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1 Entropy functional

X = (Xy,...,X,) arandom vector in R" with density f(x)
Entropy (differential entropy, Shannon entropy):

= — [ f(z)log f(x
Entropy power (exponentiated entropy, ”effective variance”):
2
H(X) = exp h(X)] :
n

Information content:

h(X) = —log f(X).

Connections and similarities between Information Theory and
other fields (Convex Geometry, Matrix Analysis, Probability,
Sobolev inequalities):

Costa and Cover (1984) ”On the similarity of the entropy power
inequality and the Brunn-Minkowski inequality”

Dembo, Cover and Thomas (1991) ”Information theoretic in-
equalities”

Johnson (2004) " Information theory and the central limit theo-

7

reml

Linnik (1959) ” An information-theoretic proof of the central limit
theorem with the Lindeberg condition”
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2 A few basic properties of the entropy

e For any affine volume preserving map 7' : R" — R",

WTX)=h(X), H(TX)=HX).

HOX) = A2 H(X) (A£0).

Eh(X) = h(X).
e For any invertible affine map 7' : R" — R"
MTX)—h(TX)=h(X) - h(X).
e (Monotonicity) If X and Y and independent, then
h(X+Y)>h(X).
e (Subadditivity) If X = (X3,...,X,), then
h(Xy,...,X,) <h(Xy)+...+h(X,)

with equality when X; are independent.



3 Examples

Uniform distribution: If X is uniformly distributed in a
convex body A C R", then

hX)=log|Al,  H(X)=|AP",

where |A| stands for the n-dimensional volume of A.

General property. X € ACR" =
h(X) <log|Al,  H(X)<|AP™

Normal (Gaussian) distribution on R: If X ~ N(a, c?)
a =EX, 0? = Var(X). Then

h(X) =log V2me o2, H(X) = 2mec?

Normal distribution on R™: If X ~ N(a, R), R = cov(X),

h(X) =log/(2me)ndet(R),  H(X) = 2me det(R)Y™.

Equivalently: If X has density f with || f|| = esssup, f(z), then

h(X) = —log |I£ll +3



4 Brunn-Minkowski and entropy power inequalities

Theorem (Brunn-Minkowski):
[A+ B|"" > AV + | BV,

where |A| stands for the n-dimensional volume of A.

Theorem (Shannon 1948, Stam 1959, Lieb 1975). Given inde-
pendent random vectors X and Y in R"™ with finite entropies,

HX+Y)> H(X)+ H(Y).

Fquality: Ift X and Y are normal, with proportional covariance
matrices.

The case of normal distributions:
Minkowski inequality for positive definite matrices. If X ~

N(a,R) and Y ~ N(b,.5), then
det(R + S)Y" > det(R)Y™ 4 det(S)Y".

The case of uniform distribution: If X ~ U(A), Y ~ U(B),
then X + Y is not uniform in A + B. Nevertheless,

1
. A+ B|Y"< HX+Y)< |A+ B



5 Reverse Brunn-Minkowski inequality

Brunn-Minkowski inequality:

|A+ B|Y" > |A]Y" + | BV

Question. How sharp is it? For any linear volume preserving
maps u; : R" — R, we still have

A+ BI'" > JA" + B,
where A = u1(A), B = us(B).

Theorem (V. D. Milman, mid 80s): Given convex bodies A and
B in R", for some linear volume preserving maps u; : R" — R",

A+ BV < C (JAY" + BV,

where C' is a universal constant.

Equivalently: If |A| = |B| = 1, then
2<|A+Bl'" < C.

Question. Entropic formulation / extension?



6 Reverse entropy power inequality

Let X and Y be independent random vectors in R"™ with densi-
ties f(x) and g(z). We have the entropy power inequality:

HX+Y)>HX)+H(Y).

Theorem 1. If X and Y have log-concave distributions, then
for some linear volume preserving maps u; : R" — R",

HX+Y)<C(H(X)+ H(Y))
where X = u(X), Y = uy(Y).

Equivalently: If || f|| = ||g|| = 1, then
Co < H(X/—FY) < 01,

with some absolute constants C; > Cy > 0.

Corollary. If X ~ U(A), Y ~ U(B), then H(X) = |A‘2/n7
H(Y) = |B|*/", while

. |
HX+Y)> A+ B|Y".

Hence,

A+ BPm < C (JAP/"+ |BP) .



7 Convex measures

Definition (Borell 1974). A Radon probability measure p on
a locally convex space L is k-concave, where —oo < k < 1, if

ptA+sB) > (tu(A)* + sp(B)")V*
for all non-empty A, B C Landt,s >0,t+s=1.

Characterization on L. = R" in the absolut. continuous case
(necessarily k < 1/n):

[t 18 k—concave <=> W has a k,—concave density f,

that is, for all z,y from a convex supporting set 2 C R", and
all t,s >0, t+s=1,

flte + sy) > (tf(x)™ + Sf(y)“”)l/“”

where
K

Ky = )
1 —nk

Particular cases of x’s
1) k=1/n, k, = +oo: p=U(K) (B-M inequality)
2) k = Kk, = 0: Log-concave measures (Prékopa 1971);

p(tA+sB) > w(A) ' w(B)*,  fltr+sy) > f(z)'f(y)"

3) k = —00, k, = —1/n: Convex (or hyperbolic) measures;
pu(tA + sB) = min{p(A), u(B)}.

