Some known results and open problems related to the covariogram

Gabriele Bianchi

Università di Firenze

Cortona, June 2011

Definition of covariogram

$K \subset \mathbb{R}^{n}$ compact set, with $K=\mathrm{cl}($ int $K)$ covariogram (or set covariance) of $K=$ function $g_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
g_{K}(x):=\operatorname{vol}(K \cap(K+x)), \quad x \in \mathbb{R}^{n}
$$

Definition of covariogram

$K \subset \mathbb{R}^{n}$ compact set, with $K=\mathrm{cl}($ int $K)$ covariogram (or set covariance) of $K=$ function $g_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
g_{K}(x):=\operatorname{vol}(K \cap(K+x)), \quad x \in \mathbb{R}^{n}
$$

- g_{K} is invariant with respect to translations and reflections of K;
- the covariogram is the autocorrelation of 1_{K},

$$
g_{K}(x)=1_{K} * 1_{(-K)}
$$

that is, passing to Fourier transforms,

$$
\widehat{g_{K}}(x)=\left|\widehat{1_{K}}(x)\right|^{2} \quad \forall x \in \mathbb{R}^{n}
$$

Structure of talk

(1) Does g_{K} determine the set K ? ("Covariogram problem")
(2) Which functions are covariograms?
(3) Which geometric properties of K can be explicitly read in g_{K} ?
(9) A view at Question 1 from the Fourier transform side, in complex variables.

- Zero sets of Fourier transforms of 1_{K}

Properties of covariogram: general

- support of g_{K} is $K+(-K)$;
- \Longrightarrow covariogram gives the width of K in every direction;
- $g_{K}(0)=\operatorname{vol}(K)$;
- g_{K} is even;
- when K is convex:
- $\left(g_{K}\right)^{1 / n}$ is concave (Brunn-Minkowski inequality).

Properties of covariogram: regularity and derivatives

- If K has finite perimeter $\Longleftrightarrow g_{K}$ is Lipschitz;
R. Galerne, Image Anal. and Stereol., 2011.

Properties of covariogram: regularity and derivatives

- If K has finite perimeter $\Longleftrightarrow g_{K}$ is Lipschitz;

园
B. Galerne, Image Anal. and Stereol., 2011.

- when K is convex:
- covariogram gives brightness:

$$
-\frac{\partial g_{K}}{\partial u}(0)=\operatorname{vol}\left(K \mid u^{\perp}\right) \quad \forall u \in S^{n-1}
$$

Properties of covariogram: regularity and derivatives

- If K has finite perimeter $\Longleftrightarrow g_{K}$ is Lipschitz;

R
B. Galerne, Image Anal. and Stereol., 2011.

- when K is convex:
- covariogram gives brightness:

$$
-\frac{\partial g_{K}}{\partial u}(0)=\operatorname{vol}\left(K \mid u^{\perp}\right) \quad \forall u \in S^{n-1}
$$

- If K is strictly convex $\Longrightarrow g_{K}$ is C^{1} in int $\left(\operatorname{supp} g_{K}\right) \backslash\{0\}$;
- If K is $C^{1} \Longrightarrow g_{K}$ is C^{2} in int $\left(\operatorname{supp} g_{K}\right) \backslash\{0\}$;
- explicit formulae for ∇g_{K} and $D^{2} g_{K}$
(1993).

G. Matheron and mathematical morphology

G. Matheron and mathematical morphology

Figure IX.4. Simulation of geological faults.

(a)

(b)

Figure IX.5. Rose of directions of the simulation on Fig. IX-4(a), and its estimation (b).

Section 1

Covariogram problem

Does g_{K} determine the set K ?
國 G. Matheron, Le covariogramme géometrique des compacts convexes de \mathbb{R}^{2} (1986).
R R. Adler and R. J. Pyke, Inst. Math. Statistics Bull. (1991).

Results for Covariogram Problem I

Non-convex sets
In general NO
Rosenblatt and Seymour (1982); Gardner, Gronchi and Zhong (2005).

Results for Covariogram Problem I

```
Non-convex sets
In general NO
    Rosenblatt and Seymour (1982); Gardner, Gronchi and Zhong (2005).
```


Convex sets in \mathbb{R}^{2}

 YESG. Averkov and G. Bianchi, J. Eur. Math. Soc. (2009).R Other contributions from W. Nagel, G. Bianchi, F. Segala, A. Volčič.

Results for Covariogram Problem II

Convex Polytopes in any dimension

- YES for any generic polytope in \mathbb{R}^{n}, for any n
P. Goodey, R. Schneider and W. Weil, Bull. London Math. Soc. (1997).

