Analytic and discrete aspects of the covariogram problem

Gennadiy Averkov
Magdeburg

June 13, 2011

Cortona 2011
Workshop on Convex Geometry: Analytic Aspects.

Outline

- Introduction to the covariogram problems.
Detection of central symmetry.
- Reconstruction of lattice-convex sets.

Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.

Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.

The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A ?
- This is a common reconstruction problem in physics.

The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- This is a common reconstruction problem in physics.

The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A ?
\Rightarrow This is a common reconstruction problem in physics.

The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A ?
- This is a common reconstruction problem in physics.

A general analytic formulation

- Let f be a distribution on \mathbb{R}^{d} (with compact support).
$\begin{aligned} & \text { How do we reconstruct } f \text { from }|\hat{f}| \text { ? } \\ & \Rightarrow \text { This is not possible in general, since the phase information can be } \\ & \text { prescribed 'arbitrarily'. } \\ & \Rightarrow \Rightarrow \text { Further assumptions on } f \text { are necessary. }\end{aligned}$

A general analytic formulation

- Let f be a distribution on \mathbb{R}^{d} (with compact support).
- How do we reconstruct f from $|\widehat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- Further assumntions on f are necessary.

A general analytic formulation

- Let f be a distribution on \mathbb{R}^{d} (with compact support).
- How do we reconstruct f from $|\widehat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
$\Rightarrow \Rightarrow$ Further assumptions on f are necessary.

A general analytic formulation

- Let f be a distribution on \mathbb{R}^{d} (with compact support).
- How do we reconstruct f from $|\widehat{f}|$?
- This is not possible in general, since the phase information can be prescribed 'arbitrarily'.
- \Rightarrow Further assumptions on f are necessary.

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{k}(x)$ on \mathbb{R}^{d} defined by
is said to be the covariogram of K
- The function g_{K} provides the same data as $\left|1_{k}\right|$
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g k(x)$ does not change
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\left|1_{K}\right|$
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- These are the trivial ambiguities.
- In meneral there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- The recons ruction is not unique, since $g k(x)$ does not change
- These are the trivial ambiguities.
- In general there are other reasons of non-uniqueness.
> So, one needs further assumptions on K.

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- These are the trivial ambiguities.
- In general there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- These are the trivial ambiguities.
- In general there are other reasons of non-uniqueness
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- with respect to translations of K and
- These are the trivial ambiguities.
- In general, there are other reasons con-uniqueness
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.
- These are the trivial ambiguities.
> In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K

Analytic geometric version

- Let $K \subseteq \mathbb{R}^{d}$ be nonempty and compact with $K=\operatorname{cl}(\operatorname{int}(K))$.
- Then the function $x \mapsto g_{K}(x)$ on \mathbb{R}^{d} defined by

$$
g_{K}(x)=\operatorname{vol}(K \cap(K+x))
$$

is said to be the covariogram of K.

- The function g_{K} provides the same data as $\mid \widehat{\left|\mathbf{1}_{K}\right|}$.
- Thus, reconstruction of K from g_{K} is a special case of the phase retrieval problem.
- The reconstruction is not unique, since $g_{K}(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.
- These are the trivial ambiguities.
- In general, there are other reasons of non-uniqueness.
- So, one needs further assumptions on K.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.

Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by $g_{A}(x):=\#(A \cap(A+x))$ is said to be the (discrete) covariogram of K

The function g_{A} provides the same data as $\left|\delta_{A}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.

- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets $S, T \subseteq \mathbb{R}^{d}$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and.
- the sets $S \oplus T, S \oplus(-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness. direct. Then the sum of S and $-T$ is also direct and. - the sets $S \oplus T, S \oplus(-T)$ have the same covariogram. - There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta_{A}}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- There are other reasons for non-uniqueness.
direct. Then the sum of S and $-T$ is also direct and.
- the sets $S \oplus T, S \oplus(-T)$ have the same covariogram.
- There are still other reasons of non-uniolleness

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta_{A}}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets $S, T \subseteq \mathbb{R}^{d}$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and. z the sets $S \oplus T S \oplus(-T)$ have the same covariogram. - There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta_{A}}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
direct. Then the sum of S and $-T$ is also direct and.
- the sets $S \oplus T, S \oplus(-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta}_{A}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets $S, T \subseteq \mathbb{R}^{d}$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...
- There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta}_{A}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets $S, T \subseteq \mathbb{R}^{d}$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...
- the sets $S \oplus T, S \oplus(-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

Discrete geometric version

- Let $A \subseteq \mathbb{R}^{d}$ be nonempty and finite.
- Then the function $x \mapsto g_{A}(x)$ on \mathbb{R}^{d} defined by

$$
g_{A}(x):=\#(A \cap(A+x))
$$

is said to be the (discrete) covariogram of K.

- The function g_{A} provides the same data as $\left|\widehat{\delta}_{A}\right|$, where $\delta_{A}:=\sum_{a \in A} \delta_{a}$.
- Again, g_{A} does not change with respect to translations and point reflections of A.
- There are other reasons for non-uniqueness.
- E.g., considers finite sets $S, T \subseteq \mathbb{R}^{d}$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...
- the sets $S \oplus T, S \oplus(-T)$ have the same covariogram.
- There are still other reasons of non-uniqueness.

Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required). unique, up to translations and reflections (A. \& Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction fron the covariogram is unique, up to translations and reflections (Bianchi, 2009)

Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies $K \subseteq \mathbb{R}^{2}$ the reconstruction of K from g_{K} is unique, up to translations and reflections (A. \& Bianchi, 2009).
 covariogram is unique, up to translations and reflections (Bianchi, 2009)

Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies $K \subseteq \mathbb{R}^{2}$ the reconstruction of K from g_{K} is unique, up to translations and reflections (A. \& Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).

Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
E.g., if K, H are convex bodies in \mathbb{R}^{d}, K is centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).

Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^{d}, K is centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).

Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^{d}, K is centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).

Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^{d}, K is centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?

Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let $A, B \subseteq \mathbb{R}^{d}$ be finite, let A be centrally symmetric and $g_{A}=g_{B}$. Then B is a translate of A.

- Proof idea:
- The case $d=1$ is settled by induction.
- The case of general d is reduced to the case $d=1$ by inductive arman
- using some folkore results due to Renyi, Heppes et al.

Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let $A, B \subseteq \mathbb{R}^{d}$ be finite, let A be centrally symmetric and $g_{A}=g_{B}$. Then B is a translate of A.

- Proof idea:
* The case $d=1$ is settled by induction.
- The case of general d is reduced to the case $d=1$ by inductive argument
> using some folkore results due to Renyi, Heppes et al.

Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let $A, B \subseteq \mathbb{R}^{d}$ be finite, let A be centrally symmetric and $g_{A}=g_{B}$. Then B is a translate of A.

- Proof idea:
- The case $d=1$ is settled by induction.
- The case of general d is reduced to the case $d=1$ by inductive argument.
- using some folkore results due to Renyi, Heppes et al.

Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let $A, B \subseteq \mathbb{R}^{d}$ be finite, let A be centrally symmetric and $g_{A}=g_{B}$. Then B is a translate of A.

- Proof idea:
- The case $d=1$ is settled by induction.
- The case of general d is reduced to the case $d=1$ by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Detecting central symmetry for finite sets

Theorem 1 (A. 2009)
Let $A, B \subseteq \mathbb{R}^{d}$ be finite, let A be centrally symmetric and $g_{A}=g_{B}$. Then B is a translate of A.

- Proof idea:
- The case $d=1$ is settled by induction.
- The case of general d is reduced to the case $d=1$ by inductive argument...
- using some folkore results due to Renyi, Heppes et al.

