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The phase retrieval problem (informal description)

> We are given an (unknown) object A located in space.

The diffraction information of A is available.

v

» How do we reconstruct A?

> This is a common reconstruction problem in physics.



A general analytic formulation

> Let f be a distribution on R? (with compact support).
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A general analytic formulation

Let f be a distribution on R (with compact support).

v

» How do we reconstruct f from m?

> This is not possible in general, since the phase information can be
prescribed ‘arbitrarily’.

» = Further assumptions on f are necessary.



Analytic geometric version

> Let K C R? be nonempty and compact with K = cl(int(K)).
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Analytic geometric version

> Let K C R? be nonempty and compact with K = cl(int(K)).
» Then the function x — gx(x) on R? defined by

gk(x) = vol(K N (K + x))

is said to be the covariogram of K.
» The function gk provides the same data as |f;|

> Thus, reconstruction of K from gk is a special case of the phase retrieval
problem.
» The reconstruction is not unique, since gix(x) does not change

> with respect to translations of K and
> with respect to reflections of K in a point.

> These are the trivial ambiguities.
> In general, there are other reasons of non-uniqueness.

> So, one needs further assumptions on K.
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Discrete geometric version

» Let A C R be nonempty and finite.

23 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.

24 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.

» The function ga provides the same data as |<i1 . where 64 := 3", 0.

25 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.
Ja.

, where 64 :=

> Again, ga does not change with respect to translations and point
reflections of A.

> The function ga provides the same data as |<i1 2cA

26 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.
Ja.

, where 64 :=

> Again, ga does not change with respect to translations and point
reflections of A.

> The function ga provides the same data as |<i1 2cA

> There are other reasons for non-uniqueness.

27 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.

» The function ga provides the same data as |<i1 . where 64 := 3", 0.

> Again, ga does not change with respect to translations and point
reflections of A.

> There are other reasons for non-uniqueness.

» E.g., considers finite sets S, T C RY such that the sum of S and T is
direct. Then the sum of S and —T s also direct and...

28 /66



Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))
is said to be the (discrete) covariogram of K.

, where §4 := ZaeA da.

> Again, ga does not change with respect to translations and point
reflections of A.

> The function ga provides the same data as |<i1
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Discrete geometric version

» Let A C R be nonempty and finite.
> Then the function x — ga(x) on R¥ defined by

ga(x) = #(AN(A+x))

is said to be the (discrete) covariogram of K.

» The function ga provides the same data as |<i1 . where 64 := 3", 0.

> Again, ga does not change with respect to translations and point
reflections of A.

> There are other reasons for non-uniqueness.

» E.g., considers finite sets S, T C RY such that the sum of S and T is
direct. Then the sum of S and —T s also direct and...

> thesets S®& T,S5 @ (—T) have the same covariogram.

> There are still other reasons of non-uniqueness.
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Results on uniqueness

» Within centrally symmetric objects the reconstruction is unique up to
translations (no additional assumptions are required).
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Results

on uniqueness

Within centrally symmetric objects the reconstruction is unique up to
translations (no additional assumptions are required).

Within planar convex bodies K C R? the reconstruction of K from gk is
unique, up to translations and reflections (A. & Bianchi, 2009).

Within three-dimensional convex polytopes the reconstruction from the

covariogram is unique, up to translations and reflections (Bianchi, 2009).
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Detecting central symmetry

» Can we detect from the diffraction data that the underlying object is
centrally symmetric?
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Detecting central symmetry

» Can we detect from the diffraction data that the underlying object is
centrally symmetric?

> In certain cases, yes.

» E.g., if K, H are convex bodies in RY, K is centrally symmetric and
gk = gH. Then H is a translate of K. (Consequence of the
Brunn-Minkowski inequality).

» Other cases?
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Detecting central symmetry for finite sets

Theorem 1 (A. 2009)

Let A, B C RY be finite, let A be centrally symmetric and ga = gg. Then B is
a translate of A.
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Detecting central symmetry for finite sets

Theorem 1 (A. 2009)

Let A, B C RY be finite, let A be centrally symmetric and ga = gg. Then B is
a translate of A.

> Proof idea:
> The case d = 1 is settled by induction.

> The case of general d is reduced to the case d = 1 by inductive
argument...
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Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let A, B C RY be finite, let A be centrally symmetric and ga = gg. Then B is
a translate of A.

> Proof idea:

> The case d = 1 is settled by induction.

> The case of general d is reduced to the case d = 1 by inductive
argument...

> using some folkore results due to Renyi, Heppes et al.