Results for Covariogram Problem II

Convex Polytopes in any dimension

- YES for any generic polytope in \mathbb{R}^{n}, for any n
P. Goodey, R. Schneider and W. Weil, Bull. London Math. Soc. (1997).
- NO when $n \geq 4$: In any dimension $n \geq 4$ there are different convex polytopes with equal covariogram
G. Bianchi, J. London Math. Soc. (2005).

Results for Covariogram Problem II

Convex Polytopes in any dimension

- YES for any generic polytope in \mathbb{R}^{n}, for any n
P. Goodey, R. Schneider and W. Weil, Bull. London Math. Soc. (1997).
- NO when $n \geq 4$: In any dimension $n \geq 4$ there are different convex polytopes with equal covariogram
R
G. Bianchi, J. London Math. Soc. (2005).
- YES in \mathbb{R}^{3}
G. Bianchi, Adv. Math. (2009).

Covariogram problem: Algorithm for reconstruction

(i. G. Bianchi, R. J. Gardner and M. Kiderlen, Journal of the American Mathematical Society (2011).

INPUT knowledge, affected by a random error, of g_{K} at all points of a grid containing $\operatorname{supp} g_{K}$

Covariogram problem: Algorithm for reconstruction

(i. G. Bianchi, R. J. Gardner and M. Kiderlen, Journal of the American Mathematical Society (2011).

INPUT knowledge, affected by a random error, of g_{K} at all points of a grid containing supp g_{K}
OUTPUT a convex polytope P_{m} that approximates K

Covariogram problem: Algorithm for reconstruction

(G. Bianchi, R. J. Gardner and M. Kiderlen, Journal of the American Mathematical Society (2011).

INPUT knowledge, affected by a random error, of g_{K} at all points of a grid containing $\operatorname{supp} g_{K}$
OUTPUT a convex polytope P_{m} that approximates K

Theorem

Assume that $K \subset \mathbb{R}^{n}$ is a convex body determined by its covariogram. Then, as $m \rightarrow \infty$ (i.e. the grid gets finer and finer), almost surely,

$$
P_{m} \rightarrow K \quad \text { or } \quad P_{m} \rightarrow-K .
$$

Covariogram problem: Algorithm for reconstruction

G. Bianchi, R. J. Gardner and M. Kiderlen, Journal of the American Mathematical Society (2011).

Theorem

Assume that $K \subset \mathbb{R}^{n}$ is a convex body determined by its covariogram. Then, as $m \rightarrow \infty$, almost surely,

$$
P_{m} \rightarrow K \quad \text { or } \quad P_{m} \rightarrow-K .
$$

Some open problems:

- Polytopes: fill the gap (other counterexamples and positive results)
- Explicit stability estimates of the map $g_{K} \rightarrow K$ (when it is injective)
estimates needed to obtain converge rates in the previous algorithm
- C_{+}^{2} convex bodies: open even in dimension 3

Case of C_{+}^{2} convex bodies in $\mathbb{R}^{n}, n \geq 3$

For each $u \in S^{n-1}$ let us consider the "Hessian matrix" of h_{K} :

$$
A_{K}(u):=\nabla^{2} h_{K}(u)+h_{K}(u) l .
$$

Case of C_{+}^{2} convex bodies in $\mathbb{R}^{n}, n \geq 3$

For each $u \in S^{n-1}$ let us consider the "Hessian matrix" of h_{K} :

$$
A_{K}(u):=\nabla^{2} h_{K}(u)+h_{K}(u) ৷ .
$$

The covariogram gives for each u :

- width: $h_{K}(u)+h_{K}(-u)$
- brightness: $\operatorname{vol}\left(K \mid u^{\perp}\right)$
- asymptotic behav. of g_{K} near point of supp g_{K} with outer normal
u:

Case of C_{+}^{2} convex bodies in $\mathbb{R}^{n}, n \geq 3$

For each $u \in S^{n-1}$ let us consider the "Hessian matrix" of h_{K} :

$$
A_{K}(u):=\nabla^{2} h_{K}(u)+h_{K}(u) I .
$$

The covariogram gives for each u :

- width: $h_{K}(u)+h_{K}(-u)$
- brightness: $\operatorname{vol}\left(K \mid u^{\perp}\right)$
- asymptotic behav. of g_{K} near point of supp g_{K} with outer normal

Therefore we know:
(1) $\Longrightarrow A_{K}(u)+A_{K}(-u)$
(2) $\Longrightarrow \operatorname{det} A_{K}(u)+\operatorname{det} A_{K}(-u)$
($\Longrightarrow \operatorname{det}\left(A_{K}(u)^{-1}+A_{K}(-u)^{-1}\right)$ u:

C_{+}^{2} convex: information easily readable

The information that is easily readable in g_{K} is thus:
(1) $A_{K}(u)+A_{K}(-u)$ (i.e. the even part of h_{K})
(2) the non-ordered set $\left\{\operatorname{Gauss}_{K}(u), \operatorname{Gauss}_{K}(-u)\right\}$

Ambiguity: Which is $\operatorname{Gauss}_{K}(u)$ and which is $\operatorname{Gauss}_{K}(-u)$?

