Order isomorphisms for convex functions on windows

Dan Florentin, Tel Aviv University Joint work with Shiri Artstein-Avidan and Vitali Milman

Cortona, June 2011

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:
- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T y \leq T x$ (order reversing isomorphism).

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:
- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T y \leq T x$ (order reversing isomorphism).
- $\operatorname{Cvx}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}: f\right.$ is convex, l-s-c $\}$

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:
- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T y \leq T x$ (order reversing isomorphism).
- $\operatorname{Cvx}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}: f\right.$ is convex, l-s-c $\}$

Theorem (Artstein S., Milman V.)

Let $T: \operatorname{Cvx}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}\left(\mathbb{R}^{n}\right)$ be an order isomorphism. Then:

- $(T f)(x)=C_{1}(\mathcal{L} f)\left(B x+v_{0}\right)+\left\langle v_{1}, x\right\rangle+C_{0} \quad$ (reversing).

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:
- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T y \leq T x$ (order reversing isomorphism).
- $\operatorname{Cvx}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}: f\right.$ is convex, l-s-c $\}$

Theorem (Artstein S., Milman V.)

Let $T: \operatorname{Cvx}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}\left(\mathbb{R}^{n}\right)$ be an order isomorphism. Then:

- $(T f)(x)=C_{1}(\mathcal{L} f)\left(B x+v_{0}\right)+\left\langle v_{1}, x\right\rangle+C_{0} \quad$ (reversing).
- $(T f)(x)=C_{1} f\left(B x+v_{0}\right)+\left\langle v_{1}, x\right\rangle+C_{0} \quad$ (preserving).

Definition

Let S_{1}, S_{2} be two partially ordered sets. A bijection $T: S_{1} \rightarrow S_{2}$ is called an order-isomorphism if either:

- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T x \leq T y$ (order preserving isomorphism), or:
- $\forall x, y \in S_{1} . \quad x \leq y \Longleftrightarrow T y \leq T x$ (order reversing isomorphism).
- $\operatorname{Cvx}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}: f\right.$ is convex, l-s-c $\}$

Theorem (Artstein S., Milman V.)

Let $T: \operatorname{Cvx}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}\left(\mathbb{R}^{n}\right)$ be an order isomorphism. Then:

- $(T f)(x)=C_{1}(\mathcal{L} f)\left(B x+v_{0}\right)+\left\langle v_{1}, x\right\rangle+C_{0} \quad$ (reversing).
- $(T f)(x)=C_{1} f\left(B x+v_{0}\right)+\left\langle v_{1}, x\right\rangle+C_{0} \quad$ (preserving).
- $\operatorname{Cvx}(K)=\{f: K \rightarrow \mathbb{R} \cup\{\infty\}: f$ is convex, l-s-c $\}$

A fractional linear (f.l.) map is defined by:

$$
F(x)=\frac{1}{\langle c, x\rangle+d}(A x+b),
$$

where $A \in M_{n \times n}, b, c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ satisfy

$$
\left(\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right) \in G L_{n+1}
$$

A fractional linear (f.l.) map is defined by:

$$
F(x)=\frac{1}{\langle c, x\rangle+d}(A x+b)
$$

where $A \in M_{n \times n}, b, c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ satisfy

$$
\left(\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right) \in G L_{n+1}
$$

$\operatorname{Dom}(F)$ is an open half space U with $H=\partial U=\{\langle c, x\rangle=-d\}$ $\left(U=\mathbb{R}^{n} \quad \Leftrightarrow \quad c=0 \quad \Leftrightarrow \quad\right.$ the map F is affine $)$.

A fractional linear (f.l.) map is defined by:

$$
F(x)=\frac{1}{\langle c, x\rangle+d}(A x+b),
$$

where $A \in M_{n \times n}, b, c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ satisfy

$$
\left(\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right) \in G L_{n+1}
$$

$\operatorname{Dom}(F)$ is an open half space U with $H=\partial U=\{\langle c, x\rangle=-d\}$ $\left(U=\mathbb{R}^{n} \quad \Leftrightarrow \quad c=0 \quad \Leftrightarrow \quad\right.$ the map F is affine $)$.