Equivalently: f = V™", for some positive convex V' on an open
convex set {2 C R™.



Range —oo < k < 0: densities have the form

f(:z:):V(a:)_ﬁ, B>n, k=—

B—n’
where V : R" — (—00, +00] are convex.
Examples

1) Gaussian measures, exponential measures, k = 0.
2) Cauchy measures, kK = —1/d (d > 0 real),

fla) = o (14 [af?) 0

3) Pareto distributions on R}, k = —1/d (d > 0 real),

1
flx) = 7 (1+x+... 4z,) 0t

Theorem 2. Let 5y > 2. If X and Y have k-concave distribu-
tions with
B > max{fon, 2n + 1},

then for some linear volume preserving maps u; : R" — R",
HX+Y)<Cq(HX)+H(Y))
where X = u;(X), Y = uy(Y).

Note. The reverse entropy power inequality is not uniform in
the class of all convex measures.



8 Entropy and volume of the support

Let X and Y be independent random vectors in R".

Lemma 1. (Borell 1974) If the distributions of X and Y are
k1- and ko-concave, K1, ko > 0, then the distribution of X +Y
1S k-concave with

Lemma 2. Let X be a random vector in R" having an abso-
lutely continuous xk-concave distribution supported on a convex

body A, with 0 < K < 1/n. Then
log |[A| + nlog(kn) < h(X) < log|A|.

Proof. Apply Berwald’s inequality in the form of Borell (Khinchin-
type inequality for concave functions).

Example

If X and Y are independent and uniformly distributed in convex
bodies A and B in R" in which case k1 = k3 = 1/n, then X +Y
has a k-concave distribution with k = 1/(2n), so

A+ B
2

log| < (X +Y) < log|A+ B,
1
5 A+ B|Y"< HX +Y)Y2 < |A+ BV
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9 Entropy and maximum of density

Assume X has a convex distribution with density

fla)y=V(@)™", B>n,

where V' is a positive convex function on R". Let

11l = sup f(a).

Lemma 3. If § > n+1, andif || f|| is fixed, the entropy h(X) is
maximal for the n-dimensional Pareto distribution. Equivalently,

~log |17 < A(X) < ~log I+ 35 7

Range 3 > SByn with fixed [y > 1:
—1/n 1 —1/n
log | fII7" < = A(X) < Cgy +log [I£]7

with some constant Cg,, depending on Sy, only.
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10 Log-concave case
If X has a log-concave distribution (5 = +00),
—1/n 1 —1/n
log [T < —h(X) < 1+log || fII7",
that is,

1 1
0<—h(X)+ —log|[f] <1.
n n

Equivalently, if Z has a normal distribution with maximum of
the density the same as for the density of X, then

h(Z) - < THX) < h(Z)+ o

n 2 7 n n

Equality on the left: Uniform distribution in a convex body
Equality on the right: The exponential distribution

Proof. Given t,s > 0, t + s =1, write

fltz+sy)'" > f(z) fly)*".

Integrate with respect to x and then maximize over y:
e [ ) de > | f]

Lett — 1.
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11 Concentration of the information content

Let X have a log-concave density f(x) on R".

Theorem (Klartag-Milman). With some absolute ¢y, ¢; > 0

P{f(X)2 [flle) > 1—e

Thus, with very high probability
—log f(X) +log | f]] < con.

On the other hand,
0 < h(X)+log|f] <n.

Informal conclusion:

i& h(X) = _ib log f(X)

is strongly concentrated around its mean + h(X).
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12 Large deviations for the information content

Given X = (X, ..., X,,) with density f(z) on R", define
A(X) = h(X) - h(X)
= —log f(X) + E log f(X).
Notes

1) A(TX) = A(X), for any invertible affine map T
2) If X; are independent,

AX) = AX)) + ...+ A(X,).

3) For X standard normal,

AX) =3 >

Theorem 3. If f is log-concave, then for all ¢ > 0, with some
absolute ¢ > 0

P{\/lﬁ IAX)| > t} <2e

Moreover, for 0 < t < \/n,

P{\/lﬁ ACX)] Zt} <9,
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13 M-ellipsoids

Equivalent form of the reverse Brunn-Minkowski inequality:

Theorem (V.D.Milman). For any symmetric convex body A
in R" with |A| = 1, there is an ellipsoid &, |€] = 1, such that

ANEM > ¢,

where ¢ > () is an absolute constant.

The ellipsoid £ is called an M-ellipsoid.
If £ is the ball, A is said to be in regular or M-position.

Theorem. Given a symmetric convex body A in R" with vol-
ume |A| = 1, let y4 denote the restricted Gaussian measure,

with density

d’}/A(CU) 1 | ‘2/2
= e P2 ().
dz 7 ° alz)

If 4 is isotropic, then A is in M-position.
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14 Log-concave measures in M-position

Definition. Let i be a probability measure on R" with density
f(z) such that || f|| = esssup f(z) = 1. We say that p is in M-
position (with constant ¢ > 0), if

wD)" > ¢,

for some Euclidean ball D of volume one.

