Analytic and discrete aspects of the covariogram problem

Gennadiy Averkov Magdeburg

June 13, 2011

Cortona 2011 Workshop on Convex Geometry: Analytic Aspects.

Outline

Introduction to the covariogram problems.

- Detection of central symmetry.
- Reconstruction of lattice-convex sets.

Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.

Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- ▶ This is a common reconstruction problem in physics.

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- ▶ This is a common reconstruction problem in physics.

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- ▶ This is a common reconstruction problem in physics.

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- This is a common reconstruction problem in physics.

• Let f be a distribution on \mathbb{R}^d (with compact support).

- How do we reconstruct f from $|\hat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- \blacktriangleright \Rightarrow Further assumptions on f are necessary.

- Let f be a distribution on \mathbb{R}^d (with compact support).
- How do we reconstruct f from $|\hat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- \Rightarrow Further assumptions on f are necessary.

- Let f be a distribution on \mathbb{R}^d (with compact support).
- How do we reconstruct f from $|\hat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- \Rightarrow Further assumptions on f are necessary.

- Let f be a distribution on \mathbb{R}^d (with compact support).
- How do we reconstruct f from $|\hat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- \blacktriangleright \Rightarrow Further assumptions on f are necessary.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

 $g_K(x) = \operatorname{vol}(K \cap (K + x))$

- The function g_K provides the same data as $|\widehat{\mathbf{1}_K}|$.
- ▶ Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

 $g_{K}(x) = \operatorname{vol}(K \cap (K + x))$

- The function g_K provides the same data as $|\mathbf{1}_K|$.
- ▶ Thus, reconstruction of *K* from *g_K* is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

 $g_{K}(x) = \operatorname{vol}(K \cap (K + x))$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- ▶ Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- ▶ Thus, reconstruction of *K* from *g*_K is a special case of the phase retrieval problem.
- ► The reconstruction is not unique, since g_K(x) does not change with respect to translations of K and a with respect to translations of K and
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- ▶ Thus, reconstruction of *K* from *g*_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- ▶ So, one needs further assumptions on *K*.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\mathcal{K}}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\kappa}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K.

- Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with K = cl(int(K)).
- Then the function $x \mapsto g_{\mathcal{K}}(x)$ on \mathbb{R}^d defined by

$$g_{K}(x) = \operatorname{vol}(K \cap (K + x))$$

- The function $g_{\mathcal{K}}$ provides the same data as $|\widehat{\mathbf{1}_{\mathcal{K}}}|$.
- Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{\kappa}(x)$ does not change
 - with respect to translations of K and
 - with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on *K*.

- Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.
- Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

 $g_A(x) := \#(A \cap (A+x))$

- The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ► There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

 $g_A(x) := \#(A \cap (A+x))$

- The function g_A provides the same data as $|\delta_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ► There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

 $g_A(x) := \#(A \cap (A+x))$

- The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- ▶ Again, *g*_A does not change with respect to translations and point reflections of *A*.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ► There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A+x))$$

- The function g_A provides the same data as $|\hat{\delta_A}|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- ► Again, *g*_A does not change with respect to translations and point reflections of *A*.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ► There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A+x))$$

- The function g_A provides the same data as $|\hat{\delta_A}|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ► There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A+x))$$

- The function g_A provides the same data as $|\hat{\delta_A}|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- ▶ E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and -T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- ▶ There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A+x))$$

- The function g_A provides the same data as $|\hat{\delta_A}|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets S, T ⊆ ℝ^d such that the sum of S and T is direct. Then the sum of S and −T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

• Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

• Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A+x))$$

- The function g_A provides the same data as $|\hat{\delta_A}|$, where $\delta_A := \sum_{a \in A} \delta_a$.
- Again, g_A does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- ► E.g., considers finite sets S, T ⊆ ℝ^d such that the sum of S and T is direct. Then the sum of S and −T is also direct and...
- the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

Results on uniqueness

- ▶ Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- ▶ Within planar convex bodies $K \subseteq \mathbb{R}^2$ the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).

Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies K ⊆ ℝ² the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).

Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies K ⊆ ℝ² the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- ▶ In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d , K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d , K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d , K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).

Other cases?

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d , K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?