- Injective
- Preserves intervals

F.L. - Functional form vs. characterizing properties

A fractional linear (f.l.) map is defined by:

$$
F(x)=\frac{1}{\langle c, x\rangle+d}(A x+b)
$$

where $A \in M_{n \times n}, b, c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ satisfy

$$
\left(\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right) \in G L_{n+1}
$$

$\operatorname{Dom}(F)$ is an open half space U with $H=\partial U=\{\langle c, x\rangle=-d\}$ $\left(U=\mathbb{R}^{n} \quad \Leftrightarrow \quad c=0 \quad \Leftrightarrow \quad\right.$ the map F is affine $)$.

- Injective
- Preserves intervals

Theorem (Shiffman '95)

Let $n \geq 2$. Let $K \subset \mathbb{R}^{n}$ be a convex set of full dimension. Assume that $F: K \rightarrow \mathbb{R}^{n}$ is an injective interval preserving map.
Then F is fractional linear.

Order preserving isomorphisms on windows, Cvx

> Theorem (Artstein S., Florentin, Milman V.)
> If $T: C v x\left(K_{1}\right) \rightarrow C v x\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R} \rightarrow K_{2} \times \mathbb{R}$, (in particular, K_{2} is a fractional linear image of K_{1}), such that epi $(T f)=F($ epi $(f))$.

Order preserving isomorphisms on windows, Cvx

> Theorem (Artstein S., Florentin, Milman V.)
> If $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R} \rightarrow K_{2} \times \mathbb{R}$, (in particular, K_{2} is a fractional linear image of K_{1}), such that $e p i(T f)=F(e p i(f))$.

- What kind of transform is epi $(T f)=F(e p i(f))$?

Order preserving isomorphisms on windows, Cvx

Theorem (Artstein S., Florentin, Milman V.)

If $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R} \rightarrow K_{2} \times \mathbb{R}$, (in particular, K_{2} is a fractional linear image of K_{1}), such that $e p i(T f)=F(e p i(f))$.

- What kind of transform is epi $(T f)=F(e p i(f))$?

When F induces a transform on $C v x(K)$, then essentially:

$$
F(x, y)=\left(\frac{A x+u}{\langle v, x\rangle+d}, \frac{y}{\langle v, x\rangle+d}\right)
$$

Order preserving isomorphisms on windows, Cvx

Theorem (Artstein S., Florentin, Milman V.)

If $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R} \rightarrow K_{2} \times \mathbb{R}$, (in particular, K_{2} is a fractional linear image of K_{1}), such that $e p i(T f)=F(e p i(f))$.

- What kind of transform is epi $(T f)=F(e p i(f))$?

When F induces a transform on $C v x(K)$, then essentially:

$$
F(x, y)=\left(\frac{A x+u}{\langle v, x\rangle+d}, \frac{y}{\langle v, x\rangle+d}\right)
$$

This implies that there exist affine linear $L_{0}, L_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a bijective fractional linear $G: K_{2} \rightarrow K_{1}$ s.t. $T f=\left(\frac{f}{L_{0}}\right) \circ G+L_{1}$.

Order preserving isomorphisms on windows, Cvx

Theorem (Artstein S., Florentin, Milman V.)

If $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R} \rightarrow K_{2} \times \mathbb{R}$, (in particular, K_{2} is a fractional linear image of K_{1}), such that $e p i(T f)=F(e p i(f))$.

- What kind of transform is epi $(T f)=F(e p i(f))$?

When F induces a transform on $\operatorname{Cvx}(K)$, then essentially:

$$
F(x, y)=\left(\frac{A x+u}{\langle v, x\rangle+d}, \frac{y}{\langle v, x\rangle+d}\right) \equiv\left(G^{-1}(x), \frac{y}{L_{0}(x)}\right) .
$$

This implies that there exist affine linear $L_{0}, L_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a bijective fractional linear $G: K_{2} \rightarrow K_{1}$ s.t. $T f=\left(\frac{f}{L_{0}}\right) \circ G+L_{1}$.

