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1 Entropy functional

X = (X1, . . . , Xn) a random vector in Rn with density f (x)

Entropy (differential entropy, Shannon entropy):

h(X) = −
∫
f (x) log f (x) dx.

Entropy power (exponentiated entropy, ”effective variance”):

H(X) = exp

 2

n
h(X)

 .

Information content:

h̃(X) = − log f (X).

Connections and similarities between Information Theory and

other fields (Convex Geometry, Matrix Analysis, Probability,

Sobolev inequalities):

Costa and Cover (1984) ”On the similarity of the entropy power

inequality and the Brunn-Minkowski inequality”

Dembo, Cover and Thomas (1991) ”Information theoretic in-

equalities”

Johnson (2004) ”Information theory and the central limit theo-

rem”

Linnik (1959) ”An information-theoretic proof of the central limit

theorem with the Lindeberg condition”
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2 A few basic properties of the entropy

• For any affine volume preserving map T : Rn → Rn,

h(TX) = h(X), H(TX) = H(X).

• H(λX) = λ2H(X) (λ 6= 0).

• E h̃(X) = h(X).

• For any invertible affine map T : Rn → Rn

h̃(TX)− h(TX) = h̃(X)− h(X).

• (Monotonicity) If X and Y and independent, then

h(X + Y ) ≥ h(X).

• (Subadditivity) If X = (X1, . . . , Xn), then

h(X1, . . . , Xn) ≤ h(X1) + . . . + h(Xn)

with equality when Xj are independent.
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3 Examples

Uniform distribution: If X is uniformly distributed in a

convex body A ⊂ Rn, then

h(X) = log |A|, H(X) = |A|2/n,

where |A| stands for the n-dimensional volume of A.

General property: X ∈ A ⊂ Rn ⇒

h(X) ≤ log |A|, H(X) ≤ |A|2/n.

Normal (Gaussian) distribution on R: If X ∼ N(a, σ2)

a = EX , σ2 = Var(X). Then

h(X) = log
√

2πe σ2, H(X) = 2πe σ2.

Normal distribution on Rn: If X ∼ N(a,R), R = cov(X),

h(X) = log
√

(2πe)n det(R), H(X) = 2πe det(R)1/n.

Equivalently: If X has density f with ‖f‖ = ess supxf (x), then

h(X) = − log ‖f‖ +
n

2
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4 Brunn-Minkowski and entropy power inequalities

Theorem (Brunn-Minkowski):

|A + B|1/n ≥ |A|1/n + |B|1/n,

where |A| stands for the n-dimensional volume of A.

Theorem (Shannon 1948, Stam 1959, Lieb 1975). Given inde-

pendent random vectors X and Y in Rn with finite entropies,

H(X + Y ) ≥ H(X) + H(Y ).

Equality: Iff X and Y are normal, with proportional covariance

matrices.

The case of normal distributions:

Minkowski inequality for positive definite matrices. If X ∼
N(a,R) and Y ∼ N(b, S), then

det(R + S)1/n ≥ det(R)1/n + det(S)1/n.

The case of uniform distribution: If X ∼ U(A), Y ∼ U(B),

then X + Y is not uniform in A + B. Nevertheless,

1

4
|A + B|2/n ≤ H(X + Y ) ≤ |A + B|2/n.
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5 Reverse Brunn-Minkowski inequality

Brunn-Minkowski inequality:

|A + B|1/n ≥ |A|1/n + |B|1/n.

Question. How sharp is it? For any linear volume preserving

maps ui : Rn → Rn, we still have

|Ã + B̃|1/n ≥ |A|1/n + |B|1/n,

where Ã = u1(A), B̃ = u2(B).

Theorem (V. D. Milman, mid 80s): Given convex bodiesA and

B in Rn, for some linear volume preserving maps ui : Rn → Rn,

|Ã + B̃|1/n ≤ C
(
|A|1/n + |B|1/n

)
,

where C is a universal constant.

Equivalently: If |A| = |B| = 1, then

2 ≤ |Ã + B̃|1/n ≤ C.

Question. Entropic formulation / extension?
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6 Reverse entropy power inequality

Let X and Y be independent random vectors in Rn with densi-

ties f (x) and g(x). We have the entropy power inequality:

H(X + Y ) ≥ H(X) + H(Y ).

Theorem 1. If X and Y have log-concave distributions, then

for some linear volume preserving maps ui : Rn → Rn,

H(X̃ + Ỹ ) ≤ C (H(X) + H(Y ))

where X̃ = u1(X), Ỹ = u2(Y ).

