Fifth International Workshop on "Convex Geometry – Analytic Aspects" Cortona, Italy, June 12–18, 2011

INFORMATION-THEORETIC EXTENSIONS IN HIGH-DIMENSIONAL CONVEX GEOMETRY

Sergey G. Bobkov

joint work with Mokshay Madiman

1 Entropy functional

 $X = (X_1, \ldots, X_n)$ a random vector in \mathbf{R}^n with density f(x)Entropy (differential entropy, Shannon entropy):

$$h(X) = -\int f(x)\log f(x) \, dx.$$

Entropy power (exponentiated entropy, "effective variance"):

$$H(X) = \exp\left[\frac{2}{n}h(X)\right].$$

Information content:

$$\tilde{h}(X) = -\log f(X).$$

Connections and similarities between Information Theory and other fields (Convex Geometry, Matrix Analysis, Probability, Sobolev inequalities):

Costa and Cover (1984) "On the similarity of the entropy power inequality and the Brunn-Minkowski inequality"

Dembo, Cover and Thomas (1991) "Information theoretic inequalities"

Johnson (2004) "Information theory and the central limit theorem" $\,$

Linnik (1959) "An information-theoretic proof of the central limit theorem with the Lindeberg condition"

2 A few basic properties of the entropy

• For any affine volume preserving map $T: \mathbf{R}^n \to \mathbf{R}^n$,

$$h(TX) = h(X), \qquad H(TX) = H(X).$$

- $H(\lambda X) = \lambda^2 H(X) \ (\lambda \neq 0).$
- $\mathbf{E}\,\tilde{h}(X) = h(X).$
- For any invertible affine map $T: \mathbf{R}^n \to \mathbf{R}^n$

$$\tilde{h}(TX) - h(TX) = \tilde{h}(X) - h(X).$$

- (Monotonicity) If X and Y and independent, then $h(X+Y) \geq h(X).$
- (Subadditivity) If $X = (X_1, \ldots, X_n)$, then

$$h(X_1,\ldots,X_n) \le h(X_1) + \ldots + h(X_n)$$

with equality when X_j are independent.

3 Examples

Uniform distribution: If X is uniformly distributed in a convex body $A \subset \mathbf{R}^n$, then

$$h(X) = \log |A|, \qquad H(X) = |A|^{2/n},$$

where |A| stands for the *n*-dimensional volume of A.

General property: $X \in A \subset \mathbb{R}^n \Rightarrow$ $h(X) \le \log |A|, \qquad H(X) \le |A|^{2/n}.$

Normal (Gaussian) distribution on R: If $X \sim N(a, \sigma^2)$ $a = \mathbf{E}X, \sigma^2 = \operatorname{Var}(X)$. Then

$$h(X) = \log \sqrt{2\pi e \sigma^2}, \qquad H(X) = 2\pi e \sigma^2.$$

Normal distribution on \mathbb{R}^n : If $X \sim N(a, R)$, $R = \operatorname{cov}(X)$,

$$h(X) = \log \sqrt{(2\pi e)^n \det(R)}, \qquad H(X) = 2\pi e \det(R)^{1/n}.$$

Equivalently: If X has density f with $||f|| = ess \sup_x f(x)$, then $h(X) = -\log ||f|| + \frac{n}{2}$

4 Brunn-Minkowski and entropy power inequalities

Theorem (Brunn-Minkowski):

$$|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n},$$

where |A| stands for the *n*-dimensional volume of A.

Theorem (Shannon 1948, Stam 1959, Lieb 1975). Given independent random vectors X and Y in \mathbb{R}^n with finite entropies,

$$H(X+Y) \ge H(X) + H(Y).$$

Equality: Iff X and Y are normal, with proportional covariance matrices.