Corollary. Any symmetric probability measure 1 on R" with
log-concave density f, || f]| = 1, can be put in M-position.

That is, for some linear volume preserving map u : R — R",
the image u(u) = pu~t is in M-position.

Proof. Choose A = e~“" such that the symmetric convex body
A={z: f(x) > A}

has p-measure at least 1/2 (by using Klartag-Milman’s theorem).
Then
1> [, f>XA] = |A] <evm

Also
1 <2u(A) <2|A| = |A|>1/2.

Then apply Milman’s theorem to A/|A|.
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15 Submodularity of entropy

Theorem (M.Madiman). Given independent random vectors
X,Y, Z in R"™ with densities,

h(X+Y +2Z)+h(Z) < MX+Z)+hY + 2).

Particular case. It Z is uniformly distributed in the Euclidean
ball of volume one, then h(Z) = 0 and

(X +Y)<hX+Z)+hY +2).

Lemma. Let X have a symmetric log-concave density f on R"
with || f|| = 1. If the distribution p of X is in M-position, then

hX + 7)< Cn.

Proof. Let g = 1p, so that f*g(x) = /p f(x —y) dy has norm

If *gll = f*g(0) = [, fly)dy = u(D) >

Reminder: If X has a log-concave distribution,
—1/n 1 —1/n
log [T < —h(X) < 1+log [ fII7"
Applying this to X + Z, we have
WX +7Z) <n—logllf gl
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16 Proof of reverse entropy power inequality

Let X, Y be independent random vectors in R"™ with log-concave
densities f, g, such that || f|| = [lg|| = 1.

Symmetric case. By the above theorem and lemma, if X and
Y are in M-position then

h(X +Y) <2Cn,

that is,
H(X +Y) <,

In general h(X) > nlog||f|7Y"=0 = H(X)>1, so

HX+Y) < HX)+ HY)).

Non-symmetric case. Use symmetrization.
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17 Relative entropy

Let X be a random vector in R" with E|X|> < +oo, with
density f(x). Then h(X) is well-defined, —oo < h(X) < +o0.

Important fact: If Z is normal with the same covariance matrix
as X, then
h(X) < h(Z).

Definition. The quantity
D(X) = hZ) = h(X)

is called the relative entropy of X with respect to Z.
Equivalently,

(@)
/f log()

where g is density of Z, provided EZ = EX, cov(Z) = cov(X).

Properties

e 0 <DX)< 400

e D(X)=0<«= X is normal

e D(TX)= D(X), for any invertible affine map 7" : R" — R”
e Pinsker-type inequality:

1
D(X) = 2 |Px — Pgll7vy-
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18 Isotropic constants

Definition. Let X be a random vector in R" with log-concave
density f(x). The quantity

[Tz

Lk = Lj = [IFIP" ipf [ = f(a)da

is called the isotropic constant of X or f. Equivalently,
Ly = | det(B)", R = cov(X)

Isotropic position: EX = 0 and for all § € R" with |6]| = 1,
E(X,0)° = [(x,0)" f(z)dx = || f||7*" L},

Theorem 4. We have

log {LX\/QW/Q] < iD(X) < log {LX\/%}.

1
Corollary. Lx > N

Corollary. In the class of all log-concave densities on R" the
following are equivalent:

e D(X) < Cn with some universal constant C'.
e Ly < (C with some universal constant C.
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Proof. Let EX =0, cov(X) = R =1, so that

Ly = | flV".

Reminder: If X has a log-concave distribution,

—1/n 1 —1/n
log [T < —h(X) < 1+log | fII7"

Let Z ~ N(0,I) and put C' = 2me. Then

h7) = ; Jogl(2me)" det(R)] = log C.

Thus
n . n
< 5 logC'—log || £ 7"
1

=5 log[C'L%].

On the other hand,
n n
< S logC—log || f|7/" =1

log[C' L5 /€?].

N~ —
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19 Reverse B-M inequality for isotropic bodies

Theorem (K. Ball 1986) Let A and B be convex bodies in
isotropic position. Then with some absolute constant ¢ > 0,

c|A+ BIY" < Ly|AY" + L |BJY".

Proof (information-theoretic). If cov(X) = cov(Z) with Z
normal, then

h(X) < h(2).

Equivalently, if X ~ f,

1 Efs
— H(X) <
2me ( ) _/

f(z)dx.

Let X and Y have log-concave isotropic densities f and g. Apply
the above to X + Y

n

1H(X+Y)§/’xn‘2 f(ac)d:z:—i—/’:Cn’2 g(z)dx

2me

That is,

1
— H(X+Y) < LA2H(X)+ L?
S HX+Y) < L3 H(X) +
If X ~U(A),Y ~U(B),

1

S HX+Y) < L4 A" + L% | B)Ym.
me

Reminder: H(X +Y) > 1A+ B*", so

1
- |A+ B|*™ < L% A" + L% |B|™.
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