C_{+}^{2} convex: information easily readable

The information that is easily readable in g_{K} is thus:
(1) $A_{K}(u)+A_{K}(-u)$ (i.e. the even part of $\left.h_{K}\right)$
(2) the non-ordered set $\left\{\operatorname{Gauss}_{K}(u), \operatorname{Gauss}_{K}(-u)\right\}$

Ambiguity: Which is $\operatorname{Gauss}_{K}(u)$ and which is $\operatorname{Gauss}_{K}(-u)$?

C_{+}^{2} convex bodies: difficulties

- In \mathbb{R}^{3} knowledge of Gauss $_{K}$ on a subset of S^{2} does not determine a portion of ∂K;

C_{+}^{2} convex bodies: difficulties

- In \mathbb{R}^{3} knowledge of Gauss $_{K}$ on a subset of S^{2} does not determine a portion of ∂K;
- How to use the extra information given by the knowledge of the matrix $A_{K}(u)+A_{K}(-u)$?

C_{+}^{2} convex bodies: difficulties

- In \mathbb{R}^{3} knowledge of Gauss ${ }_{K}$ on a subset of S^{2} does not determine a portion of ∂K;
- How to use the extra information given by the knowledge of the matrix $A_{K}(u)+A_{K}(-u)$?
- Not enough information to fully determine both matrices $A(u)$ and $A(-u)$ (In \mathbb{R}^{3} we have " 6 unknowns and only 5 conditions");

C_{+}^{2} convex bodies: difficulties

- In \mathbb{R}^{3} knowledge of Gauss $_{K}$ on a subset of S^{2} does not determine a portion of ∂K;
- How to use the extra information given by the knowledge of the matrix $A_{K}(u)+A_{K}(-u)$?
- Not enough information to fully determine both matrices $A(u)$ and $A(-u)$ (In \mathbb{R}^{3} we have " 6 unknowns and only 5 conditions");
- For particular subclasses of C_{+}^{2} convex bodies this difficulty can be overcome (bodies with analytic boundaries; bodies of revolution)

Section 2

Which functions are covariograms

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

- for being covariogram of a general set:
- h has to be even, ≥ 0, compactly supported, have maximum only at o;

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

- for being covariogram of a general set:
- h has to be even, ≥ 0, compactly supported, have maximum only at o;
- h has to be positive definite, i.e. its Fourier transform \widehat{h} has to be non-negative (indeed $\widehat{g_{K}}=\left|\widehat{1_{K}}\right|^{2} \geq 0$);

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

- for being covariogram of a general set:
- h has to be even, ≥ 0, compactly supported, have maximum only at o;
- h has to be positive definite, i.e. its Fourier transform \widehat{h} has to be non-negative (indeed $\widehat{g_{K}}=\left|\widehat{1_{K}}\right|^{2} \geq 0$);
- for being covariogram of a convex set:
- $h^{1 / n}$ has to be concave on its support

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

- for being covariogram of a general set:
- h has to be even, ≥ 0, compactly supported, have maximum only at o;
- h has to be positive definite, i.e. its Fourier transform \widehat{h} has to be non-negative (indeed $\widehat{g_{K}}=\left|\widehat{1_{K}}\right|^{2} \geq 0$);
- for being covariogram of a convex set:
- $h^{1 / n}$ has to be concave on its support

Problem

Which radial functions are covariograms?

Necessary conditions for being a covariogram

There are many necessary conditions that a function h, defined in \mathbb{R}^{n}, must satisfy for being a covariogram but no "necessary and sufficient" one.

Some necessary conditions:

- for being covariogram of a general set:
- h has to be even, ≥ 0, compactly supported, have maximum only at o;
- h has to be positive definite, i.e. its Fourier transform \widehat{h} has to be non-negative (indeed $\widehat{g_{K}}=\left|\widehat{1_{K}}\right|^{2} \geq 0$);
- for being covariogram of a convex set:
- $h^{1 / n}$ has to be concave on its support

Problem

Which radial functions are covariograms?

- A. Fish, D. Ryabogin and A. Zvavitch

Which radial functions are covariograms

Problem

Let K be a regular compact set. If g_{K} is radial, is also K radial?

Which radial functions are covariograms

Problem

Let K be a regular compact set. If g_{K} is radial, is also K radial? YES. Moreover K is determined by g_{K}, up to translations.

Which radial functions are covariograms

Problem

Let K be a regular compact set. If g_{K} is radial, is also K radial? YES. Moreover K is determined by g_{K}, up to translations.