The case of normal distributions:

Minkowski inequality for positive definite matrices. If $X \sim N(a, R)$ and $Y \sim N(b, S)$, then

$$\det(R+S)^{1/n} \ge \det(R)^{1/n} + \det(S)^{1/n}.$$

The case of uniform distribution: If $X \sim U(A)$, $Y \sim U(B)$, then X + Y is not uniform in A + B. Nevertheless,

$$\frac{1}{4} |A + B|^{2/n} \le H(X + Y) \le |A + B|^{2/n}$$

5 Reverse Brunn-Minkowski inequality

Brunn-Minkowski inequality:

$$|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n}$$

Question. How sharp is it? For any linear volume preserving maps $u_i : \mathbf{R}^n \to \mathbf{R}^n$, we still have

$$|\widetilde{A} + \widetilde{B}|^{1/n} \ge |A|^{1/n} + |B|^{1/n},$$

where $\widetilde{A} = u_1(A), \ \widetilde{B} = u_2(B).$

Theorem (V. D. Milman, mid 80s): Given convex bodies A and B in \mathbb{R}^n , for some linear volume preserving maps $u_i : \mathbb{R}^n \to \mathbb{R}^n$,

$$|\widetilde{A}+\widetilde{B}|^{1/n} \leq C \left(|A|^{1/n} + |B|^{1/n} \right),$$

where C is a universal constant.

Equivalently: If |A| = |B| = 1, then

$$2 \le |\widetilde{A} + \widetilde{B}|^{1/n} \le C.$$

Question. Entropic formulation / extension?

6 Reverse entropy power inequality

Let X and Y be independent random vectors in \mathbb{R}^n with densities f(x) and g(x). We have the entropy power inequality:

$$H(X+Y) \ge H(X) + H(Y).$$

Theorem 1. If X and Y have log-concave distributions, then for some linear volume preserving maps $u_i : \mathbf{R}^n \to \mathbf{R}^n$,

$$H(\widetilde{X} + \widetilde{Y}) \le C\left(H(X) + H(Y)\right)$$

where $\widetilde{X} = u_1(X), \ \widetilde{Y} = u_2(Y).$

Equivalently: If ||f|| = ||g|| = 1, then

$$C_0 \le H(\widetilde{X} + \widetilde{Y}) \le C_1,$$

with some absolute constants $C_1 > C_0 > 0$.

Corollary. If $X \sim U(A)$, $Y \sim U(B)$, then $H(X) = |A|^{2/n}$, $H(Y) = |B|^{2/n}$, while

$$H(\widetilde{X} + \widetilde{Y}) \ge \frac{1}{4} |\widetilde{A} + \widetilde{B}|^{2/n}.$$

Hence,

$$|\widetilde{A} + \widetilde{B}|^{2/n} \le C \left(|A|^{2/n} + |B|^{2/n} \right).$$

7 Convex measures

Definition (Borell 1974). A Radon probability measure μ on a locally convex space L is κ -concave, where $-\infty \leq \kappa \leq 1$, if

$$\mu(tA + sB) \geq (t\mu(A)^{\kappa} + s\mu(B)^{\kappa})^{1/\kappa}$$

for all non-empty $A, B \subset L$ and t, s > 0, t + s = 1.

Characterization on $L = \mathbf{R}^n$ in the absolut. continuous case (necessarily $\kappa \leq 1/n$):

 μ is κ -concave $\iff \mu$ has a κ_n -concave density f,

that is, for all x, y from a convex supporting set $\Omega \subset \mathbf{R}^n$, and all t, s > 0, t + s = 1,

$$f(tx + sy) \ge (tf(x)^{\kappa_n} + sf(y)^{\kappa_n})^{1/\kappa_n}$$

where

$$\kappa_n = \frac{\kappa}{1 - n\kappa}.$$

Particular cases of κ 's

1) $\kappa = 1/n, \ \kappa_n = +\infty$: $\mu = U(K)$ (B-M inequality)

