

So what is it for intersection bodies?

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

This is an amazing and very useful fact (Ball/Bourgain/Milman \& Pajor).

So what is it for intersection bodies?

- There is an absolute positive constant C such that for every convex symmetric body $K \subset \mathbb{R}^{n}: d_{B M}\left(I K, B_{2}^{n}\right) \leq C$.

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

This is an amazing and very useful fact (Ball/Bourgain/Milman \& Pajor).

So what is it for intersection bodies?

- There is an absolute positive constant C such that for every convex symmetric body $K \subset \mathbb{R}^{n}: d_{B M}\left(I K, B_{2}^{n}\right) \leq C$. (thus, b.t.w. B_{p}^{n} is not an intersection body of a convex body for n-large)!

D. Hensley

There are absolute positive constants c and C such that for every convex symmetric body $K \subset \mathbb{R}^{n}$, there exists a $T \in G L(n)$ such that

$$
c \leq \frac{\left|T K \cap u^{\perp}\right|}{\left|T K \cap v^{\perp}\right|} \leq C, \quad \forall u, v \in \mathbb{S}^{n-1}
$$

This is an amazing and very useful fact (Ball/Bourgain/Milman \& Pajor).

So what is it for intersection bodies?

- There is an absolute positive constant C such that for every convex symmetric body $K \subset \mathbb{R}^{n}: d_{B M}\left(I K, B_{2}^{n}\right) \leq C$. (thus, b.t.w. B_{p}^{n} is not an intersection body of a convex body for n-large)!
- This is very cool! Do not forget that there are convex, symmetric $K \subset \mathbb{R}^{n}$ such that $d_{B M}\left(K, B_{2}^{n}\right)=\sqrt{n}$.
- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.
- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

- $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^{n}$.
- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

- $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^{n}$.

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^{n}, n \geq 3$, is it true that

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty ?
$$

- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

- $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$, for all convex, symmetric bodies $K \subset \mathbb{R}^{n}$.

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^{n}, n \geq 3$, is it true that

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty ?
$$

Or even simpler.....

Consider a star body $K \subset \mathbb{R}^{n}$, is it true that

$$
d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right) ?
$$

Is it true that $d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1$, as $m \rightarrow \infty$?

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

```
A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)
\(\exists \varepsilon_{n}>0\) such that \(\forall K \subset \mathbb{R}^{n}\) such that \(K\)-start body, \(d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}\), we
get
    \(d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1\), as \(m \rightarrow \infty\).
```

Remarks:

$$
\begin{aligned}
& \text { A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009) } \\
& \exists \varepsilon_{n}>0 \text { such that } \forall K \subset \mathbb{R}^{n} \text { such that } K \text {-start body, } d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n} \text {, we } \\
& \text { get } \\
& \qquad d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1 \text {, as } m \rightarrow \infty .
\end{aligned}
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs, through Busemann's theorem.

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Yes, yes ... we may say by Hensley's theorem after one step of iteration, $d_{B M}\left(K, B_{2}^{n}\right) \leq C$, but this is still very, very far from ε_{n}.

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty .
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Yes, yes ... we may say by Hensley's theorem after one step of iteration, $d_{B M}\left(K, B_{2}^{n}\right) \leq C$, but this is still very, very far from ε_{n}.
- So, we do not use Hensley's theorem or any theorem of this type! We have No idea how to start using it for this question!

A. Fish, F. Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty .
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs, through Busemann's theorem.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Yes, yes ... we may say by Hensley's theorem after one step of iteration, $d_{B M}\left(K, B_{2}^{n}\right) \leq C$, but this is still very, very far from ε_{n}.
- So, we do not use Hensley's theorem or any theorem of this type! We have No idea how to start using it for this question!
- We do NOT show $d_{B M}\left(I K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$. We really DO need a lot of iterations to make $I^{m} K$ better, before computing the distance to B_{2}^{n}.

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and $v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and $v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and $v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.
- $\mathcal{R} f=f$, then $f=1$

Main Idea: Spherical Radon Transform (even functions).