- Under the a-priori assumption that K is convex it was known for:
- $n=2$ (positive answer to the covariogram problem);
- $n=3$ (Howard's result for Nakajima problem);

Which radial functions are covariograms

Problem

Let K be a regular compact set. If g_{K} is radial, is also K radial? YES. Moreover K is determined by g_{K}, up to translations.

- Under the a-priori assumption that K is convex it was known for:
- $n=2$ (positive answer to the covariogram problem);
- $n=3$ (Howard's result for Nakajima problem);
- any $n \geq 2$ under the further a-priori assumption that K is centrally symmetric (Meyer, Reisner and Schmuckenslager, 1993);

Which radial functions are covariograms

Problem

Let K be a regular compact set. If g_{K} is radial, is also K radial? YES. Moreover K is determined by g_{K}, up to translations.

- Under the a-priori assumption that K is convex it was known for:
- $n=2$ (positive answer to the covariogram problem);
- $n=3$ (Howard's result for Nakajima problem);
- any $n \geq 2$ under the further a-priori assumption that K is centrally symmetric (Meyer, Reisner and Schmuckenslager, 1993);
- any $n \geq 2$ and $K \in C_{+}^{2}$ (it is a consequence of some formula presented in the previous slides:
the set $\left\{\operatorname{Gauss}_{K}(u), \operatorname{Gauss}_{K}(-u)\right\} \quad$ does not depend on $u \in S^{n-1}$
and continuity implies that Gauss $_{K}$ is constant).

Proof of "radial g_{K} implies radial K "

Theorem

Assume $f \in L^{2}\left(\mathbb{R}^{n}\right), n \geq 2$, real valued and with compact support. Assume that

$$
|\widehat{f}|(x) \quad \text { is a radial function for } x \in \mathbb{R}^{n} \text {. }
$$

Then f is a translation of a radial function.
Moreover f is determined in $L^{2}\left(\mathbb{R}^{n}\right)$ by $|\hat{f}|$, up to translations.
W. Lawton, J. Opt. Soc. Am. (1981)

Proof of "radial g_{K} implies radial K "

Theorem

Assume $f \in L^{2}\left(\mathbb{R}^{n}\right), n \geq 2$, real valued and with compact support. Assume that

$$
|\widehat{f}|(x) \quad \text { is a radial function for } x \in \mathbb{R}^{n} .
$$

Then f is a translation of a radial function.
Moreover f is determined in $L^{2}\left(\mathbb{R}^{n}\right)$ by $|\hat{f}|$, up to translations.
围 W. Lawton, J. Opt. Soc. Am. (1981)

- Lawton uses techniques from th. of funct. of several complex var.
- Let $\widehat{f}(z)$ be Fourier transform defined for $z \in \mathbb{C}^{n}$. Then

$$
\widehat{f(z)}=c\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{m} e^{2 \pi i x_{0} \cdot z} \prod_{i=1}^{\infty}\left(1-\frac{\sum_{j=1}^{n} z_{j}^{2}}{\lambda_{i}^{2}}\right)\left(1-\frac{\sum_{j=1}^{n} z_{j}^{2}}{\bar{\lambda}_{i}^{2}}\right)
$$

where $m \in \mathbb{N}, c \in \mathbb{C}, x_{0} \in \mathbb{R}^{n},\left(\lambda_{i}\right)$ is a sequence in \mathbb{C}.

Proof of "radial g_{K} implies radial K "

Theorem

Assume $f \in L^{2}\left(\mathbb{R}^{n}\right), n \geq 2$, real valued and with compact support. Assume that

$$
|\widehat{f}|(x) \quad \text { is a radial function for } x \in \mathbb{R}^{n} .
$$

Then f is a translation of a radial function.
Moreover f is determined in $L^{2}\left(\mathbb{R}^{n}\right)$ by $|\hat{f}|$, up to translations.
围 W. Lawton, J. Opt. Soc. Am. (1981)

- Lawton uses techniques from th. of funct. of several complex var.
- Let $\widehat{f}(z)$ be Fourier transform defined for $z \in \mathbb{C}^{n}$. Then

$$
\widehat{f(z)}=c\left(\sum_{j=1}^{n} z_{j}^{2}\right)^{m} e^{2 \pi i x_{0} \cdot z} \prod_{i=1}^{\infty}\left(1-\frac{\sum_{j=1}^{n} z_{j}^{2}}{\lambda_{i}^{2}}\right)\left(1-\frac{\sum_{j=1}^{n} z_{j}^{2}}{\bar{\lambda}_{i}^{2}}\right)
$$

where $m \in \mathbb{N}, c \in \mathbb{C}, x_{0} \in \mathbb{R}^{n},\left(\lambda_{i}\right)$ is a sequence in \mathbb{C}.