2) $\kappa = \kappa_n = 0$: Log-concave measures (Prékopa 1971);

$$\mu(tA+sB) \ge \mu(A)^t \mu(B)^s, \qquad f(tx+sy) \ge f(x)^t f(y)^s.$$

3) $\kappa = -\infty$, $\kappa_n = -1/n$: Convex (or hyperbolic) measures;

$$\mu(tA + sB) \ge \min\{\mu(A), \mu(B)\}.$$

Equivalently: $f = V^{-n}$, for some positive convex V on an open convex set $\Omega \subset \mathbf{R}^n$. **Range** $-\infty < \kappa < 0$: densities have the form

$$f(x) = V(x)^{-\beta}, \qquad \beta > n, \ \kappa = -\frac{1}{\beta - n},$$

where $V : \mathbf{R}^n \to (-\infty, +\infty]$ are convex.

Examples

- 1) Gaussian measures, exponential measures, $\kappa = 0$.
- 2) Cauchy measures, $\kappa = -1/d$ (d > 0 real),

$$f(x) = \frac{1}{Z} \left(1 + |x|^2\right)^{-(n+d)/2}$$

3) Pareto distributions on \mathbf{R}^n_+ , $\kappa = -1/d$ (d > 0 real),

$$f(x) = \frac{1}{Z} (1 + x_1 + \ldots + x_n)^{-(n+d)}$$

Theorem 2. Let $\beta_0 > 2$. If X and Y have κ -concave distributions with

$$\beta \ge \max\{\beta_0 n, 2n+1\},\$$

then for some linear volume preserving maps $u_i : \mathbf{R}^n \to \mathbf{R}^n$,

$$H(\widetilde{X} + \widetilde{Y}) \le C_{\beta_0} \left(H(X) + H(Y) \right)$$

where $\widetilde{X} = u_1(X), \ \widetilde{Y} = u_2(Y).$

Note. The reverse entropy power inequality is not uniform in the class of all convex measures.

8 Entropy and volume of the support

Let X and Y be independent random vectors in \mathbb{R}^n .

Lemma 1. (Borell 1974) If the distributions of X and Y are κ_1 - and κ_2 -concave, $\kappa_1, \kappa_2 > 0$, then the distribution of X + Y is κ -concave with

$$\frac{1}{\kappa} = \frac{1}{\kappa_1} + \frac{1}{\kappa_2}.$$

Lemma 2. Let X be a random vector in \mathbb{R}^n having an absolutely continuous κ -concave distribution supported on a convex body A, with $0 < \kappa \leq 1/n$. Then

$$\log |A| + n \log(\kappa n) \le h(X) \le \log |A|.$$

Proof. Apply Berwald's inequality in the form of Borell (Khinchintype inequality for concave functions).

Example

If X and Y are independent and uniformly distributed in convex bodies A and B in \mathbb{R}^n in which case $\kappa_1 = \kappa_2 = 1/n$, then X + Yhas a κ -concave distribution with $\kappa = 1/(2n)$, so

$$\log \left| \frac{A+B}{2} \right| \le h(X+Y) \le \log |A+B|,$$
$$\frac{1}{2} |A+B|^{1/n} \le H(X+Y)^{1/2} \le |A+B|^{1/n}.$$

9 Entropy and maximum of density

Assume X has a convex distribution with density

$$f(x) = V(x)^{-\beta}, \quad \beta > n,$$

where V is a positive convex function on \mathbb{R}^n . Let

$$\|f\| = \sup_{x} f(x).$$

Lemma 3. If $\beta \ge n+1$, and if ||f|| is fixed, the entropy h(X) is maximal for the *n*-dimensional Pareto distribution. Equivalently,

$$-\log ||f|| \le h(X) \le -\log ||f|| + \sum_{i=1}^{n} \frac{\beta}{\beta - i}.$$

Range $\beta \geq \beta_0 n$ with fixed $\beta_0 > 1$:

$$\log \|f\|^{-1/n} \le \frac{1}{n} h(X) \le C_{\beta_0} + \log \|f\|^{-1/n}$$

with some constant C_{β_0} , depending on β_0 , only.