(Normalized) Spherical Radon Transform:

$$
\mathcal{R} f(\xi)=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Question: $(n \geq 3)$

Consider even function $f: S^{n-1} \rightarrow \mathbb{R}^{+}: f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?
\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so $f \sim \sum_{k \geq 0} H_{k}^{f}$

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and $v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.
- $\mathcal{R} f=f$, then $f=1$ (o.k. $f=$ const).

$$
f \sim \sum_{k \geq 0} H_{k}^{f} \Rightarrow
$$

$$
\begin{aligned}
& f \sim \sum_{k \geq 0} H_{k}^{f} \Rightarrow \\
& f^{n-1} \sim ? ? ? ?
\end{aligned}
$$

Back to our result: $f \approx 1$

$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$. $\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that ($n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$).
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$). Write

$$
\phi \sim \sum H_{2 k}^{\phi}
$$

$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$). Write

$$
\phi \sim \sum H_{2 k}^{\phi} \quad \text { then } \quad(n-1) \mathcal{R} \phi \sim \sum(n-1) v_{n, 2 k} H_{2 k}^{\phi} .
$$

$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$). Write

$$
\phi \sim \sum H_{2 k}^{\phi} \quad \text { then } \quad(n-1) \mathcal{R} \phi \sim \sum(n-1) v_{n, 2 k} H_{2 k}^{\phi} .
$$

If $(n-1) v_{n, 2 k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1) v_{n, 2}=1$ (but $(n-1) v_{n, 2 k} \leq 3 / 4$ for all $k>1$).
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game in non-convex case.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$). Write

$$
\phi \sim \sum H_{2 k}^{\phi} \quad \text { then } \quad(n-1) \mathcal{R} \phi \sim \sum(n-1) v_{n, 2 k} H_{2 k}^{\phi} .
$$

If $(n-1) v_{n, 2 k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1) v_{n, 2}=1$ (but $(n-1) v_{n, 2 k} \leq 3 / 4$ for all $k>1$).
Thus we need to KILL H_{2}^{ϕ}.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is "very small".

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) The crucial step is to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1 .
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$). Write

$$
\phi \sim \sum H_{2 k}^{\phi} \quad \text { then } \quad(n-1) \mathcal{R} \phi \sim \sum(n-1) v_{n, 2 k} H_{2 k}^{\phi} .
$$

If $(n-1) v_{n, 2 k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1) v_{n, 2}=1$ (but $(n-1) v_{n, 2 k} \leq 3 / 4$ for all $k>1$).
Thus we need to KILL H_{2}^{ϕ}. HOW ? Main idea - in the end of the day, H_{2}^{ϕ} is just quadratic polynomial make it constant on S^{n-1}, using linear transformation. YES, "like" isotropic position, BUT in Fourier coordinates.

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1$. K is called q-convex if

$$
t^{\frac{1}{9}} x+(1-t)^{\frac{1}{a}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{9}} x+(1-t)^{\frac{1}{a}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$$
q=\frac{1}{4}
$$

$$
q=\frac{1}{2}
$$

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$$
q=\frac{1}{4}
$$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$q=\frac{1}{4}$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$q=\frac{1}{4}$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

I learned it from works of:

Aoki, Bastero, Bernues, Peña, Dilworth, Gordon, Kalton, Koldobsky, Guedon, Litvak, Peck, Rolewicz, Roberts, Tam, Milman, Schechtman, Pajor, ...

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$q=\frac{1}{4}$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

$q=1$
(convex)

Questions and Dreams:

If K is q-convex, for which q^{\prime} the intersection body IK is q^{\prime}-convex?

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$q=\frac{1}{4}$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

$q=1$
(convex)

Questions and Dreams:

If K is q-convex, for which q^{\prime} the intersection body $I K$ is q^{\prime}-convex?

- Is it true that $q^{\prime}>q$.

Quasi-convexity:

K be a star body in $\mathbb{R}^{n}, 0<q \leq 1 . K$ is called q-convex if

$$
t^{\frac{1}{q}} x+(1-t)^{\frac{1}{q}} y \in K \quad \text { whenever } x, y \in K, t \in[0,1]
$$

or, equivalently, $\|x+y\|_{K}^{q} \leq\|x\|_{K}^{q}+\|y\|_{K}^{q}$.

$$
|x|^{1 / 2}+|y|^{1 / 2} \leq 1
$$

$q=\frac{1}{4}$

$q=\frac{1}{2}$

$q=\frac{3}{4}$

$q=1$
(convex)

Questions and Dreams:

If K is q-convex, for which q^{\prime} the intersection body $I K$ is q^{\prime}-convex?

- Is it true that $q^{\prime}>q$.
- Does there exists q for which $q^{\prime}=1$ (i.e. IK is convex)?

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a ($k-1$)-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, I K is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, IK is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, I K is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q^{\prime} does not look nice!

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, IK is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q^{\prime} does not look nice!
- Is q^{\prime} optimal?

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, IK is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q^{\prime} does not look nice!
- Is q^{\prime} optimal? It is sharp asymptotically (next slide), thus q-convexity alone can not work as a condition for IK to be convex.