- theorem false if f is complex valued

Which radial functions are covariograms?

Consequences:

- a radial function h is the covariogram of a convex set if and only if

$$
h(x)=R^{n} g_{B(0,1)}\left(\frac{x}{R}\right) \quad \text { for } R=\frac{1}{2}\left(\frac{\operatorname{vol}(\operatorname{supp} h)}{\operatorname{vol}(B(0,1))}\right)^{\frac{1}{n}} .
$$

- reduction of the corresponding problem for general set to a one-dimensional problem

Section 3

Which geometric properties of K can be explicitly read in g_{K} ?

Determine whether the set is convex or not

 Define two classes of sets:
Determine whether the set is convex or not

Define two classes of sets:
$\mathcal{A}=$ \{planar regular compact sets whose boundary consists of a finite number of closed disjoint simple polygonal curves.\}

Determine whether the set is convex or not

Define two classes of sets:

$\mathcal{A}=\{$ planar regular compact sets whose boundary consists of a finite number of closed disjoint simple polygonal curves.\}
 $\mathcal{B}=\{$ planar regular compact sets whose interior has at most two components\}

Determine whether the set is convex or not Define two classes of sets:

$\mathcal{A}=$ \{planar regular compact sets whose boundary consists of a finite number of closed disjoint simple polygonal curves.\}
 $\mathcal{B}=\{$ planar regular compact sets whose interior has at most two components\}

Theorem

Assume a-priori that g_{K} is the covariogram of a set in $\mathcal{A} \cup \mathcal{B}$.
Then there are explicitly computable properties of g_{K} that determine whether K is convex or not.
围 Benassi, Bianchi and D'Ercole, Mathematika (2010).

Determine whether the set is convex or not: test

First test (for class \mathcal{B}) : Check whether, for each $u \in S^{1}$, it is

$$
-\frac{\partial}{\partial u} g_{K}(o)=\frac{1}{2} \operatorname{width}\left(\operatorname{supp} g_{K}, " u+\pi / 2^{\prime \prime}\right)
$$

Determine whether the set is convex or not: test

First test (for class \mathcal{B}) : Check whether, for each $u \in S^{1}$, it is

$$
-\frac{\partial}{\partial u} g_{K}(o)=\frac{1}{2} \operatorname{width}\left(\operatorname{supp} g_{K}, " u+\pi / 2^{\prime \prime}\right)
$$

Second test (for class \mathcal{A}): Check certain properties of the set of discontinuities of ∇g_{K}

Convex

Determine whether the set is convex or not: test

First test (for class \mathcal{B}) : Check whether, for each $u \in S^{1}$, it is

$$
-\frac{\partial}{\partial u} g_{K}(o)=\frac{1}{2} \operatorname{width}\left(\operatorname{supp} g_{K}, " u+\pi / 2^{\prime \prime}\right)
$$

Second test (for class \mathcal{A}): Check certain properties of the set of discontinuities of ∇g_{K}

Non-convex

Recognize other properties

Theorem. Central symmetry

Let $K \subset \mathbb{R}^{n}$ be a regular compact set.
The set K is convex and centrally symmetric if and only if

$$
g_{K}(o)=\frac{1}{2}\left(\operatorname{vol}\left(\operatorname{supp} g_{K}\right)\right)^{\frac{1}{n}}
$$

When this holds $K=(1 / 2) \operatorname{supp} g_{K}$.

- A consequence of Brunn-Minkowski inequality and its equality cases.

Recognize other properties

Theorem. Central symmetry

Let $K \subset \mathbb{R}^{n}$ be a regular compact set.
The set K is convex and centrally symmetric if and only if

$$
g_{K}(o)=\frac{1}{2}\left(\operatorname{vol}\left(\operatorname{supp} g_{K}\right)\right)^{\frac{1}{n}}
$$

When this holds $K=(1 / 2) \operatorname{supp} g_{K}$.

- A consequence of Brunn-Minkowski inequality and its equality cases.

Theorem. Homothetic level lines of g_{κ}

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric convex body. Assume that the level lines $\left\{x: g_{K}(x)=t\right\}$ are homothetic to each other for all $t>0$ small.
Then K is an ellipsoid.
R Meyer, Reisner and Schmuckenslager, Mathematika (1993).

- Connections with floating bodies.

Some open problems

Convexity or not It is known that when $K \subset \mathbb{R}^{2}$ is convex then $\sqrt{g_{K}}$ is concave on its support.
Does this property characterize the convexity of K in the class of planar regular compact set (or in some subclass)?

