Successive radif of convex bodies

María A. Hernández Cifre
(joint work with Bernardo González)

Universidad de Murcia

Cortona, June 2011

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.
- $\operatorname{vol}(K)=$ volume (Lebesgue measure) of $K . \quad \kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.
- $\operatorname{vol}(K)=$ volume (Lebesgue measure) of $K . \quad \kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.
- $\mathrm{R}(K)=$ circumradius of K.
- $\mathrm{r}(K)=$ inradius of K.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.
- $\operatorname{vol}(K)=$ volume (Lebesgue measure) of $K . \quad \kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.
- $\mathrm{R}(K)=$ circumradius of K.
- $\mathrm{r}(K)=$ inradius of K.
- $\mathrm{D}(K)=$ diameter of K.
- $\omega(K)=$ minimal width of K.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.
- $\operatorname{vol}(K)=$ volume (Lebesgue measure) of $K . \quad \kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.
- $\mathrm{R}(K)=$ circumradius of K.
- $\mathrm{r}(K)=$ inradius of K.
- $\mathrm{D}(K)=$ diameter of K.
- $\omega(K)=$ minimal width of K.
- $\mathcal{L}_{i}^{n}=$ the set of all i-dimensional linear subspaces of \mathbb{R}^{n}.

Notation

- $\mathcal{K}^{n}=$ convex bodies (compact convex sets) in \mathbb{R}^{n}.
- $B_{n}=$ Euclidean unit ball.
- $\operatorname{vol}(K)=$ volume (Lebesgue measure) of $K . \quad \kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.
- $\mathrm{R}(K)=$ circumradius of K.
- $\mathrm{r}(K)=$ inradius of K.
- $\mathrm{D}(K)=$ diameter of K.
- $\omega(K)=$ minimal width of K.
- $\mathcal{L}_{i}^{n}=$ the set of all i-dimensional linear subspaces of \mathbb{R}^{n}.
- $L^{\perp}=$ the orthogonal complement of $L \in \mathcal{L}_{i}^{n}$.
- $K \mid L=$ the orthogonal projection of $K \in \mathcal{K}^{n}$ onto $L \in \mathcal{L}_{i}^{n}$.

Successive inner and outer radif (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let
$\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L)$

Successive inner and outer radii (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) \text {, }
$$

Successive inner and outer radif (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) .
\end{array}
$$

Successive inner and outer radif (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) .
\end{array}
$$

Some properties:

$$
\begin{gathered}
\frac{\omega(K)}{2}=\mathrm{R}_{1}(K) \leq \cdots \leq \mathrm{R}_{n}(K)=\mathrm{R}(K) \\
\mathrm{r}_{1}(K) \geq \cdots \geq \mathrm{r}_{n}(K)
\end{gathered}
$$

Successive inner and outer radif (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) .
\end{array}
$$

Some properties:

$$
\begin{aligned}
\frac{\omega(K)}{2} & =\mathrm{R}_{1}(K) \leq \cdots \leq \mathrm{R}_{n}(K)=\mathrm{R}(K) \\
\frac{\mathrm{D}(K)}{2} & =\mathrm{r}_{1}(K) \geq \cdots \geq \mathrm{r}_{n}(K)=\mathrm{r}(K)
\end{aligned}
$$

Successive inner and outer radif (projections/sections)

Definition: Successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \text { and } \quad \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) .
\end{array}
$$

Some properties:

$$
\begin{gathered}
\frac{\omega(K)}{2}=\mathrm{R}_{1}(K) \leq \cdots \leq \mathrm{R}_{n}(K)=\mathrm{R}(K) \\
\frac{\mathrm{D}(K)}{2}=\mathrm{r}_{1}(K) \geq \cdots \geq \mathrm{r}_{n}(K)=\mathrm{r}(K) \\
\overline{\mathrm{R}}_{1}(K)=\frac{\mathrm{D}(K)}{2}, \overline{\mathrm{R}}_{n}(K)=\mathrm{R}(K), \quad \overline{\mathrm{r}}_{1}(K)=\frac{\omega(K)}{2}, \overline{\mathrm{r}}_{n}(K)=\mathrm{r}(K) .
\end{gathered}
$$

Successive outer and inner radii: geometrical interpretation

$$
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L)
$$

- $\mathrm{R}_{i}(K)=$ smallest radius of the solid cylinder $\supset K$ with i-dimensional spherical cross section and ($n-i$)-dimensional generator.