10 Log-concave case

If X has a log-concave distribution $(\beta = +\infty)$,

$$\log \|f\|^{-1/n} \le \frac{1}{n} h(X) \le 1 + \log \|f\|^{-1/n},$$

that is,

$$0 \le \frac{1}{n}h(X) + \frac{1}{n}\log||f|| \le 1.$$

Equivalently, if Z has a normal distribution with maximum of the density the same as for the density of X, then

$$\frac{1}{n}h(Z) - \frac{1}{2} \le \frac{1}{n}h(X) \le \frac{1}{n}h(Z) + \frac{1}{2}.$$

Equality on the left: Uniform distribution in a convex body Equality on the right: The exponential distribution

Proof. Given t, s > 0, t + s = 1, write

$$f(tx + sy)^{1/t} \ge f(x) f(y)^{s/t}.$$

Integrate with respect to x and then maximize over y:

$$t^{-n} \int f(x)^{1/t} dx \ge ||f||^{s/t}.$$

Let $t \to 1$.

11 Concentration of the information content

Let X have a log-concave density f(x) on \mathbb{R}^n .

Theorem (Klartag-Milman). With some absolute $c_0, c_1 > 0$

$$\mathbf{P}\{f(X) \ge \|f\| e^{-c_0 n}\} \ge 1 - e^{-c_1 n}.$$

Thus, with very high probability

$$-\log f(X) + \log \|f\| \le c_0 n.$$

On the other hand,

$$0 \le h(X) + \log \|f\| \le n.$$

Informal conclusion:

$$\frac{1}{n}\; \tilde{h}(X) \equiv -\frac{1}{n} \, \log f(X)$$

is strongly concentrated around its mean $\frac{1}{n}h(X)$.

12 Large deviations for the information content

Given
$$X = (X_1, \dots, X_n)$$
 with density $f(x)$ on \mathbb{R}^n , define

$$\Delta(X) = \tilde{h}(X) - h(X)$$

$$= -\log f(X) + \mathbb{E} \log f(X).$$

Notes

- 1) $\Delta(TX) = \Delta(X)$, for any invertible affine map T.
- 2) If X_i are independent,

$$\Delta(X) = \Delta(X_1) + \ldots + \Delta(X_n).$$

3) For X standard normal,

$$\Delta(X) = \sum_{i=1}^{n} \frac{X_i^2 - 1}{2}.$$

Theorem 3. If f is log-concave, then for all t > 0, with some absolute c > 0

$$\mathbf{P}\left\{\frac{1}{\sqrt{n}} \left|\Delta(X)\right| \ge t\right\} \le 2 e^{-ct}.$$

Moreover, for $0 < t \le \sqrt{n}$,

$$\mathbf{P}\left\{\frac{1}{\sqrt{n}} |\Delta(X)| \ge t\right\} \le 2 e^{-ct^2}.$$

13 *M*-ellipsoids

Equivalent form of the reverse Brunn-Minkowski inequality:

Theorem (V.D.Milman). For any symmetric convex body A in \mathbb{R}^n with |A| = 1, there is an ellipsoid \mathcal{E} , $|\mathcal{E}| = 1$, such that

$$|A \cap \mathcal{E}|^{1/n} \ge c,$$

where c > 0 is an absolute constant.

The ellipsoid \mathcal{E} is called an *M*-ellipsoid. If \mathcal{E} is the ball, *A* is said to be in regular or *M*-position.

Theorem. Given a symmetric convex body A in \mathbb{R}^n with volume |A| = 1, let γ_A denote the restricted Gaussian measure, with density

$$\frac{d\gamma_A(x)}{dx} = \frac{1}{Z} e^{-|x|^2/2} 1_A(x).$$

If γ_A is isotropic, then A is in M-position.