Some open problems

Convexity or not It is known that when $K \subset \mathbb{R}^{2}$ is convex then $\sqrt{g_{K}}$ is concave on its support.
Does this property characterize the convexity of K in the class of planar regular compact set (or in some subclass)?

Central symmetry Assume K non-convex. Is it possible to read in g_{K} whether K is centrally symmetric or not?

Some open problems

Convexity or not It is known that when $K \subset \mathbb{R}^{2}$ is convex then $\sqrt{g_{K}}$ is concave on its support.
Does this property characterize the convexity of K in the class of planar regular compact set (or in some subclass)?

Central symmetry Assume K non-convex. Is it possible to read in g_{K} whether K is centrally symmetric or not?

Homothetic level lines (MRS result) Is the central symmetry of K necessary?
Is it sufficient to assume that only two level lines are homothetic?

Section 4

A view at the covariogram problem from the Fourier transform side, in complex variables.

围 J. L. C. Sanz and T. S. Huang, J. Math. Anal. Appl. (1984).
N N. E. Hurt, Phase retrieval and zero crossing (1989).
囯 T. Kobayashi, J. Fac. Sci. Univ. Tokyo Sect. IA Math. (1989).

SNEW YORE
 PHASE-R
 - THE EMPIRE STATE

Phase Retrieval?

Phase Retrieval in complex variables

Fourier transform in \mathbb{C}^{n}

Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support. Define, for $z \in \mathbb{C}^{n}$,

$$
\widehat{f}(z)=\int_{\mathbb{R}^{n}} e^{i x \cdot z} f(x) d x
$$

FACT: \widehat{f} is an holomorphic function of exponential type.

- "of exponential type" means that $|\widehat{f}(z)| \leq a e^{b\|\mid z\|}$ for some $a, b \in \mathbb{C}$ and all $z \in \mathbb{C}^{n}$

Phase Retrieval in \mathbb{C}^{n} : role of factorization

Theorem. J. Sanz and T. Huang, J. Math. Anal. Appl. (1984)
Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support. If \hat{f} is irreducible in \mathbb{C}^{n} then f is determined by the knowledge of $|\hat{f}(x)|$ for $x \in \mathbb{R}^{n}$.
$\left(f\right.$ is irreducible in \mathbb{C}^{n} if it cannot be written as $\widehat{f}=f_{1} f_{2}$, with f_{1} and f_{2} holomorphic entire functions, both with non-empty zero sets.)

Theorem. R. Barakat and G. Newsam, J. Math. Phys. (1984)

Let $f, g \in L^{2}\left(\mathbb{R}^{2}\right)$ with compact support. If $f \neq g$ and $|\widehat{f}(x)|=|\widehat{g}(x)|$ for each $x \in \mathbb{R}^{2}$, then, for all $z \in \mathbb{C}^{2}$,

$$
\widehat{f}(z)=f_{1}(z) f_{2}(z) \quad \text { and } \quad \widehat{g}(z)=e^{i c \cdot z} f_{1}(z) \overline{f_{2}(\bar{z})}
$$

for suitable holomorphic functions f_{1} and f_{2}, both with non-empty zero set.

Phase Retrieval in \mathbb{C}^{n} : role of factorization

Theorem. J. Sanz and T. Huang, J. Math. Anal. Appl. (1984)
Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support. If \hat{f} is irreducible in \mathbb{C}^{n} then f is determined by the knowledge of $|\widehat{f}(x)|$ for $x \in \mathbb{R}^{n}$.
(f is irreducible in \mathbb{C}^{n} if it cannot be written as $\widehat{f}=f_{1} f_{2}$, with f_{1} and f_{2} holomorphic entire functions, both with non-empty zero sets.)

Theorem. R. Barakat and G. Newsam, J. Math. Phys. (1984)

Let $f, g \in L^{2}\left(\mathbb{R}^{2}\right)$ with compact support. If $f \neq g$ and $|\widehat{f}(x)|=|\widehat{g}(x)|$ for each $x \in \mathbb{R}^{2}$, then, for all $z \in \mathbb{C}^{2}$,

$$
\widehat{f}(z)=f_{1}(z) f_{2}(z) \quad \text { and } \quad \widehat{g}(z)=e^{i c \cdot z} f_{1}(z) \overline{f_{2}(\bar{z})}
$$

for suitable holomorphic functions f_{1} and f_{2}, both with non-empty zero set.

- The only known example of different convex sets with equal covariogram are $K_{1} \times K_{2}$ and $K_{1} \times\left(-K_{2}\right) \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$. In Fourier space this corresponds to the phenomenon described in the Theorem.

Phase Retrieval in \mathbb{C}^{n} : zero set of $\widehat{1_{k}}(z)$

Theorem

Any $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support is determined, up to a translation, by the knowledge of

1) the modulus of its $F T,|\hat{f}(x)|$, for $x \in \mathbb{R}^{n}$;
2) the zero set of its $F T,\left\{z \in \mathbb{C}^{n}: \widehat{f}(z)=0\right\}$.