Successive outer and inner radii: geometrical interpretation

$$
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) \quad \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L)
$$

- $\mathrm{R}_{i}(K)=$ smallest radius of the solid cylinder $\supset K$ with i-dimensional spherical cross section and $(n-i)$-dimensional generator.
- $\mathrm{r}_{i}(K)=$ radius of the greatest i-dimensional ball contained in K.

Successive outer and inner radii: geometrical interpretation

Ball, K.: Ellipsoids of maximal volume in convex bodies, Geom. Dedicata 41 (1992)

Theorem (Ball, 1992)

The regular n-simplex S_{n} circumscribing B_{n} contains an i-dimensional ball of radius $\mathrm{r}_{i}\left(S_{n}\right)=\sqrt{n(n+1) / i(i+1)}$ in each of its i-faces.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon), \pm(-2 / \sqrt{3}, 0, \varepsilon)\}, \varepsilon>0
$$

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon), \pm(-2 / \sqrt{3}, 0, \varepsilon)\}, \varepsilon>0
$$

- $\mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$, for ε small.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon), \pm(-2 / \sqrt{3}, 0, \varepsilon)\}, \varepsilon>0
$$

- $\mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$, for ε small.
- $\lim _{\varepsilon \rightarrow 0} \mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausd

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq}$ respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon),
$$

Triangular antiprism

- $\mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$, for ε small.
- $\lim _{\varepsilon \rightarrow 0} \mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$.
- $\lim _{\varepsilon \rightarrow 0} P_{\varepsilon}=H$ regular hexagon.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausd

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq}$ respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon),
$$

Triangular antiprism

- $\mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$, for ε small.
- $\lim _{\varepsilon \rightarrow 0} \mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$.
- $\lim _{\varepsilon \rightarrow 0} P_{\varepsilon}=H$ regular hexagon.
- $\mathrm{r}_{2}(H)=1>\sqrt{3} / 2$.

A natural question: continuity

Are these functional continuous (w.r.t. the Hausdorff metric)?

- No explicit mention in the literature.
- It is easy to show that $\mathrm{R}_{i}, \overline{\mathrm{R}}_{i}, \overline{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous with respect to the Hausdorff metric.
- However, $\mathrm{r}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is not continuous:

$$
P_{\varepsilon}=\operatorname{conv}\{ \pm(1 / \sqrt{3}, 1, \varepsilon), \pm(1 / \sqrt{3},-1, \varepsilon), \pm(-2 / \sqrt{3}, 0, \varepsilon)\}, \varepsilon>0
$$

- $\mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$, for ε small.
- $\lim _{\varepsilon \rightarrow 0} \mathrm{r}_{2}\left(P_{\varepsilon}\right)=\sqrt{3} / 2$.
- $\lim _{\varepsilon \rightarrow 0} P_{\varepsilon}=H$ regular hexagon.
- $\mathrm{r}_{2}(H)=1>\sqrt{3} / 2$.
- $r_{i}:\left\{K \in \mathcal{K}^{n}: \operatorname{dim} K=n\right\} \longrightarrow \mathbb{R}_{\geq 0}$ is continuous.

Further results

Theorem (Gritzmann \& Klee, 1992)

If K is 0 -symmetric,

$$
\mathrm{R}_{i}(K) \mathrm{r}_{i}\left(K^{*}\right)=1 .
$$

P. Gritzmann, V. Klee: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces, Discrete Comput. Geom. 7 (3) (1992).

Further results

Theorem (Gritzmann \& Klee, 1992)

If K is 0 -symmetric,

$$
\mathrm{R}_{i}(K) \mathrm{r}_{i}\left(K^{*}\right)=1 .
$$

Theorem (Pukhov, 1979; Perel'man, 1987)

$$
\frac{\mathrm{R}_{n-i+1}(K)}{\mathrm{r}_{i}(K)}<i+1 .
$$

苞G. Ya. Perel'man: On the k-radii of a convex body, Sibirsk. Mat. Zh. 28 (1987); Pukhov, S. V.: Inequalities for the Kolmogorov and Bernšteĭn widths in Hilbert space, Mat. Zametki 25 (1979).