Order preserving isomorphisms on windows, $C v x_{0}$

Now we consider geometric convex functions in a window: - If $0 \in K$, let: $\quad C_{v x}(K)=\{f \in \operatorname{Cvx}(K): f \geq 0, f(0)=0\}$

Order preserving isomorphisms on windows, Cvx

Now we consider geometric convex functions in a window:

- If $0 \in K$, let: $\quad C v x_{0}(K)=\{f \in \operatorname{Cvx}(K): f \geq 0, f(0)=0\}$

Theorem (Artstein S., Florentin, Milman V.)
If $T: \operatorname{Cvx} x_{0}\left(K_{1}\right) \rightarrow \operatorname{Cvx_{0}}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R}^{+} \rightarrow K_{2} \times \mathbb{R}^{+}$ such that epi $(T f)=F(e p i(f))$.

Order preserving isomorphisms on windows, $C v x_{0}$

Now we consider geometric convex functions in a window:

- If $0 \in K$, let: $\quad C_{v x}(K)=\{f \in \operatorname{Cvx}(K): f \geq 0, f(0)=0\}$

Theorem (Artstein S., Florentin, Milman V.)

If $T: C v x_{0}\left(K_{1}\right) \rightarrow C v x_{0}\left(K_{2}\right)$ is an order preserving isomorphism, then there exists a fractional linear map $F: K_{1} \times \mathbb{R}^{+} \rightarrow K_{2} \times \mathbb{R}^{+}$ such that epi $(T f)=F(e p i(f))$.

On this class appears another instance of F :
$F_{\mathcal{J}}(x, y)=\left(\frac{x}{y}, \frac{1}{y}\right)$. It induces the transform \mathcal{J} defined on $\operatorname{Cvx} x_{0}(K)$:

$$
(\mathcal{J} f)(x)=\inf \left\{r>0: r f\left(\frac{x}{r}\right) \leq 1\right\}
$$

and essentially there are no other order preserving isomorphisms on this class, but \mathcal{J} and \mathcal{I} - the identity.

F.L. - Geometry 1

- Affine hyperplanes; parallel mapped to parallel? Rarely...

F.L. - Geometry 1

- Affine hyperplanes; parallel mapped to parallel? Rarely...

- Affine subspaces through any given point - mapped "linearly".

- Affine hyperplanes; parallel mapped to parallel? Rarely...

- Affine subspaces through any given point - mapped "linearly".

- Cones and half cylinders interchanged.

F.L. - Geometry 2

- Observe the fractional linear map $F_{0}(x)=\frac{x}{x_{1}-1}$.

F.L. - Geometry 2

- Observe the fractional linear map $F_{0}(x)=\frac{x}{x_{1}-1}$.
- It is an involution on $H^{-}=\left\{x_{1}<1\right\} \quad$ (and on H^{+}).
- Observe the fractional linear map $F_{0}(x)=\frac{x}{x_{1}-1}$.
- It is an involution on $H^{-}=\left\{x_{1}<1\right\} \quad$ (and on H^{+}).
- It is a "typical" fractional linear map, in the following sense:
- Observe the fractional linear map $F_{0}(x)=\frac{x}{x_{1}-1}$.
- It is an involution on $H^{-}=\left\{x_{1}<1\right\} \quad$ (and on H^{+}).
- It is a "typical" fractional linear map, in the following sense:

Fact

Let F be an injective non-affine fractional linear map with $F\left(x_{0}\right)=y_{0}$. Then there exist $B, C \in G L_{n}$ such that $B\left(F\left(C x+x_{0}\right)-y_{0}\right)=F_{0}(x)$.

F.L. - Geometry 2

- Observe the fractional linear map $F_{0}(x)=\frac{x}{x_{1}-1}$.
- It is an involution on $H^{-}=\left\{x_{1}<1\right\} \quad$ (and on H^{+}).
- It is a "typical" fractional linear map, in the following sense:

Fact

Let F be an injective non-affine fractional linear map with $F\left(x_{0}\right)=y_{0}$. Then there exist $B, C \in G L_{n}$ such that $B\left(F\left(C x+x_{0}\right)-y_{0}\right)=F_{0}(x)$.