Phase Retrieval in \mathbb{C}^{n} : zero set of $\widehat{1_{k}}(z)$

Theorem

Any $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support is determined, up to a translation, by the knowledge of

1) the modulus of its $F T,|\hat{f}(x)|$, for $x \in \mathbb{R}^{n}$;
2) the zero set of its $F T,\left\{z \in \mathbb{C}^{n}: \widehat{f}(z)=0\right\}$.

Question

Regarding the covariogram problem, what do we know about

$$
\left\{z \in \mathbb{C}^{n}: \widehat{1_{k}}(z)=0\right\} ?
$$

Phase Retrieval in \mathbb{C}^{n} : zero set of $\widehat{1_{k}}(z)$

Theorem

Any $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support is determined, up to a translation, by the knowledge of

1) the modulus of its $F T,|\hat{f}(x)|$, for $x \in \mathbb{R}^{n}$;
2) the zero set of its $F T,\left\{z \in \mathbb{C}^{n}: \widehat{f}(z)=0\right\}$.

Question

Regarding the covariogram problem, what do we know about

$$
\left\{z \in \mathbb{C}^{n}: \widehat{1_{k}}(z)=0\right\} ?
$$

- The identity $g_{K}=1_{K} * 1_{-K}$ seen in \mathbb{C}^{n} becomes

$$
\begin{equation*}
\widehat{g_{K}}(z)=\widehat{1_{K}}(z) \overline{\left(\widehat{1_{K}}(\bar{z})\right)} \quad \forall z \in \mathbb{C}^{n} . \tag{1}
\end{equation*}
$$

Thus we have:

$$
\text { zero set of } \widehat{g_{K}}=\left(\text { zero set of } \widehat{1_{K}}\right) \bigcup \overline{\left(\text { zero set of } \widehat{1_{K}}\right)}
$$

summarizing...

summarizing...

$$
\text { zero set of } \widehat{g_{K}}=\left(\text { zero set of } \widehat{1_{K}}\right) \bigcup \overline{\left(\text { zero set of } \widehat{1_{K}}\right)}
$$

zero set of $\widehat{g_{K}}$

zero set of $\widehat{1_{K}}$

To determine 1_{k} it suffices:

- modulus of $\widehat{1_{K}}(x)$ for x real
- zero set of $\widehat{1_{k}}$ in \mathbb{C}^{n}

The knowledge of g_{K} gives us

- modulus of $\widehat{1_{K}}(x)$ for x real
- (zero set of $\widehat{1_{K}}$ in $\left.\mathbb{C}^{n}\right) \cup$ (its conjugate)

summarizing...

$$
\text { zero set of } \widehat{g_{K}}=\left(\text { zero set of } \widehat{1_{K}}\right) \bigcup \overline{\left(\text { zero set of } \widehat{1_{K}}\right)}
$$

zero set of $\widehat{g_{K}}$

zero set of $\widehat{1_{K}}$

To determine 1_{K} it suffices:

- modulus of $\widehat{1_{K}}(x)$ for x real
- zero set of $\widehat{\hat{1}_{K}}$ in \mathbb{C}^{n}

The knowledge of g_{K} gives us

- modulus of $\widehat{1_{K}}(x)$ for x real
- (zero set of $\widehat{1_{K}}$ in $\left.\mathbb{C}^{n}\right) \cup$ (its conjugate)
- Passing from $K_{1} \times K_{2}$ to $K_{1} \times\left(-K_{2}\right) \Longrightarrow$ substituting zeros of $\widehat{1_{K_{2}}}$ with their conjugates and leaving others zeros unchanged.

Kobayashi study of the zero set of $\widehat{1_{K}}$ ，for K convex

围 T．Kobayashi，J．Fac．Sci．Univ．Tokyo Sect．IA Math．（1989）．

－Image represents the restriction to \mathbb{R}^{2}（i．e．$\{\operatorname{Im} z=0\}$ ）of $\widehat{1_{K}}$（which is real valued because K is o－symmetric）；
－zero set＝boundary between white and black regions；
－different behaviours：
－Square ：Zero set is non－compact and connected，it factors；
－Ball：Zero set has countably many connected components．

Kobayashi study of the zero set of $\widehat{1_{K}}$, for K convex

目 T. Kobayashi, J. Fac. Sci. Univ. Tokyo Sect. IA Math. (1989).