An improvement (Pukhov, 1979)

For K centrally symmetric,

$$
\frac{\mathrm{R}_{n-i+1}(K)}{\mathrm{r}_{i}(K)}<\sqrt{e} \min \{\sqrt{i}, \sqrt{n-i+1}\} .
$$

Theorem (Pukhov, 1979; Perel'man, 1987)

$$
\frac{\mathrm{R}_{n-i+1}(K)}{\mathrm{r}_{i}(K)}<i+1 .
$$

気G. Ya. Perel'man: On the k-radii of a convex body, Sibirsk. Mat. Zh. 28 (1987); Pukhov, S. V.: Inequalities for the Kolmogorov and Bernšteĭn widths in Hilbert space, Mat. Zametki 25 (1979).

The volume and the radii
U. Betke, M. Henk: Estimating sizes of a convex body by successive diameters and widths, Mathematika 39 (1992), 247-257

Theorem

Let $K \in \mathcal{K}^{n}$. Then:

$$
\begin{aligned}
& \frac{2^{n}}{n!} \mathrm{r}_{1}(K) \cdots \mathrm{r}_{n}(K) \leq \operatorname{vol}(K) \leq 2^{n} \mathrm{R}_{1}(K) \cdots \mathrm{R}_{n}(K), \\
& \kappa_{n} \overline{\mathrm{r}}_{1}(K) \cdots \overline{\mathrm{r}}_{n}(K) \leq \operatorname{vol}(K) \leq \kappa_{n} \overline{\mathrm{R}}_{1}(K) \cdots \overline{\mathrm{R}}_{n}(K) .
\end{aligned}
$$

U. Betke, M. Henk: Estimating sizes of a convex body by successive diameters and widths, Mathematika 39 (1992), 247-257

Theorem

Let $K \in \mathcal{K}^{n}$. Then:

$$
\begin{aligned}
& \frac{2^{n}}{n!} \mathrm{r}_{1}(K) \cdots \mathrm{r}_{n}(K) \leq \operatorname{vol}(K) \leq 2^{n} \mathrm{R}_{1}(K) \cdots \mathrm{R}_{n}(K), \\
& \kappa_{n} \overline{\mathrm{r}}_{1}(K) \cdots \overline{\mathrm{r}}_{n}(K) \leq \operatorname{vol}(K) \leq \kappa_{n} \overline{\mathrm{R}}_{1}(K) \cdots \overline{\mathrm{R}}_{n}(K) .
\end{aligned}
$$

-, M. Henk: Intrinsic volumes and successive radii J. Math. Anal.
Appl. 343 (2008)
We generalized these inequalities to the intrinsic volumes.

Successive radii and Minkowski addition

For $K, K^{\prime} \in \mathcal{K}^{n}$, it is well known that

$$
\begin{array}{ll}
\mathrm{r}\left(K+K^{\prime}\right) \geq \mathrm{r}(K)+\mathrm{r}\left(K^{\prime}\right), & \mathrm{R}\left(K+K^{\prime}\right) \leq \mathrm{R}(K)+\mathrm{R}\left(K^{\prime}\right), \\
\omega\left(K+K^{\prime}\right) \geq \omega(K)+\omega\left(K^{\prime}\right), & \mathrm{D}\left(K+K^{\prime}\right) \leq \mathrm{D}(K)+\mathrm{D}\left(K^{\prime}\right),
\end{array}
$$