14 Log-concave measures in *M*-position

Definition. Let μ be a probability measure on \mathbb{R}^n with density f(x) such that $||f|| = \operatorname{ess\,sup} f(x) = 1$. We say that μ is in *M*-position (with constant c > 0), if

$$\mu(D)^{1/n} \ge c,$$

for some Euclidean ball D of volume one.

Corollary. Any symmetric probability measure μ on \mathbb{R}^n with log-concave density f, ||f|| = 1, can be put in *M*-position.

That is, for some linear volume preserving map $u : \mathbf{R}^n \to \mathbf{R}^n$, the image $u(\mu) = \mu u^{-1}$ is in *M*-position.

Proof. Choose $\lambda = e^{-c_0 n}$ such that the symmetric convex body

$$A = \{x : f(x) > \lambda\}$$

has μ -measure at least 1/2 (by using Klartag-Milman's theorem). Then

$$1 \ge \int_A f \ge \lambda |A| \implies |A| \le e^{c_0 n}.$$

Also

$$1 \le 2\mu(A) \le 2|A| \implies |A| \ge 1/2.$$

Then apply Milman's theorem to A/|A|.

15 Submodularity of entropy

Theorem (M.Madiman). Given independent random vectors X, Y, Z in \mathbb{R}^n with densities,

$$h(X + Y + Z) + h(Z) \le h(X + Z) + h(Y + Z).$$

Particular case. If Z is uniformly distributed in the Euclidean ball of volume one, then h(Z) = 0 and

$$h(X+Y) \le h(X+Z) + h(Y+Z).$$

Lemma. Let X have a symmetric log-concave density f on \mathbb{R}^n with ||f|| = 1. If the distribution μ of X is in M-position, then

$$h(X+Z) \le Cn.$$

Proof. Let $g = 1_D$, so that $f * g(x) = \int_D f(x - y) dy$ has norm

$$||f * g|| = f * g(0) = \int_D f(y) \, dy = \mu(D) \ge c^n.$$

Reminder: If X has a log-concave distribution,

$$\log \|f\|^{-1/n} \le \frac{1}{n} h(X) \le 1 + \log \|f\|^{-1/n}.$$

Applying this to X + Z, we have

$$h(X+Z) \le n - \log \|f * g\|.$$

16 Proof of reverse entropy power inequality

Let X, Y be independent random vectors in \mathbb{R}^n with log-concave densities f, g, such that ||f|| = ||g|| = 1.

Symmetric case. By the above theorem and lemma, if X and Y are in M-position then

$$h(X+Y) \le 2Cn,$$

that is,

$$H(X+Y) \le e^{4C}.$$

In general $h(X) \ge n \log ||f||^{-1/n} = 0 \implies H(X) \ge 1$, so $H(X+Y) \le e^{4C} (H(X) + H(Y)).$

Non-symmetric case. Use symmetrization.

17 Relative entropy

Let X be a random vector in \mathbf{R}^n with $\mathbf{E} |X|^2 < +\infty$, with density f(x). Then h(X) is well-defined, $-\infty \leq h(X) < +\infty$.

Important fact: If Z is normal with the same covariance matrix as X, then

$$h(X) \le h(Z).$$

Definition. The quantity

$$D(X) = h(Z) - h(X)$$

is called the relative entropy of X with respect to Z. Equivalently,

$$D(X) = \int f(x) \log \frac{f(x)}{g(x)} \, dx,$$

where g is density of Z, provided $\mathbf{E}Z = \mathbf{E}X$, $\operatorname{cov}(Z) = \operatorname{cov}(X)$.

