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The phase retrieval problem (informal description)

I We are given an (unknown) object A located in space.

I The diffraction information of A is available.

I How do we reconstruct A?

I This is a common reconstruction problem in physics.
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A general analytic formulation

I Let f be a distribution on Rd (with compact support).

I How do we reconstruct f from |bf |?
I This is not possible in general, since the phase information can be

prescribed ‘arbitrarily’.

I ⇒ Further assumptions on f are necessary.
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Analytic geometric version

I Let K ⊆ Rd be nonempty and compact with K = cl(int(K)).

I Then the function x 7→ gK (x) on Rd defined by

gK (x) = vol(K ∩ (K + x))

is said to be the covariogram of K .

I The function gK provides the same data as |c1K |.
I Thus, reconstruction of K from gK is a special case of the phase retrieval

problem.
I The reconstruction is not unique, since gK (x) does not change

I with respect to translations of K and
I with respect to reflections of K in a point.

I These are the trivial ambiguities.

I In general, there are other reasons of non-uniqueness.

I So, one needs further assumptions on K .
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Discrete geometric version

I Let A ⊆ Rd be nonempty and finite.

I Then the function x 7→ gA(x) on Rd defined by

gA(x) := #(A ∩ (A + x))

is said to be the (discrete) covariogram of K .

I The function gA provides the same data as | bδA|, where δA :=
P

a∈A δa.

I Again, gA does not change with respect to translations and point
reflections of A.

I There are other reasons for non-uniqueness.

I E.g., considers finite sets S , T ⊆ Rd such that the sum of S and T is
direct. Then the sum of S and −T is also direct and...

I the sets S ⊕ T , S ⊕ (−T ) have the same covariogram.

I There are still other reasons of non-uniqueness.
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Results on uniqueness

I Within centrally symmetric objects the reconstruction is unique up to
translations (no additional assumptions are required).

I Within planar convex bodies K ⊆ R2 the reconstruction of K from gK is
unique, up to translations and reflections (A. & Bianchi, 2009).

I Within three-dimensional convex polytopes the reconstruction from the
covariogram is unique, up to translations and reflections (Bianchi, 2009).
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Detecting central symmetry

I Can we detect from the diffraction data that the underlying object is
centrally symmetric?

I In certain cases, yes.

I E.g., if K , H are convex bodies in Rd , K is centrally symmetric and
gK = gH . Then H is a translate of K . (Consequence of the
Brunn-Minkowski inequality).

I Other cases?
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Detecting central symmetry for finite sets

Theorem 1 (A. 2009)

Let A, B ⊆ Rd be finite, let A be centrally symmetric and gA = gB . Then B is
a translate of A.

I Proof idea:

I The case d = 1 is settled by induction.

I The case of general d is reduced to the case d = 1 by inductive
argument...

I using some folkore results due to Renyi, Heppes et al.
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Detecting central symmetry in the discretized analytic case

Corollary 2

Let K = A + [0, 1]d and H = B + [0, 1]d where A, B ⊆ Zd are finite. Let K be
centrally symmetric and gK = gH . Then H is a translate of K.

I Proof idea (borrowed from Gardner, Gronchi and Zong):

I 1K = δA ∗ 1−[0,1]d .

I Fourier transforms of distributions with compact support are analytic
functions.
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Detecting central symmetry in further cases

I Assume K ⊆ Rd is nonempty, compact and K = cl(int(K)).

I Can the central symmetry of K be detected from gK?
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Covariogram problem for lattice convex sets

I A finite subset K of Zd is said to be lattice-convex if K is the intersection
of Zd with a convex set.

I Problem: reconstruction of K from gK in the class of lattice-convex sets.

I The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner,
Gronchi, Zong (2005).
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Reconstruction is not unique

I One cannot hope for a unique reconstruction, up to translations and
reflections. Examples were given by Daurat, Gérard, Nivat (2005) and
Gardner, Gronchi, Zong (2005).

I Covariograms are the same.
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Reconstruction is not unique

I One cannot hope for a unique reconstruction, up to translations and
reflections. Examples were given by Daurat, Gérard, Nivat (2005) and
Gardner, Gronchi, Zong (2005).

I This is the reason!
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An infinite family of counterexamples
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Direct sums are rarely lattice-convex

Theorem 3 (A. & Langfeld, 2011)

Let k, ` be integers with k > ` ≥ 0. We define

I T := ({0, . . . , k} × {0}) ∪ ({0, . . . , `} × {1}) (a set of lattice width one),

I w1 := (−k − 1, 1), w2 := (` + 1, 1),

I the lattice L := Zw1 + Zw2.

Let S be a set with o ∈ S ⊆ Z2. Then the following conditions are equivalent:

(i) The sum of S and T is direct and lattice-convex.
(ii) S is lattice-convex with respect to L and conv S is a polygon in R2 such

that
I every edge of conv S is parallel to w1 or w2 (in the case k > ` + 1),
I every edge of conv S is parallel to w1, w2, or w1 + w2 (in the case

k = ` + 1).
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Direct lattice-convex summands of lattice-convex sets

I The situation that a lattice-convex set has a direct lattice-convex
summand is very uncommon (work in progress).
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Notation for the discrete uniqueness result

I Let K be a finite lattice-convex set in R2 such that conv K is
two-dimensional.

I The support set of K in direction u ∈ Rd is defined by

F (K , u) := {x ∈ K : 〈x , u〉 = h(K , u)} .

I The set of outer edge normals:

U(K) :=
˘
u ∈ Z2{o} :

u is an outer normal to an edge of conv K and gcd(u)=1
¯
.

I To measure the number of lattice points on the edges and the difference
of parallel edges of K we introduce

m′(K) :=min {#F (K , u) : u ∈ U(K)} ,

m′′(K) :=min
˘
#F (K , u)−#F (K ,−u) + 1 :

u ∈ Z2 \ {o} ∧ #F (K , u) > #F (K ,−u) > 1
¯

m(K) :=min{m′(K), m′′(K)},
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I Let K be a finite lattice-convex set in R2 such that conv K is
two-dimensional.

I The support set of K in direction u ∈ Rd is defined by

F (K , u) := {x ∈ K : 〈x , u〉 = h(K , u)} .

I The set of outer edge normals:

U(K) :=
˘
u ∈ Z2{o} :

u is an outer normal to an edge of conv K and gcd(u)=1
¯
.

I To measure the number of lattice points on the edges and the difference
of parallel edges of K we introduce

m′(K) :=min {#F (K , u) : u ∈ U(K)} ,

m′′(K) :=min
˘
#F (K , u)−#F (K ,−u) + 1 :

u ∈ Z2 \ {o} ∧ #F (K , u) > #F (K ,−u) > 1
¯

m(K) :=min{m′(K), m′′(K)},
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Further notation

I For a finite set U of vectors in R2 linearly spanning R2 let

D(U) := {| det(u1, u2)| : u1, u2 ∈ U} \ {0}
I We call

δ(U) :=
max D(U)

min D(U)

the discrepancy of U.

I We define δ(K) := δ(U(K)).
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I For a finite set U of vectors in R2 linearly spanning R2 let
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Positive result

Theorem 4
Let K , L ⊆ Z2 be bounded and lattice-convex Then

I. m′(K), m′′(K), m(K), U(K) ∪ U(−K) and δ(K) are determined by gK .

II. If
m(K) ≥ δ(K)2 + δ(K) + 1

and
gK = gL,

then K and L coincide up to translations and reflections.
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Outlook

I How to detect the central symmetry of sets?

I What is the solution of the covariogram problem for lattice-convex sets in
the plane?
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