For $K, K^{\prime} \in \mathcal{K}^{n}$, it is well known that

$$
\begin{aligned}
\mathrm{r}\left(K+K^{\prime}\right) \geq \mathrm{r}(K)+\mathrm{r}\left(K^{\prime}\right), & \mathrm{R}\left(K+K^{\prime}\right) \leq \mathrm{R}(K)+\mathrm{R}\left(K^{\prime}\right) \\
\omega\left(K+K^{\prime}\right) \geq \omega(K)+\omega\left(K^{\prime}\right), & \mathrm{D}\left(K+K^{\prime}\right) \leq \mathrm{D}(K)+\mathrm{D}\left(K^{\prime}\right)
\end{aligned}
$$

which can be rewritten in terms of the successive radii:

$$
\begin{array}{ll}
\mathrm{r}_{1}\left(K+K^{\prime}\right) \leq \mathrm{r}_{1}(K)+\mathrm{r}_{1}\left(K^{\prime}\right) & \mathrm{R}_{1}\left(K+K^{\prime}\right) \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\mathrm{r}_{n}\left(K+K^{\prime}\right) \geq \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) & \mathrm{R}_{n}\left(K+K^{\prime}\right) \leq \mathrm{R}_{n}(K)+\mathrm{R}_{n}\left(K^{\prime}\right) \\
\overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) & \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
\overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right) & \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{array}
$$

Successive radii and Minkowski addition

For $K, K^{\prime} \in \mathcal{K}^{n}$, it is well known that

$$
\begin{aligned}
\mathrm{r}\left(K+K^{\prime}\right) \geq \mathrm{r}(K)+\mathrm{r}\left(K^{\prime}\right), & \mathrm{R}\left(K+K^{\prime}\right) \leq \mathrm{R}(K)+\mathrm{R}\left(K^{\prime}\right) \\
\omega\left(K+K^{\prime}\right) \geq \omega(K)+\omega\left(K^{\prime}\right), & \mathrm{D}\left(K+K^{\prime}\right) \leq \mathrm{D}(K)+\mathrm{D}\left(K^{\prime}\right)
\end{aligned}
$$

which can be rewritten in terms of the successive radii:

$$
\begin{array}{ccc}
\mathrm{r}_{1}\left(K+K^{\prime}\right) \leq \mathrm{r}_{1}(K)+\mathrm{r}_{1}\left(K^{\prime}\right) & \mathrm{R}_{1}\left(K+K^{\prime}\right) \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\vdots & \vdots \\
\mathrm{r}_{n}\left(K+K^{\prime}\right) \geq \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) & & \mathrm{R}_{n}\left(K+K^{\prime}\right) \leq \mathrm{R}_{n}(K)+\mathrm{R}_{n}\left(K^{\prime}\right) \\
\hline \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) & \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
\vdots & \vdots ? ? \\
\overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right) & \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{array}
$$

How do the other successive radii relate with the Minkowski sum?

Successive radii and Minkowski addition

而
B. González, 一: Successive radii and Minkowski addition, to appear in Monatsh. Math. (2011).

Theorem: Let $K, K^{\prime} \in \mathcal{K}^{n}$.

- If $1 \leq i \leq n-1$, then $\sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right)$.

而
B. González, 一: Successive radii and Minkowski addition, to appear in Monatsh. Math. (2011).

Theorem: Let $K, K^{\prime} \in \mathcal{K}^{n}$.

- If $1 \leq i \leq n-1$, then $\sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right)$.
- If $2 \leq i \leq n$, then $\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right)$.

宣B. González, -: Successive radii and Minkowski addition, to appear in Monatsh. Math. (2011).

Theorem: Let $K, K^{\prime} \in \mathcal{K}^{n}$.

- If $1 \leq i \leq n-1$, then $\sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right)$.
- If $2 \leq i \leq n$, then $\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right)$.

All inequalities are best possible: equality e.g. when K, K^{\prime} are the
unit $\left\{\begin{array}{l}i \text {-balls } \\ (n-i+1) \text {-balls }\end{array}\right\}$ of particular $\left\{\begin{array}{l}i \text {-planes } \\ (n-i+1) \text {-planes }\end{array}\right\}$.