- Image represents the restriction to $\mathbb{R}^{2}($ i.e. $\{\operatorname{Im} z=0\})$ of $\widehat{1_{K}}$ (which is real valued because K is o-symmetric);
- zero set = boundary between white and black regions;
- different behaviours:
- Square : Zero set is non-compact and connected, it factors;
- Ball: Zero set has countably many connected components.
zero set of $\widehat{1_{K}}$, for K convex, smooth, with Gauss $k>0$ Kobayashi proves that when K is convex, smooth enough and with Gauss $_{K}>0$ the asymptotic behaviour is similar to that of a ball.
Define a subset S of \mathbb{C}^{n} :

$$
S=" S^{n-1} \times \mathbb{C}^{\prime \prime}=\left\{z \in \mathbb{C}^{n}: z=\lambda u+i \mu u \text {, with } \lambda, \mu \in \mathbb{R}, u \in S^{n-1}\right\}
$$

Theorem

$$
\exists m_{0} \in \mathbb{N}: \quad\left(\text { zero set of } \widehat{1_{K}}\right) \cap S=(\text { compact set }) \bigcup\left(\bigcup_{j=m_{0}}^{\infty} \mathcal{Z}_{j}\right)
$$

and each \mathcal{Z}_{j} is a regular submanifold in $S\left(\subset \mathbb{C}^{n}\right)$ diffeomorphic to S^{n-1}. Moreover

$$
\mathcal{Z}_{j}=\left\{F_{j}(u) u: u \in S^{n-1}\right\}
$$

with, as $j \rightarrow \infty$,

$$
F_{j}(u)=\frac{\pi(2 j+n-1)}{\operatorname{width}_{K}(u)}+\mathbf{i} \log \left(\frac{\operatorname{Gauss}_{K}(u)}{\operatorname{Gauss}_{K}(-u)}\right)+\mathrm{O}\left(\frac{1}{j}\right)
$$

shape of the components at ∞ of zero set of $\widehat{1_{K}}$

$$
\mathcal{Z}_{j}: u \in S^{n-1} \rightarrow\left(\frac{\pi(2 j+n-1)}{\operatorname{width}_{K}(u)}+\mathbf{i} \log \left(\frac{\operatorname{Gauss}_{K}(u)}{\operatorname{Gauss}_{K}(-u)}\right)+\mathrm{O}\left(\frac{1}{j}\right)\right) u .
$$

- ∞ similar copies; each of them carries the same information;
- \mathcal{Z}_{j} intersects \mathbb{R}^{n} (i.e. $\operatorname{Im} z=0$) for u such that $\operatorname{Gauss}_{K}(u)=\operatorname{Gauss}_{K}(-u)$;
- g_{K} gives us $\mathcal{Z}_{j} \cup \overline{\mathcal{Z}_{j}}$, and we need from this to determine \mathcal{Z}_{j}
- the ambiguity is where \mathcal{Z}_{j} and $\overline{\mathcal{Z}_{j}}$ meet: that is in $\mathcal{Z}_{j} \cap \mathbb{R}^{n}$ (again u such that $\left.\operatorname{Gauss}_{K}(u)=\operatorname{Gauss}_{K}(-u)!!!!!\right)$

Does the zero set alone determine K ?

- The paper by Kobayashi tries to understand whether the (asymptotics of the) zero set alone does determine K.
- His formula proves that this zero set determines, for each $u \in S^{n-1}$,

$$
\operatorname{width}_{K}(u) \text { and } \frac{\operatorname{Gauss}_{K}(u)}{\operatorname{Gauss}_{K}(-u)} .
$$

Does the zero set alone determine K ?

- The paper by Kobayashi tries to understand whether the (asymptotics of the) zero set alone does determine K.
- His formula proves that this zero set determines, for each $u \in S^{n-1}$,

$$
\operatorname{width}_{K}(u) \quad \text { and } \quad \frac{\operatorname{Gauss}_{K}(u)}{\operatorname{Gauss}_{K}(-u)} .
$$

Theorem (Kobayashi)

Assume K planar "smooth enough" convex body with Gauss ${ }_{K}>0$. The asymptotic behaviour of the set

$$
\left(\text { zero set of } \widehat{1_{K}}\right) \cap S
$$

determines K, up to translations.

Does the zero set alone determine K ?

- The paper by Kobayashi tries to understand whether the (asymptotics of the) zero set alone does determine K.
- His formula proves that this zero set determines, for each $u \in S^{n-1}$,

$$
\operatorname{width}_{K}(u) \text { and } \frac{\operatorname{Gauss}_{K}(u)}{\operatorname{Gauss}_{K}(-u)} .
$$

Theorem (Kobayashi)

Assume K planar "smooth enough" convex body with Gauss ${ }_{K}>0$. The asymptotic behaviour of the set

$$
\left(\text { zero set of } \widehat{1_{K}}\right) \cap S
$$

determines K, up to translations.

Problem

What about dimension $n \geq 3$?