Equivalently: If ‖f‖ = ‖g‖ = 1, then

C0 ≤ H(X̃ + Ỹ ) ≤ C1,

with some absolute constants C1 > C0 > 0.

Corollary. If X ∼ U(A), Y ∼ U(B), then H(X) = |A|2/n,

H(Y ) = |B|2/n, while

H(X̃ + Ỹ ) ≥ 1

4
|Ã + B̃|2/n.

Hence,

|Ã + B̃|2/n ≤ C
(
|A|2/n + |B|2/n

)
.
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7 Convex measures

Definition (Borell 1974). A Radon probability measure µ on

a locally convex space L is κ-concave, where −∞ ≤ κ ≤ 1, if

µ(tA + sB) ≥ (tµ(A)κ + sµ(B)κ)1/κ

for all non-empty A,B ⊂ L and t, s > 0, t + s = 1.

Characterization on L = Rn in the absolut. continuous case

(necessarily κ ≤ 1/n):

µ is κ−concave ⇐⇒ µ has a κn−concave density f,

that is, for all x, y from a convex supporting set Ω ⊂ Rn, and

all t, s > 0, t + s = 1,

f (tx + sy) ≥ (tf (x)κn + sf (y)κn)1/κn

where

κn =
κ

1− nκ
.

Particular cases of κ’s

1) κ = 1/n, κn = +∞: µ = U(K) (B-M inequality)

2) κ = κn = 0: Log-concave measures (Prékopa 1971);

µ(tA + sB) ≥ µ(A)tµ(B)s, f (tx + sy) ≥ f (x)tf (y)s.

3) κ = −∞, κn = −1/n: Convex (or hyperbolic) measures;

µ(tA + sB) ≥ min{µ(A), µ(B)}.

Equivalently: f = V −n, for some positive convex V on an open

convex set Ω ⊂ Rn.
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Range −∞ < κ < 0: densities have the form

f (x) = V (x)−β, β > n, κ = − 1

β − n
,

where V : Rn → (−∞,+∞] are convex.

Examples

1) Gaussian measures, exponential measures, κ = 0.

2) Cauchy measures, κ = −1/d (d > 0 real),

f (x) =
1

Z
(1 + |x|2)−(n+d)/2.

3) Pareto distributions on Rn
+, κ = −1/d (d > 0 real),

f (x) =
1

Z
(1 + x1 + . . . + xn)−(n+d).

Theorem 2. Let β0 > 2. If X and Y have κ-concave distribu-

tions with

β ≥ max{β0n, 2n + 1},
then for some linear volume preserving maps ui : Rn → Rn,

H(X̃ + Ỹ ) ≤ Cβ0 (H(X) + H(Y ))

where X̃ = u1(X), Ỹ = u2(Y ).

Note. The reverse entropy power inequality is not uniform in

the class of all convex measures.
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8 Entropy and volume of the support

Let X and Y be independent random vectors in Rn.

Lemma 1. (Borell 1974) If the distributions of X and Y are

κ1- and κ2-concave, κ1, κ2 > 0, then the distribution of X + Y

is κ-concave with
1

κ
=

1

κ1
+

1

κ2
.

Lemma 2. Let X be a random vector in Rn having an abso-

lutely continuous κ-concave distribution supported on a convex

body A, with 0 < κ ≤ 1/n. Then

log |A| + n log(κn) ≤ h(X) ≤ log |A|.

Proof. Apply Berwald’s inequality in the form of Borell (Khinchin-

type inequality for concave functions).

Example

If X and Y are independent and uniformly distributed in convex

bodies A and B in Rn in which case κ1 = κ2 = 1/n, then X+Y

has a κ-concave distribution with κ = 1/(2n), so

log
∣∣∣∣A + B

2

∣∣∣∣ ≤ h(X + Y ) ≤ log |A + B|,

1

2
|A + B|1/n ≤ H(X + Y )1/2 ≤ |A + B|1/n.

10



9 Entropy and maximum of density

Assume X has a convex distribution with density

f (x) = V (x)−β, β > n,

where V is a positive convex function on Rn. Let

‖f‖ = sup
x
f (x).

Lemma 3. If β ≥ n+1, and if ‖f‖ is fixed, the entropy h(X) is

maximal for the n-dimensional Pareto distribution. Equivalently,

− log ‖f‖ ≤ h(X) ≤ − log ‖f‖ +
n∑
i=1

β

β − i
.