Successive radii and Minkowski addition

$$
\begin{aligned}
& \text { For } 1 \leq i \leq n-1 \\
& \sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \\
& \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right) \\
& \mathrm{r}_{n}\left(K+K^{\prime}\right)
\end{aligned} \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) .
$$

$$
\begin{aligned}
& \text { For } 2 \leq i \leq n \\
& \qquad \begin{array}{l}
\mathrm{R}_{1}\left(K+K^{\prime}\right) \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right)
\end{array}
\end{aligned}
$$

Successive radii and Minkowski addition

$$
\begin{aligned}
& \text { For } 1 \leq i \leq n-1 \\
& \sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right) \\
& \mathrm{r}_{n}\left(K+K^{\prime}\right) \geq \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) \\
& \mathrm{r}_{1}\left(K+K^{\prime}\right) \leq \mathrm{r}_{1}(K)+\mathrm{r}_{1}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { For } 2 \leq i \leq n \\
\qquad \begin{aligned}
\mathrm{R}_{1}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right) \\
\mathrm{R}_{n}\left(K+K^{\prime}\right) & \leq \mathrm{R}_{n}(K)+\mathrm{R}_{n}\left(K^{\prime}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } 1 \leq i \leq n-1 \\
& \qquad \begin{aligned}
\sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) & \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right) \\
\mathrm{r}_{n}\left(K+K^{\prime}\right) & \geq \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) \\
\mathrm{r}_{1}\left(K+K^{\prime}\right) & \leq \mathrm{r}_{1}(K)+\mathrm{r}_{1}\left(K^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Opposite inequality $i=2, \ldots, n$?

$$
\begin{aligned}
& \text { For } 2 \leq i \leq n \\
& \begin{aligned}
\mathrm{R}_{1}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right) \\
\mathrm{R}_{n}\left(K+K^{\prime}\right) & \leq \mathrm{R}_{n}(K)+\mathrm{R}_{n}\left(K^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Opposite inequality $i=1, \ldots, n-1$?

Successive radii and Minkowski addition

$$
\begin{aligned}
& \text { For } 1 \leq i \leq n-1 \\
& \sqrt{2} \mathrm{r}_{i}\left(K+K^{\prime}\right) \geq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right) \\
& \mathrm{r}_{n}\left(K+K^{\prime}\right) \geq \mathrm{r}_{n}(K)+\mathrm{r}_{n}\left(K^{\prime}\right) \\
& \mathrm{r}_{1}\left(K+K^{\prime}\right) \leq \mathrm{r}_{1}(K)+\mathrm{r}_{1}\left(K^{\prime}\right)
\end{aligned}
$$

Opposite inequafíty $i=2, \ldots, n$?

$$
\begin{aligned}
& \text { For } 2 \leq i \leq n \\
& \begin{aligned}
\mathrm{R}_{1}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{1}(K)+\mathrm{R}_{1}\left(K^{\prime}\right) \\
\sqrt{2} \mathrm{R}_{i}\left(K+K^{\prime}\right) & \geq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right) \\
\mathrm{R}_{n}\left(K+K^{\prime}\right) & \leq \mathrm{R}_{n}(K)+\mathrm{R}_{n}\left(K^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Opposite inequal) (y $i=1, \ldots, n-1$?

Proposition

There exists no constant $C>0$ such that for $2 \leq i \leq n$,

$$
\mathrm{Cr}_{i}\left(K+K^{\prime}\right) \leq \mathrm{r}_{i}(K)+\mathrm{r}_{i}\left(K^{\prime}\right)
$$

There exists no constant $C>0$ such that for $1 \leq i \leq n-1$,

$$
C R_{i}\left(K+K^{\prime}\right) \leq \mathrm{R}_{i}(K)+\mathrm{R}_{i}\left(K^{\prime}\right)
$$

Successive radii and Minkowski addition

Finally we consider the radii $\overline{\mathrm{r}}_{i}$ and $\overline{\mathrm{R}}_{i}$.

$$
\begin{gathered}
\overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
\vdots ? \\
\overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
\vdots ? \\
\overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{gathered}
$$

Successive radii and Minkowski addition

Finally we consider the radii $\overline{\mathrm{r}}_{i}$ and $\overline{\mathrm{R}}_{i}$.

Theorem: Let $K, K^{\prime} \in \mathcal{K}^{n}$.

For all $1 \leq i \leq n$,

$$
\begin{aligned}
\overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) & \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right), \\
\overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) & \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right)
\end{aligned}
$$

Equality e.g. when $K=K^{\prime}=B_{n}$.

$$
\begin{aligned}
& \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

Successive radii and Minkowski addition

Finally we consider the radii $\overline{\mathrm{r}}_{i}$ and $\overline{\mathrm{R}}_{i}$.