Fact (connection with classical polarity)

Let $K \subseteq H^{-} \subset \mathbb{R}^{n}$ be a closed convex set with $0 \in K$. Then:

$$
F_{0}(K)=\left(e_{1}-K^{\circ}\right)^{\circ} .
$$

F.L. - Transitivity for \triangle,

Properties of fractional linear maps:

Fact

Let $\Delta_{1}, \Delta_{2} \subset \mathbb{R}^{n}$ be two non degenerate open simplices. Let $p_{1} \in \Delta_{1}$, and $p_{2} \in \Delta_{2}$. There exists a bijective fractional linear map $F: \Delta_{1} \rightarrow \Delta_{2}$ s.t. $F\left(p_{1}\right)=p_{2}$.

F.L. - Transitivity for \triangle,

Properties of fractional linear maps:

Fact

Let $\Delta_{1}, \Delta_{2} \subset \mathbb{R}^{n}$ be two non degenerate open simplices. Let $p_{1} \in \Delta_{1}$, and $p_{2} \in \Delta_{2}$. There exists a bijective fractional linear map $F: \Delta_{1} \rightarrow \Delta_{2}$ s.t. $F\left(p_{1}\right)=p_{2}$.

Fact

Let B_{n} denote the open unit ball in \mathbb{R}^{n}, and \mathcal{E} be some open ellipsoid, with $p \in \mathcal{E}$. Then there exists a bijective fractional linear map $F: B_{n} \rightarrow \mathcal{E}$ with $F(0)=p$.

F.L. - Rigidity for \diamond, \square

Fact

Let $K \subset \mathbb{R}^{n}$ be a symmetric, closed, convex set, and $F: K \rightarrow K$ a bijective fractional linear map.

F.L. - Rigidity for \diamond, \square

Fact

Let $K \subset \mathbb{R}^{n}$ be a symmetric, closed, convex set, and $F: K \rightarrow K$ a bijective fractional linear map. If $F(0)=0$, then F is linear.

F.L. - Rigidity for \diamond, \square

Fact

Let $K \subset \mathbb{R}^{n}$ be a symmetric, closed, convex set, and $F: K \rightarrow K$ a bijective fractional linear map. If $F(0)=0$, then F is linear.

Fact

Any bijective fractional linear map $F: B_{\infty}^{n} \rightarrow B_{\infty}^{n}$ is linear.

Fact

Any bijective fractional linear map $F: B_{1}^{n} \rightarrow B_{1}^{n}$ is linear.

Duality statements 1

Theorem (Artstein S., Florentin, Milman V.)

Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be convex sets with non empty interior, such that either $K_{1} \neq \mathbb{R}^{n}$ or $K_{2} \neq \mathbb{R}^{n}$. Then there does not exist any order reversing isomorphism $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$.

Duality statements 1

Theorem (Artstein S., Florentin, Milman V.)

Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be convex sets with non empty interior, such that either $K_{1} \neq \mathbb{R}^{n}$ or $K_{2} \neq \mathbb{R}^{n}$. Then there does not exist any order reversing isomorphism $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$.

- Same for $T: C v x_{0}\left(K_{1}\right) \rightarrow C v x_{0}\left(K_{2}\right)$.

Duality statements 1

Theorem (Artstein S., Florentin, Milman V.)

Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be convex sets with non empty interior, such that either $K_{1} \neq \mathbb{R}^{n}$ or $K_{2} \neq \mathbb{R}^{n}$. Then there does not exist any order reversing isomorphism $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$.

- Same for $T: C v x_{0}\left(K_{1}\right) \rightarrow C v x_{0}\left(K_{2}\right)$.
- Generalizing geometric convex functions $\left(T \subset K \subseteq \mathbb{R}^{n}\right)$:

$$
\operatorname{Cvx_{T}}(K)=\left\{f \in \operatorname{Cvx}\left(\mathbb{R}^{n}\right): 1_{K}^{\infty} \leq f \leq 1_{T}^{\infty}\right\}
$$

where 1_{K}^{∞} is the function attaining 0 on K and ∞ elsewhere.

Duality statements 1

Theorem (Artstein S., Florentin, Milman V.)

Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be convex sets with non empty interior, such that either $K_{1} \neq \mathbb{R}^{n}$ or $K_{2} \neq \mathbb{R}^{n}$. Then there does not exist any order reversing isomorphism $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$.

- Same for $T: C v x_{0}\left(K_{1}\right) \rightarrow C v x_{0}\left(K_{2}\right)$.
- Generalizing geometric convex functions $\left(T \subset K \subseteq \mathbb{R}^{n}\right)$:

$$
\operatorname{Cvx_{T}}(K)=\left\{f \in \operatorname{Cvx}\left(\mathbb{R}^{n}\right): 1_{K}^{\infty} \leq f \leq 1_{T}^{\infty}\right\}
$$

where 1_{K}^{∞} is the function attaining 0 on K and ∞ elsewhere.

- Geometric duality: $(\mathcal{A} f)(y)=\sup _{x}\left\{\frac{\langle x, y\rangle-1}{f(x)}\right\}$.

Duality statements 1

Theorem (Artstein S., Florentin, Milman V.)

Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be convex sets with non empty interior, such that either $K_{1} \neq \mathbb{R}^{n}$ or $K_{2} \neq \mathbb{R}^{n}$. Then there does not exist any order reversing isomorphism $T: \operatorname{Cvx}\left(K_{1}\right) \rightarrow \operatorname{Cvx}\left(K_{2}\right)$.

- Same for $T: C v x_{0}\left(K_{1}\right) \rightarrow C v x_{0}\left(K_{2}\right)$.
- Generalizing geometric convex functions $\left(T \subset K \subseteq \mathbb{R}^{n}\right)$:

$$
\operatorname{Cvx_{T}}(K)=\left\{f \in \operatorname{Cvx}\left(\mathbb{R}^{n}\right): 1_{K}^{\infty} \leq f \leq 1_{T}^{\infty}\right\}
$$

where 1_{K}^{∞} is the function attaining 0 on K and ∞ elsewhere.

- Geometric duality: $(\mathcal{A} f)(y)=\sup _{x}\left\{\frac{\langle x, y\rangle-1}{f(x)}\right\}$.
- $\mathcal{A}: \operatorname{Cvx}_{T}(K) \rightarrow \operatorname{Crx}_{K^{\circ}}\left(T^{\circ}\right)$ is an order reversing isomorphism.

Duality statements 2

Theorem (Artstein S., Florentin, Milman V.)

Let $n \geq 2$ and $T: C v x_{0}(K) \rightarrow C v x_{K^{\circ}}\left(\mathbb{R}^{n}\right)$ an order reversing isomorphism. Then $\exists F: K \times \mathbb{R}^{+} \rightarrow K \times \mathbb{R}^{+}$, fractional linear, such that

$$
T f=\mathcal{A} F(f)
$$

where $F(f)$ satisfies epi $(F(f))=F($ epi $(f))$.
We say that T is essentially the geometric duality \mathcal{A}.

- Moreover, the same holds for $\operatorname{Cvx}_{T}(K)$:

Duality statements 2

Theorem (Artstein S., Florentin, Milman V.)

Let $n \geq 2$ and $T: C v x_{0}(K) \rightarrow C v x_{K^{\circ}}\left(\mathbb{R}^{n}\right)$ an order reversing isomorphism. Then $\exists F: K \times \mathbb{R}^{+} \rightarrow K \times \mathbb{R}^{+}$, fractional linear, such that

$$
T f=\mathcal{A} F(f)
$$

where $F(f)$ satisfies epi $(F(f))=F($ epi $(f))$.
We say that T is essentially the geometric duality \mathcal{A}.

- Moreover, the same holds for $\mathrm{Cvx}_{T}(K)$:

Theorem (Artstein S., Florentin, Milman V.)

Let $n \geq 2$, and $A \subset \operatorname{int}(B), C \subset \operatorname{int}(D)$ be compact convex sets in \mathbb{R}^{n}. If $T: C v x_{A}(B) \rightarrow C v x_{C}(D)$ is an order reversing isomorphism, then T is essentially the geometric duality \mathcal{A}. In particular, C is a fractional linear image of B° and D is a fractional linear image of A°.

The End