Range β ≥ β0n with fixed β0 > 1:

log ‖f‖−1/n ≤ 1

n
h(X) ≤ Cβ0 + log ‖f‖−1/n

with some constant Cβ0, depending on β0, only.
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10 Log-concave case

If X has a log-concave distribution (β = +∞),

log ‖f‖−1/n ≤ 1

n
h(X) ≤ 1 + log ‖f‖−1/n,

that is,

0 ≤ 1

n
h(X) +

1

n
log ‖f‖ ≤ 1.

Equivalently, if Z has a normal distribution with maximum of

the density the same as for the density of X , then

1

n
h(Z)− 1

2
≤ 1

n
h(X) ≤ 1

n
h(Z) +

1

2
.

Equality on the left: Uniform distribution in a convex body

Equality on the right: The exponential distribution

Proof. Given t, s > 0, t + s = 1, write

f (tx + sy)1/t ≥ f (x) f (y)s/t.

Integrate with respect to x and then maximize over y:

t−n
∫
f (x)1/t dx ≥ ‖f‖s/t.

Let t→ 1.
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11 Concentration of the information content

Let X have a log-concave density f (x) on Rn.

Theorem (Klartag-Milman). With some absolute c0, c1 > 0

P
{
f (X) ≥ ‖f‖ e−c0n

}
≥ 1− e−c1n.

Thus, with very high probability

− log f (X) + log ‖f‖ ≤ c0n.

On the other hand,

0 ≤ h(X) + log ‖f‖ ≤ n.

Informal conclusion:

1

n
h̃(X) ≡ −1

n
log f (X)

is strongly concentrated around its mean 1
n h(X).
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12 Large deviations for the information content

Given X = (X1, . . . , Xn) with density f (x) on Rn, define

∆(X) = h̃(X)− h(X)

= − log f (X) + E log f (X).

Notes

1) ∆(TX) = ∆(X), for any invertible affine map T .

2) If Xi are independent,

∆(X) = ∆(X1) + . . . + ∆(Xn).

3) For X standard normal,

∆(X) =
n∑
i=1

X2
i − 1

2
.

Theorem 3. If f is log-concave, then for all t > 0, with some

absolute c > 0

P


1√
n
|∆(X)| ≥ t

 ≤ 2 e−ct.

Moreover, for 0 < t ≤
√
n,

P


1√
n
|∆(X)| ≥ t

 ≤ 2 e−ct
2
.
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13 M-ellipsoids

Equivalent form of the reverse Brunn-Minkowski inequality:

Theorem (V.D.Milman). For any symmetric convex body A

in Rn with |A| = 1, there is an ellipsoid E , |E| = 1, such that

|A ∩ E|1/n ≥ c,

where c > 0 is an absolute constant.

The ellipsoid E is called an M -ellipsoid.

If E is the ball, A is said to be in regular or M -position.

Theorem. Given a symmetric convex body A in Rn with vol-

ume |A| = 1, let γA denote the restricted Gaussian measure,

with density
dγA(x)

dx
=

1

Z
e−|x|

2/2 1A(x).

If γA is isotropic, then A is in M -position.
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14 Log-concave measures in M-position

Definition. Let µ be a probability measure on Rn with density

f (x) such that ‖f‖ = ess sup f (x) = 1. We say that µ is in M -

position (with constant c > 0), if

µ(D)1/n ≥ c,

for some Euclidean ball D of volume one.

Corollary. Any symmetric probability measure µ on Rn with

log-concave density f , ‖f‖ = 1, can be put in M -position.

That is, for some linear volume preserving map u : Rn → Rn,

the image u(µ) = µu−1 is in M -position.

Proof. Choose λ = e−c0n such that the symmetric convex body

A = {x : f (x) > λ}

has µ-measure at least 1/2 (by using Klartag-Milman’s theorem).

Then

1 ≥
∫
A
f ≥ λ |A| ⇒ |A| ≤ ec0n.

Also

1 ≤ 2µ(A) ≤ 2 |A| ⇒ |A| ≥ 1/2.

Then apply Milman’s theorem to A/|A|.
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15 Submodularity of entropy

Theorem (M.Madiman). Given independent random vectors

X, Y, Z in Rn with densities,

h(X + Y + Z) + h(Z) ≤ h(X + Z) + h(Y + Z).

Particular case. If Z is uniformly distributed in the Euclidean

ball of volume one, then h(Z) = 0 and

h(X + Y ) ≤ h(X + Z) + h(Y + Z).

Lemma. Let X have a symmetric log-concave density f on Rn

with ‖f‖ = 1. If the distribution µ of X is in M -position, then

h(X + Z) ≤ Cn.

Proof. Let g = 1D, so that f ∗ g(x) =
∫
D f (x− y) dy has norm

‖f ∗ g‖ = f ∗ g(0) =
∫
D
f (y) dy = µ(D) ≥ cn.