Theorem: Let $K, K^{\prime} \in \mathcal{K}^{n}$.

For all $1 \leq i \leq n$,

$$
\begin{aligned}
\overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) & \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right), \\
\overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) & \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right)
\end{aligned}
$$

Equality e.g. when $K=K^{\prime}=B_{n}$.

$$
\begin{aligned}
& \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

Opposite inequality for $i=1, \ldots, n$?

Successive radii and Minkowski addition

Proposition

There exists no constant $C>0$ such that for $1 \leq i \leq n$

$$
C \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) .
$$

$$
\begin{aligned}
& \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

Opposite inequality for $i=1, \ldots, n$?

Successive radii and Minkowski addition

Proposition

There exists no constant $C>0$ such that for $1 \leq i \leq n$

$$
C \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right)
$$

However, there exists a constant $C_{n, i}>0$ such that for $1 \leq i \leq n$

$$
C_{n, i} \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right)
$$

$$
\begin{aligned}
& \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

Opposite inequality for $i=1, \ldots, n$?

Successive radii and Minkowski addition

Proposition

There exists no constant $C>0$ such that for $1 \leq i \leq n$

$$
C \bar{r}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) .
$$

However, there exists a constant $C_{n, i}>0$ such that for $1 \leq i \leq n$

$$
C_{n, i} \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right)
$$

(We know $C_{n, 1}=\sqrt{2}$ and $\sqrt{2}<C_{n, i}<2, i>1$).

$$
\begin{aligned}
& \overline{\mathrm{r}}_{1}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{1}(K)+\overline{\mathrm{r}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{i}(K)+\overline{\mathrm{r}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{r}}_{n}\left(K+K^{\prime}\right) \geq \overline{\mathrm{r}}_{n}(K)+\overline{\mathrm{r}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{R}}_{1}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{1}(K)+\overline{\mathrm{R}}_{1}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{i}(K)+\overline{\mathrm{R}}_{i}\left(K^{\prime}\right) \\
& \overline{\mathrm{R}}_{n}\left(K+K^{\prime}\right) \leq \overline{\mathrm{R}}_{n}(K)+\overline{\mathrm{R}}_{n}\left(K^{\prime}\right)
\end{aligned}
$$

Opposite inequality for $i=1, \ldots, n$?

New outer and inner successive radii

Classical successive outer and inner radii
For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{R}_{i}^{n}} \mathrm{R}(K \mid L), & \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L), & \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \max _{x \in L^{\perp}} \mathrm{r}(K \cap(x+L) ; x+L) .
\end{array}
$$

New outer and inner successive radii

Classical successive outer and inner radii
For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L), & \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L ; L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L), & \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L ; L) .
\end{array}
$$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

$\sigma(L)$ is the Haar measure on \mathcal{L}_{i}^{n} such that $\sigma\left(\mathcal{L}_{i}^{n}\right)=1$.

Classical successive outer and inner radii

For $K \in \mathcal{K}^{n}$ and $i=1, \ldots, n$ let

$$
\begin{array}{ll}
\mathrm{R}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L), & \mathrm{r}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L ; L), \\
\overline{\mathrm{R}}_{i}(K)=\max _{L \in \mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L), & \overline{\mathrm{r}}_{i}(K)=\min _{L \in \mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L ; L) .
\end{array}
$$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
$-$
$\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)$

$$
\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)
$$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding Minkowski addition:

- $\widetilde{\mathrm{R}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{R}}_{1}(K)+\widetilde{\mathrm{R}}_{1}\left(K^{\prime}\right), \quad \widetilde{\mathrm{r}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{r}}_{1}(K)+\widetilde{\mathrm{r}}_{1}\left(K^{\prime}\right)$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding Minkowski addition:

- $\widetilde{\mathrm{R}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{R}}_{1}(K)+\widetilde{\mathrm{R}}_{1}\left(K^{\prime}\right), \quad \widetilde{\mathrm{r}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{r}}_{1}(K)+\widetilde{\mathrm{r}}_{1}\left(K^{\prime}\right)$
- $\widetilde{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \widetilde{\mathrm{R}}_{i}(K)+\widetilde{\mathrm{R}}_{i}\left(K^{\prime}\right), \quad \widetilde{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \widetilde{\mathrm{r}}_{i}(K)+\widetilde{\mathrm{r}}_{i}\left(K^{\prime}\right), 2 \leq i \leq n$

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding Minkowski addition:

- $\widetilde{\mathrm{R}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{R}}_{1}(K)+\widetilde{\mathrm{R}}_{1}\left(K^{\prime}\right), \quad \widetilde{\mathrm{r}}_{1}\left(K+K^{\prime}\right)=\widetilde{\mathrm{r}}_{1}(K)+\widetilde{\mathrm{r}}_{1}\left(K^{\prime}\right)$
- $\widetilde{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \widetilde{\mathrm{R}}_{i}(K)+\widetilde{\mathrm{R}}_{i}\left(K^{\prime}\right), \quad \widetilde{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \geq \widetilde{\mathrm{r}}_{i}(K)+\widetilde{\mathrm{r}}_{i}\left(K^{\prime}\right), 2 \leq i \leq n$
- There exists no $C>0$ with $C \widetilde{\mathrm{r}}_{i}\left(K+K^{\prime}\right) \leq \widetilde{\mathrm{r}}_{i}(K)+\widetilde{\mathrm{r}}_{i}\left(K^{\prime}\right)$.
- There exists $C_{n, i}>0$ with $C_{n, i} \widetilde{\mathrm{R}}_{i}\left(K+K^{\prime}\right) \leq \widetilde{\mathrm{R}}_{i}(K)+\widetilde{\mathrm{R}}_{i}\left(K^{\prime}\right)$.

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding the volume:

- $\operatorname{vol}(K) \leq \kappa_{n} \widetilde{\mathrm{R}}_{1}(K) \cdots \widetilde{\mathrm{R}}_{n}(K)$.

New outer and inner successive radif

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L) .
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding the volume:

- $\operatorname{vol}(K) \leq \kappa_{n} \widetilde{\mathrm{R}}_{1}(K) \cdots \widetilde{\mathrm{R}}_{n}(K)$.
- We believe that $\operatorname{vol}(K) \geq \kappa_{n} \widetilde{\mathrm{r}}_{1}(K) \cdots \widetilde{\mathrm{r}}_{n}(K)$.

New outer and inner successive radii

We define:

$$
\widetilde{\mathrm{R}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{R}(K \mid L) d \sigma(L), \quad \widetilde{\mathrm{r}}_{i}(K)=\int_{\mathcal{L}_{i}^{n}} \mathrm{r}(K \mid L) d \sigma(L)
$$

Some properties:

- $\widetilde{\mathrm{R}}_{i}, \widetilde{\mathrm{r}}_{i}: \mathcal{K}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ are continuous.
- $\mathrm{r}(K)=\widetilde{\mathrm{r}}_{n}(K) \leq \cdots \leq \widetilde{\mathrm{r}}_{1}(K)=\frac{\mathrm{b}(K)}{2}=\widetilde{\mathrm{R}}_{1}(K) \leq \cdots \leq \widetilde{\mathrm{R}}_{n}(K)=\mathrm{R}(K)$

Regarding the volume:

- $\operatorname{vol}(K) \leq \kappa_{n} \widetilde{\mathrm{R}}_{1}(K) \cdots \widetilde{\mathrm{R}}_{n}(K)$.
- We believe that $\operatorname{vol}(K) \geq \kappa_{n} \widetilde{r}_{1}(K) \cdots \widetilde{\mathrm{r}}_{n}(K)$.
- We have shown the weaker inequality

$$
\operatorname{vol}(K) \geq \kappa_{n} \widetilde{\mathrm{r}}_{n-1}(K)^{n-1} \widetilde{\mathrm{r}}_{n}(K)
$$

Successive radif of convex bodies

María A. Hernández Cifre
(joint work with Bernardo González)

Universidad de Murcia

Cortona, June 2011