Detecting central symmetry in the discretized analytic case

Corollary 2
Let K=A+[0,1] and H = B +[0,1]¢ where A, B C Z¢ are finite. Let K be
centrally symmetric and gk = gn. Then H is a translate of K.
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Detecting central symmetry in the discretized analytic case

Corollary 2
Let K=A+[0,1] and H = B +[0,1]¢ where A, B C Z¢ are finite. Let K be
centrally symmetric and gk = gn. Then H is a translate of K.

> Proof idea (borrowed from Gardner, Gronchi and Zong):

> ]-K = 5A * 1—[0,1]d'

> Fourier transforms of distributions with compact support are analytic
functions.
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Detecting central symmetry in further cases

> Assume K C RY is nonempty, compact and K = cl(int(K)).
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Detecting central symmetry in further cases

> Assume K C RY is nonempty, compact and K = cl(int(K)).

> Can the central symmetry of K be detected from gx?
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Covariogram problem for lattice convex sets

» A finite subset K of Z9 is said to be lattice-convex if K is the intersection
of Z9¢ with a convex set.
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Covariogram problem for lattice convex sets

» A finite subset K of Z9 is said to be lattice-convex if K is the intersection
of Z9¢ with a convex set.

> Problem: reconstruction of K from gx in the class of lattice-convex sets.

» The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner,
Gronchi, Zong (2005).
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Reconstruction is not unique

» One cannot hope for a unique reconstruction, up to translations and
reflections. Examples were given by Daurat, Gérard, Nivat (2005) and
Gardner, Gronchi, Zong (2005).

» Covariograms are the same.
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Reconstruction is not unique

» One cannot hope for a unique reconstruction, up to translations and
reflections. Examples were given by Daurat, Gérard, Nivat (2005) and
Gardner, Gronchi, Zong (2005).

» This is the reason!
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An infinite family of counterexamples

[ L]
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Direct sums are rarely lattice-convex

Theorem 3 (A. & Langfeld, 2011)

Let k, ¢ be integers with k > £ > 0. We define
» T:=({0,...,k} x{0})U ({0,...,€} x {1}) (a set of lattice width one),
> wy = (—k—-1,1), wp :=(£+1,1),
» the lattice L := Zwy + Zws».

Let S be a set with o € S C Z2. Then the following conditions are equivalent:

(i) The sum of S and T is direct and lattice-convex.
(ii) S is lattice-convex with respect to L and conv S is a polygon in R? such
that

> every edge of conv S is parallel to wi or wy (in the case k > ¢+ 1),
> every edge of conv S is parallel to wi, wa, or wi + ws (in the case
k=¢+1).
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Direct lattice-convex summands of lattice-convex sets

» The situation that a lattice-convex set has a direct lattice-convex
summand is very uncommon (work in progress).
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Notation for the discrete uniqueness result

» Let K be a finite lattice-convex set in R? such that conv K is
two-dimensional.
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Notation for the discrete uniqueness result

» Let K be a finite lattice-convex set in R? such that conv K is
two-dimensional.

» The support set of K in direction u € R? is defined by
F(K,u):={x e K : (x,u) = h(K,u)}.
> The set of outer edge normals:

U(K) :={u € Z*{o} :

u is an outer normal to an edge of conv K and gcd(u)=1}.
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Notation for the discrete uniqueness result

» Let K be a finite lattice-convex set in R? such that conv K is
two-dimensional.

» The support set of K in direction u € R? is defined by
F(K,u):={x e K : (x,u) = h(K,u)}.
> The set of outer edge normals:

U(K) :={ue 7*{o} :
u is an outer normal to an edge of conv K and ged(u 1}

> To measure the number of lattice points on the edges and the difference
of parallel edges of K we introduce

m'(K) :=min {#F(K,u) : uec UK)},
m” (K) :=min{#F(K,u) — #F(K,—u) + 1 :
ueZ’\{o} N #F(K,u) > #F(K,—u) > 1}
m(K) :=min{m'(K), m"(K)},
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Further notation

» For a finite set U of vectors in R? linearly spanning R? let

D(U) := {|det(u1, )| : w1, w2 € U}\ {0}
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Further notation

» For a finite set U of vectors in R? linearly spanning R? let
D(U) := {|det(u1, )| : w1, w2 € U}\ {0}

> We call D)
max
o) = min D(U)

the discrepancy of U.
> We define (K) := 6(U(K)).
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Positive result

Theorem 4
Let K, L C Z? be bounded and lattice-convex Then

I. m'(K), m"(K), m(K), UK)U U(—K) and §(K) are determined by gx.

1. If
m(K) > 6(K)* + 6(K) + 1
and
8K = 8L,

then K and L coincide up to translations and reflections.
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Outlook

> How to detect the central symmetry of sets?
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Outlook

> How to detect the central symmetry of sets?

> What is the solution of the covariogram problem for lattice-convex sets in
the plane?
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