Theorem 1 (A. 2009)

- Proof idea:
- The case d = 1 is settled by induction.
- ▶ The case of general *d* is reduced to the case *d* = 1 by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Theorem 1 (A. 2009)

Let $A, B \subseteq \mathbb{R}^d$ be finite, let A be centrally symmetric and $g_A = g_B$. Then B is a translate of A.

Proof idea:

- The case d = 1 is settled by induction.
- ▶ The case of general *d* is reduced to the case *d* = 1 by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Theorem 1 (A. 2009)

- Proof idea:
- ▶ The case *d* = 1 is settled by induction.
- ▶ The case of general *d* is reduced to the case *d* = 1 by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Theorem 1 (A. 2009)

- Proof idea:
- The case d = 1 is settled by induction.
- ▶ The case of general *d* is reduced to the case *d* = 1 by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Theorem 1 (A. 2009)

- Proof idea:
- The case d = 1 is settled by induction.
- ▶ The case of general *d* is reduced to the case *d* = 1 by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Corollary 2 Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $\mathbf{1}_{K} = \delta_{A} * \mathbf{1}_{-[0,1]^{d}}$.
- Fourier transforms of distributions with compact support are analytic functions.

Corollary 2 Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $\mathbf{1}_{K} = \delta_{A} * \mathbf{1}_{-[0,1]^{d}}$.
- Fourier transforms of distributions with compact support are analytic functions.

Corollary 2 Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

Proof idea (borrowed from Gardner, Gronchi and Zong):

•
$$\mathbf{1}_{K} = \delta_{A} * \mathbf{1}_{-[0,1]^{d}}$$
.

 Fourier transforms of distributions with compact support are analytic functions.

Corollary 2 Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $\bullet \mathbf{1}_{K} = \delta_{A} * \mathbf{1}_{-[0,1]^{d}}.$
- Fourier transforms of distributions with compact support are analytic functions.

Detecting central symmetry in further cases

• Assume $K \subseteq \mathbb{R}^d$ is nonempty, compact and K = cl(int(K)).

• Can the central symmetry of K be detected from g_K ?

Detecting central symmetry in further cases

- Assume $K \subseteq \mathbb{R}^d$ is nonempty, compact and K = cl(int(K)).
- Can the central symmetry of K be detected from g_K ?

Covariogram problem for lattice convex sets

- ► A finite subset K of Z^d is said to be *lattice-convex* if K is the intersection of Z^d with a convex set.
- Problem: reconstruction of K from g_K in the class of lattice-convex sets.
- ▶ The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

Covariogram problem for lattice convex sets

- ► A finite subset K of Z^d is said to be *lattice-convex* if K is the intersection of Z^d with a convex set.
- Problem: reconstruction of K from g_K in the class of lattice-convex sets.
- ▶ The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

Covariogram problem for lattice convex sets

- ► A finite subset K of Z^d is said to be *lattice-convex* if K is the intersection of Z^d with a convex set.
- Problem: reconstruction of K from g_K in the class of lattice-convex sets.
- The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

Reconstruction is not unique

 One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

Covariograms are the same.

Reconstruction is not unique

 One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

This is the reason!

An infinite family of counterexamples

Direct sums are rarely lattice-convex

Theorem 3 (A. & Langfeld, 2011)

Let k, ℓ be integers with $k > \ell \ge 0$. We define

- $T := (\{0, \ldots, k\} \times \{0\}) \cup (\{0, \ldots, \ell\} \times \{1\})$ (a set of lattice width one),
- $w_1 := (-k 1, 1), w_2 := (\ell + 1, 1),$
- the lattice $\mathbb{L} := \mathbb{Z}w_1 + \mathbb{Z}w_2$.

(i)

(ii)

Let S be a set with $o \in S \subseteq \mathbb{Z}^2$. Then the following conditions are equivalent:

The sum of S and T is direct and lattice-convex.

S is lattice-convex with respect to $\mathbb L$ and $\operatorname{conv} S$ is a polygon in $\mathbb R^2$ such that

- every edge of conv S is parallel to w_1 or w_2 (in the case $k > \ell + 1$),
- every edge of conv S is parallel to w_1 , w_2 , or $w_1 + w_2$ (in the case $k = \ell + 1$).

Direct lattice-convex summands of lattice-convex sets

The situation that a lattice-convex set has a direct lattice-convex summand is very uncommon (work in progress).