Detecting central symmetry in the discretized analytic case

Corollary 2
Let $K=A+[0,1]^{d}$ and $H=B+[0,1]^{d}$ where $A, B \subseteq \mathbb{Z}^{d}$ are finite. Let K be centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):

 fincions

Detecting central symmetry in the discretized analytic case

Corollary 2
Let $K=A+[0,1]^{d}$ and $H=B+[0,1]^{d}$ where $A, B \subseteq \mathbb{Z}^{d}$ are finite. Let K be centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):

Detecting central symmetry in the discretized analytic case

Corollary 2
Let $K=A+[0,1]^{d}$ and $H=B+[0,1]^{d}$ where $A, B \subseteq \mathbb{Z}^{d}$ are finite. Let K be centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $\mathbf{1}_{K}=\delta_{A} * \mathbf{1}_{-[0,1]^{d}}$.

Detecting central symmetry in the discretized analytic case

Corollary 2
Let $K=A+[0,1]^{d}$ and $H=B+[0,1]^{d}$ where $A, B \subseteq \mathbb{Z}^{d}$ are finite. Let K be centrally symmetric and $g_{K}=g_{H}$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $\mathbf{1}_{K}=\delta_{A} * \mathbf{1}_{-[0,1]^{d}}$.
- Fourier transforms of distributions with compact support are analytic functions.

Detecting central symmetry in further cases

- Assume $K \subseteq \mathbb{R}^{d}$ is nonempty, compact and $K=\operatorname{cl}(\operatorname{int}(K))$.

Detecting central symmetry in further cases

- Assume $K \subseteq \mathbb{R}^{d}$ is nonempty, compact and $K=\operatorname{cl}(\operatorname{int}(K))$.
- Can the central symmetry of K be detected from g_{K} ?

Covariogram problem for lattice convex sets

- A finite subset K of \mathbb{Z}^{d} is said to be lattice-convex if K is the intersection of \mathbb{Z}^{d} with a convex set.
- Problem: reconstruction of K from g_{K} in the class of lattice-convex sets.
- The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005)

Covariogram problem for lattice convex sets

- A finite subset K of \mathbb{Z}^{d} is said to be lattice-convex if K is the intersection of \mathbb{Z}^{d} with a convex set.
- Problem: reconstruction of K from g_{K} in the class of lattice-convex sets. Gronchi, Zong (2005)

Covariogram problem for lattice convex sets

- A finite subset K of \mathbb{Z}^{d} is said to be lattice-convex if K is the intersection of \mathbb{Z}^{d} with a convex set.
- Problem: reconstruction of K from g_{K} in the class of lattice-convex sets.
- The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

Reconstruction is not unique

- One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

- Covariograms are the same.

Reconstruction is not unique

- One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

- This is the reason!

An infinite family of counterexamples

Direct sums are rarely lattice-convex

Theorem 3 (A. \& Langfeld, 2011)
Let k, ℓ be integers with $k>\ell \geq 0$. We define

- $T:=(\{0, \ldots, k\} \times\{0\}) \cup(\{0, \ldots, \ell\} \times\{1\})$ (a set of lattice width one),
- $w_{1}:=(-k-1,1), w_{2}:=(\ell+1,1)$,
- the lattice $\mathbb{L}:=\mathbb{Z} w_{1}+\mathbb{Z} w_{2}$.

Let S be a set with $o \in S \subseteq \mathbb{Z}^{2}$. Then the following conditions are equivalent:
The sum of S and T is direct and lattice-convex.
S is lattice-convex with respect to \mathbb{L} and $\operatorname{conv} S$ is a polygon in \mathbb{R}^{2} such that

- every edge of conv S is parallel to w_{1} or w_{2} (in the case $k>\ell+1$),
- every edge of conv S is parallel to w_{1}, w_{2}, or $w_{1}+w_{2}$ (in the case $k=\ell+1$).

Direct lattice-convex summands of lattice-convex sets

- The situation that a lattice-convex set has a direct lattice-convex summand is very uncommon (work in progress).

Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^{2} such that conv K is two-dimensional.

```
F(K,u):={x\inK:\langlex,u\rangle=h(K,u)}
```

- The set of outer edge normal's:

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^{2} such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^{d}$ is defined by

$$
F(K, u):=\{x \in K:\langle x, u\rangle=h(K, u)\} .
$$

- The set of outer edge normals:
$U(K):=\left\{u \in \mathbb{Z}^{2}\{o\}\right.$
- To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^{2} such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^{d}$ is defined by

$$
F(K, u):=\{x \in K:\langle x, u\rangle=h(K, u)\}
$$

- The set of outer edge normals:

$$
\begin{aligned}
U(K):= & \left\{u \in \mathbb{Z}^{2}\{o\}:\right. \\
& u \text { is an outer normal to an edge of conv } K \text { and } \operatorname{gcd}(u)=1\} .
\end{aligned}
$$

> To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce
$m(K):=\min \left\{m^{\prime}(K), m^{\prime \prime}(K)\right\}$,

Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^{2} such that conv K is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^{d}$ is defined by

$$
F(K, u):=\{x \in K:\langle x, u\rangle=h(K, u)\}
$$

- The set of outer edge normals:

$$
\begin{aligned}
U(K):= & \left\{u \in \mathbb{Z}^{2}\{o\}:\right. \\
& u \text { is an outer normal to an edge of conv } K \text { and } \operatorname{gcd}(u)=1\} .
\end{aligned}
$$

- To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$
\begin{aligned}
m^{\prime}(K): & =\min \{\# F(K, u): u \in U(K)\}, \\
m^{\prime \prime}(K): & =\min \{\# F(K, u)-\# F(K,-u)+1: \\
& \left.u \in \mathbb{Z}^{2} \backslash\{o\} \wedge \# F(K, u)>\# F(K,-u)>1\right\} \\
m(K): & =\min \left\{m^{\prime}(K), m^{\prime \prime}(K)\right\},
\end{aligned}
$$

Further notation

- For a finite set U of vectors in \mathbb{R}^{2} linearly spanning \mathbb{R}^{2} let

$$
D(U):=\left\{\left|\operatorname{det}\left(u_{1}, u_{2}\right)\right|: u_{1}, u_{2} \in U\right\} \backslash\{0\}
$$

- We call $\delta(U):=\frac{\max D(U)}{\min D(U)}$
- We define $\delta(K):=\delta(U(K))$.

Further notation

- For a finite set U of vectors in \mathbb{R}^{2} linearly spanning \mathbb{R}^{2} let

$$
D(U):=\left\{\left|\operatorname{det}\left(u_{1}, u_{2}\right)\right|: u_{1}, u_{2} \in U\right\} \backslash\{0\}
$$

- We call

$$
\delta(U):=\frac{\max D(U)}{\min D(U)}
$$

the discrepancy of U.

Further notation

- For a finite set U of vectors in \mathbb{R}^{2} linearly spanning \mathbb{R}^{2} let

$$
D(U):=\left\{\left|\operatorname{det}\left(u_{1}, u_{2}\right)\right|: u_{1}, u_{2} \in U\right\} \backslash\{0\}
$$

- We call

$$
\delta(U):=\frac{\max D(U)}{\min D(U)}
$$

the discrepancy of U.

- We define $\delta(K):=\delta(U(K))$.

Positive result

Theorem 4
Let $K, L \subseteq \mathbb{Z}^{2}$ be bounded and lattice-convex Then
I. $m^{\prime}(K), m^{\prime \prime}(K), m(K), U(K) \cup U(-K)$ and $\delta(K)$ are determined by g_{K}.
II. If

$$
m(K) \geq \delta(K)^{2}+\delta(K)+1
$$

and

$$
g_{K}=g_{L},
$$

then K and L coincide up to translations and reflections.

Outlook

- How to detect the central symmetry of sets?
* What is the solution of the covariogram problem for lattice-convex sets in

Outlook

- How to detect the central symmetry of sets?
- What is the solution of the covariogram problem for lattice-convex sets in the plane?