J. Kim, V. Yaskin, A. Z., 2010

Let K be an origin-symmetric q-convex body in $\mathbb{R}^{n}, q \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leq k \leq n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q^{\prime}-convex body in E^{\perp} with $q^{\prime}=[(1 / q-1) k+1]^{-1}$.

Let K be a symmetric star body in \mathbb{R}^{n} and $0<q \leq 1$. Then, if K is q-convex, I K is q^{\prime}-convex where $q^{\prime}=[(1 / q-1)(n-1)+1]^{-1}$.

- Similar to Busemann's original proof.
- Yes, q^{\prime} does not look nice!
- Is q^{\prime} optimal? It is sharp asymptotically (next slide), thus q-convexity alone can not work as a condition for IK to be convex.
- By K. Ball's theorem, the classical Busemann's theorem can be generalized to log-concave measure. The same is true for q-convex case, but requires more work then just direct generalization of K. Ball's result!

Quasi-convexity: Example

$$
K=\left\{\left.t^{\frac{1}{9}} x+(1-t)^{\frac{1}{q}} y \right\rvert\, x \in C, y \in-C, 0 \leq t \leq 1\right\}, \quad C=\{1\} \times[-1,1]^{n-1}
$$

- K is q-convex

Quasi-convexity: Example

$$
K=\left\{\left.t^{\frac{1}{9}} x+(1-t)^{\frac{1}{q}} y \right\rvert\, x \in C, y \in-C, 0 \leq t \leq 1\right\}, \quad C=\{1\} \times[-1,1]^{n-1}
$$

- K is q-convex
- $\left|K \cap e_{1}^{\perp}\right|=2^{\left(2-\frac{1}{q}\right)(n-1)}$
$K \cap e_{1}^{\perp}$

Quasi-convexity: Example

$$
K=\left\{\left.t^{\frac{1}{9}} x+(1-t)^{\frac{1}{q}} y \right\rvert\, x \in C, y \in-C, 0 \leq t \leq 1\right\}, \quad C=\{1\} \times[-1,1]^{n-1}
$$

- K is q-convex
- $\left|K \cap e_{1}^{\perp}\right|=2^{\left(2-\frac{1}{q}\right)(n-1)}$
- $\left|K \cap\left(\frac{e_{1}+e_{2}}{\sqrt{2}}\right)^{\perp}\right| \geq 2^{n-\frac{1}{2}-\log _{2} n}$

Quasi-convexity: Example

$$
K=\left\{\left.t^{\frac{1}{9}} x+(1-t)^{\frac{1}{q}} y \right\rvert\, x \in C, y \in-C, 0 \leq t \leq 1\right\}, \quad C=\{1\} \times[-1,1]^{n-1}
$$

- K is q-convex
- $\left|K \cap e_{1}^{\perp}\right|=2^{\left(2-\frac{1}{q}\right)(n-1)}$
- $\left|K \cap\left(\frac{e_{1}+e_{2}}{\sqrt{2}}\right)^{\perp}\right| \geq 2^{n-\frac{1}{2}-\log _{2} n}$

It means

$$
\begin{aligned}
& \left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{q}-2\right)(n-1)} \\
& \left\|\frac{e_{1}+e_{2}}{2}\right\|_{K K} \leq 2^{1-n+\log _{2} n}
\end{aligned}
$$

Quasi-convexity: Example

$$
K=\left\{\left.t^{\frac{1}{9}} x+(1-t)^{\frac{1}{q}} y \right\rvert\, x \in C, y \in-C, 0 \leq t \leq 1\right\}, \quad C=\{1\} \times[-1,1]^{n-1}
$$

K

- K is q-convex
- $\left|K \cap e_{1}^{\perp}\right|=2^{\left(2-\frac{1}{q}\right)(n-1)}$
- $\left|K \cap\left(\frac{e_{1}+e_{2}}{\sqrt{2}}\right)^{\perp}\right| \geq 2^{n-\frac{1}{2}-\log _{2} n}$

It means

$$
\begin{aligned}
& \left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{q}-2\right)(n-1)} \\
& \left\|\frac{e^{+}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}
\end{aligned}
$$

From $\left\|e_{1}\right\|_{I K}^{q^{\prime}} \leq\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K}^{q^{\prime}}+\left\|\frac{e_{1}-e_{2}}{2}\right\|_{I K}^{q^{\prime}}$,

$$
\begin{aligned}
q^{\prime} & \leq\left[(1 / q-1)(n-1)+1-\log _{2} n\right]^{-1} \\
& \approx[(1 / q-1)(n-1)+1]^{-1}
\end{aligned}
$$