- ▶ Let K be a finite lattice-convex set in ℝ² such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by

 $F(K, u) := \{x \in K : \langle x, u \rangle = h(K, u)\}.$

▶ The set of outer edge normals:

 $U(K) := \{ u \in \mathbb{Z}^2 \{ o \} :$

u is an outer normal to an edge of conv *K* and gcd(u)=1.

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$m'(K) := \min \{ \#F(K, u) : u \in U(K) \}, m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 : u \in \mathbb{Z}^2 \setminus \{ o \} \land \#F(K, u) > \#F(K, -u) > 1 \} m(K) := \min \{ m'(K), m''(K) \},$$

- ► Let K be a finite lattice-convex set in ℝ² such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by

$$F(K, u) := \{x \in K : \langle x, u \rangle = h(K, u)\}.$$

▶ The set of outer edge normals:

 $U(K) := \{ u \in \mathbb{Z}^2 \{ o \} :$

u is an outer normal to an edge of conv *K* and gcd(u)=1.

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$m'(K) := \min \{ \#F(K, u) : u \in U(K) \}, m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 : u \in \mathbb{Z}^2 \setminus \{ o \} \land \#F(K, u) > \#F(K, -u) > 1 \} m(K) := \min \{ m'(K), m''(K) \},$$

- ▶ Let K be a finite lattice-convex set in ℝ² such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by

$$F(K, u) := \{x \in K : \langle x, u \rangle = h(K, u)\}.$$

The set of outer edge normals:

 $U(K) := \{ u \in \mathbb{Z}^2 \{ o \} :$ $u \text{ is an outer normal to an edge of } \operatorname{conv} K \text{ and } \operatorname{gcd}(u) = 1 \}.$

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

> $m'(K) := \min \{ \#F(K, u) : u \in U(K) \},$ $m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 :$ $u \in \mathbb{Z}^2 \setminus \{ o \} \land \#F(K, u) > \#F(K, -u) > 1 \}$ $m(K) := \min \{ m'(K), m''(K) \},$

- ► Let K be a finite lattice-convex set in ℝ² such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by

$$F(K, u) := \{x \in K : \langle x, u \rangle = h(K, u)\}.$$

The set of outer edge normals:

 $U(K) := \{ u \in \mathbb{Z}^2 \{ o \} :$

u is an outer normal to an edge of $\operatorname{conv} K$ and $\operatorname{gcd}(u)=1$.

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$m'(K) := \min \{ \#F(K, u) : u \in U(K) \}, m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 : u \in \mathbb{Z}^2 \setminus \{o\} \land \#F(K, u) > \#F(K, -u) > 1 \} m(K) := \min \{ m'(K), m''(K) \},$$

Further notation

► For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let $D(U) := \{ |\det(u_1, u_2)| : u_1, u_2 \in U \} \setminus \{0\}$

We call

$$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

the discrepancy of U.

• We define $\delta(K) := \delta(U(K))$.

Further notation

▶ For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let $D(U) := \{ |\det(u_1, u_2)| : u_1, u_2 \in U \} \setminus \{0\}$

We call

$$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

the discrepancy of U.

• We define $\delta(K) := \delta(U(K))$.

Further notation

 \blacktriangleright For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let

$$D(U) := \{ |\det(u_1, u_2)| : u_1, u_2 \in U\} \setminus \{0\}$$

We call

$$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

the discrepancy of U.

• We define $\delta(K) := \delta(U(K))$.

Positive result

Theorem 4 Let $K, L \subseteq \mathbb{Z}^2$ be bounded and lattice-convex Then I. $m'(K), m''(K), m(K), U(K) \cup U(-K)$ and $\delta(K)$ are determined by g_K . II. If $(M) \geq \delta(M)^2 + \delta(M) \geq 1$

$$m(K) \ge \delta(K)^2 + \delta(K) + 1$$

and

$$g_{\kappa} = g_L,$$

then K and L coincide up to translations and reflections.

Outlook

How to detect the central symmetry of sets?

What is the solution of the covariogram problem for lattice-convex sets in the plane?

Outlook

- How to detect the central symmetry of sets?
- What is the solution of the covariogram problem for lattice-convex sets in the plane?