Properties

- $0 \le D(X) \le +\infty$
- $D(X) = 0 \iff X$ is normal
- D(TX) = D(X), for any invertible affine map $T : \mathbf{R}^n \to \mathbf{R}^n$
- Pinsker-type inequality:

$$D(X) \ge \frac{1}{2} \|P_X - P_Z\|_{\mathrm{TV}}^2.$$

18 Isotropic constants

Definition. Let X be a random vector in \mathbb{R}^n with log-concave density f(x). The quantity

$$L_X^2 = L_f^2 = \|f\|^{2/n} \inf_T \int \frac{|Tx|^2}{n} f(x) dx$$

is called the isotropic constant of X or f. Equivalently,

$$L_X^2 = ||f||^{2/n} \det(R)^{1/n}, \qquad R = \operatorname{cov}(X).$$

Isotropic position: $\mathbf{E}X = 0$ and for all $\theta \in \mathbf{R}^n$ with $|\theta| = 1$,

$$\mathbf{E} \langle X, \theta \rangle^2 = \int \langle x, \theta \rangle^2 f(x) \, dx = \|f\|^{-2/n} L_f^2.$$

Theorem 4. We have

$$\log\left[L_X\sqrt{2\pi/e}\right] \le \frac{1}{n} D(X) \le \log\left[L_X\sqrt{2\pi e}\right].$$

Corollary. $L_X \ge \frac{1}{\sqrt{2\pi e}}$.

Corollary. In the class of all log-concave densities on \mathbb{R}^n the following are equivalent:

- $D(X) \leq Cn$ with some universal constant C.
- $L_X \leq C$ with some universal constant C.

Proof. Let $\mathbf{E}X = 0$, cov(X) = R = I, so that $L_X = ||f||^{1/n}$.

Reminder: If X has a log-concave distribution,

$$\log \|f\|^{-1/n} \le \frac{1}{n} h(X) \le 1 + \log \|f\|^{-1/n}.$$

Let $Z \sim N(0, I)$ and put $C = 2\pi e$. Then

$$h(Z) = \frac{1}{2} \log[(2\pi e)^n \det(R)] = \frac{n}{2} \log C.$$

Thus

$$\frac{1}{n} D(X) = \frac{h(Z) - h(X)}{n} \\ \leq \frac{1}{2} \log C - \log ||f||^{-1/n} \\ = \frac{1}{2} \log[CL_X^2].$$

On the other hand,

$$\frac{1}{n} D(X) = \frac{h(Z) - h(X)}{n}$$

$$\leq \frac{1}{2} \log C - \log ||f||^{-1/n} - 1$$

$$= \frac{1}{2} \log[CL_X^2/e^2].$$

19 Reverse B-M inequality for isotropic bodies

Theorem (K. Ball 1986) Let A and B be convex bodies in isotropic position. Then with some absolute constant c > 0,

$$c |A + B|^{1/n} \le L_A |A|^{1/n} + L_B |B|^{1/n}.$$

Proof (information-theoretic). If cov(X) = cov(Z) with Z normal, then

$$h(X) \le h(Z).$$

Equivalently, if $X \sim f$,

$$\frac{1}{2\pi e} H(X) \le \int \frac{|x|^2}{n} f(x) \, dx.$$

Let X and Y have log-concave isotropic densities f and g. Apply the above to X + Y:

$$\frac{1}{2\pi e} H(X+Y) \le \int \frac{|x|^2}{n} f(x) \, dx + \int \frac{|x|^2}{n} g(x) \, dx$$

That is,

$$\frac{1}{2\pi e} H(X+Y) \le L_f^2 H(X) + L_g^2 H(Y).$$

If $X \sim U(A), Y \sim U(B),$ $\frac{1}{2\pi \epsilon} H(X+Y)$

$$\frac{1}{2\pi e} H(X+Y) \le L_A^2 |A|^{2/n} + L_B^2 |B|^{2/n}.$$

Reminder: $H(X+Y) \ge \frac{1}{4} |A+B|^{2/n}$, so

$$\frac{1}{8\pi e} |A + B|^{2/n} \le L_A^2 |A|^{2/n} + L_B^2 |B|^{2/n}.$$