Reminder: If X has a log-concave distribution,

log ‖f‖−1/n ≤ 1

n
h(X) ≤ 1 + log ‖f‖−1/n.

Applying this to X + Z, we have

h(X + Z) ≤ n− log ‖f ∗ g‖.
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16 Proof of reverse entropy power inequality

Let X, Y be independent random vectors in Rn with log-concave

densities f, g, such that ‖f‖ = ‖g‖ = 1.

Symmetric case. By the above theorem and lemma, if X and

Y are in M -position then

h(X + Y ) ≤ 2Cn,

that is,

H(X + Y ) ≤ e4C.

In general h(X) ≥ n log ‖f‖−1/n = 0 ⇒ H(X) ≥ 1, so

H(X + Y ) ≤ e4C (H(X) + H(Y )).

Non-symmetric case. Use symmetrization.
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17 Relative entropy

Let X be a random vector in Rn with E |X|2 < +∞, with

density f (x). Then h(X) is well-defined, −∞ ≤ h(X) < +∞.

Important fact: If Z is normal with the same covariance matrix

as X , then

h(X) ≤ h(Z).

Definition. The quantity

D(X) = h(Z)− h(X)

is called the relative entropy of X with respect to Z.

Equivalently,

D(X) =
∫
f (x) log

f (x)

g(x)
dx,

where g is density of Z, provided EZ = EX , cov(Z) = cov(X).

Properties

• 0 ≤ D(X) ≤ +∞
• D(X) = 0⇐⇒ X is normal

• D(TX) = D(X), for any invertible affine map T : Rn → Rn

• Pinsker-type inequality:

D(X) ≥ 1

2
‖PX − PZ‖2TV.
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18 Isotropic constants

Definition. Let X be a random vector in Rn with log-concave

density f (x). The quantity

L2
X = L2

f = ‖f‖2/n inf
T

∫ |Tx|2
n

f (x) dx

is called the isotropic constant of X or f . Equivalently,

L2
X = ‖f‖2/n det(R)1/n, R = cov(X).

Isotropic position: EX = 0 and for all θ ∈ Rn with |θ| = 1,

E 〈X, θ〉2 =
∫
〈x, θ〉2 f (x) dx = ‖f‖−2/nL2

f .

Theorem 4. We have

log
[
LX

√
2π/e

]
≤ 1

n
D(X) ≤ log

[
LX
√

2πe
]
.

Corollary. LX ≥ 1√
2πe

.

Corollary. In the class of all log-concave densities on Rn the

following are equivalent:

• D(X) ≤ Cn with some universal constant C.

• LX ≤ C with some universal constant C.
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Proof. Let EX = 0, cov(X) = R = I , so that

LX = ‖f‖1/n.

Reminder: If X has a log-concave distribution,

log ‖f‖−1/n ≤ 1

n
h(X) ≤ 1 + log ‖f‖−1/n.

Let Z ∼ N(0, I) and put C = 2πe. Then

h(Z) =
1

2
log[(2πe)n det(R)] =

n

2
logC.

Thus

1

n
D(X) =

h(Z)− h(X)

n

≤ 1

2
logC − log ‖f‖−1/n

=
1

2
log[CL2

X ].

On the other hand,

1

n
D(X) =

h(Z)− h(X)

n

≤ 1

2
logC − log ‖f‖−1/n − 1

=
1

2
log[CL2

X/e
2].
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19 Reverse B-M inequality for isotropic bodies

Theorem (K. Ball 1986) Let A and B be convex bodies in

isotropic position. Then with some absolute constant c > 0,

c |A + B|1/n ≤ LA |A|1/n + LB |B|1/n.

Proof (information-theoretic). If cov(X) = cov(Z) with Z

normal, then

h(X) ≤ h(Z).

Equivalently, if X ∼ f ,

1

2πe
H(X) ≤

∫ |x|2
n

f (x) dx.

LetX and Y have log-concave isotropic densities f and g. Apply

the above to X + Y :

1

2πe
H(X + Y ) ≤

∫ |x|2
n

f (x) dx +
∫ |x|2
n

g(x) dx

That is,

1

2πe
H(X + Y ) ≤ L2

f H(X) + L2
gH(Y ).

If X ∼ U(A), Y ∼ U(B),

1

2πe
H(X + Y ) ≤ L2

A |A|2/n + L2
B |B|2/n.

Reminder: H(X + Y ) ≥ 1
4 |A + B|2/n, so

1

8πe
|A + B|2/n ≤ L2

A |A|2/n + L2
B |B|2/n.
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