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

Banach-Mazur distance to B_{2}^{n}

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

- $\left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{p}-2\right)(n-1)}$
- $\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}$

Banach-Mazur distance to B_{2}^{n}

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

- From $2^{1-1 / q} B_{2}^{n} \subset K \subset \sqrt{n} B_{2}^{n}$,
- $\left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{p}-2\right)(n-1)}$
- $\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}$

Banach-Mazur distance to B_{2}^{n}

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

- From $2^{1-1 / q} B_{2}^{n} \subset K \subset \sqrt{n} B_{2}^{n}$,

$$
d_{B M}\left(K, B_{2}^{n}\right) \leq 2^{1 / q-1} \sqrt{n}
$$

- $\left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{\rho}-2\right)(n-1)}$
- $\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}$

Banach-Mazur distance to B_{2}^{n}

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

- From $2^{1-1 / q} B_{2}^{n} \subset K \subset \sqrt{n} B_{2}^{n}$,

$$
d_{B M}\left(K, B_{2}^{n}\right) \leq 2^{1 / q-1} \sqrt{n}
$$

- Let $d=d_{B M}\left(I K, B_{2}^{n}\right)$, i.e, $\mathrm{I} K \subset T B_{2}^{n} \subset d \mathrm{I} K$. So we have $\mathrm{I} K \subset \operatorname{conv}(\mathrm{I} K) \subset d \mathrm{I} K$. $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right)=d \geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|e_{1}\right\|_{\operatorname{conv}(I K)}}$
$\geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|\frac{e_{1}+e_{2}}{2}\right\|_{\text {conv }(I K)}+\left\|\frac{e_{1}-e_{2}}{2}\right\|_{\text {conv }(K K)}} \geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|e_{1}+e_{2}\right\|_{I K}}$
$\geq 2^{\left(\frac{1}{q}-1\right)(n-1)-1-\log _{2} n}$
- $\left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{\rho}-2\right)(n-1)}$
- $\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}$

Banach-Mazur distance to B_{2}^{n}

Question: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right)$?

- Not known for symmetric convex case.
- VERY Not true without convexity!

- $\left\|e_{1}\right\|_{I K}=2^{\left(\frac{1}{p}-2\right)(n-1)}$
- $\left\|\frac{e_{1}+e_{2}}{2}\right\|_{I K} \leq 2^{1-n+\log _{2} n}$
- From $2^{1-1 / q} B_{2}^{n} \subset K \subset \sqrt{n} B_{2}^{n}$,

$$
d_{B M}\left(K, B_{2}^{n}\right) \leq 2^{1 / q-1} \sqrt{n}
$$

- Let $d=d_{B M}\left(I K, B_{2}^{n}\right)$, i.e, $\mathrm{I} K \subset T B_{2}^{n} \subset d \mathrm{I} K$. So we have $\mathrm{I} K \subset \operatorname{conv}(\mathrm{I} K) \subset d \mathrm{I} K$. $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right)=d \geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|e_{1}\right\|_{\operatorname{conv}(I K)}}$
$\geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|\frac{e_{1}+e_{2}}{2}\right\|_{\operatorname{conv}(I K)}+\left\|\frac{e_{1}-e_{2}}{2}\right\|_{\operatorname{conv}(I K)}} \geq \frac{\left\|e_{1}\right\|_{I K}}{\left\|e_{1}+e_{2}\right\|_{I K}}$
$\geq 2^{\left(\frac{1}{q}-1\right)(n-1)-1-\log _{2} n}$
- $d_{B M}\left(I K, B_{2}^{n}\right) \gg d_{B M}\left(K, B_{2}^{n}\right)$

Assume IK is convex, what can we say about K ?

Do there exists other then $c_{n} B_{2}^{n}$ fixed points of I in $\mathbb{R}^{n}, n \geq 3$?

Consider a star body $K \subset \mathbb{R}^{n}, n \geq 3$, is it true that

$$
d_{B M}\left(\mathrm{I}^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty ?
$$

Consider a convex body $K \subset \mathbb{R}^{n}$, is it true that

$$
d_{B M}\left(I K, B_{2}^{n}\right) \leq d_{B M}\left(K, B_{2}^{n}\right),
$$

with equality iff K is an Ellipsoid.

Do not like intersection bodies? Want to do harmonic analysis?

Consider an even function $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}^{+}$, such that $f=\mathcal{R} f^{n-1}$, is it true that then f is a constant?

