Order isomorphisms for convex functions on windows

Dan Florentin, Tel Aviv University Joint work with Shiri Artstein-Avidan and Vitali Milman

Cortona, June 2011

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

• $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

- $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:
- $\forall x, y \in S_1$. $x \le y \iff Ty \le Tx$ (order reversing isomorphism).

-

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

- $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:
- $\forall x, y \in S_1$. $x \le y \iff Ty \le Tx$ (order reversing isomorphism).
- $Cvx(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} : f \text{ is convex, I-s-c}\}$

化压压 化压压 正正

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

- $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:
- $\forall x, y \in S_1$. $x \le y \iff Ty \le Tx$ (order reversing isomorphism).

•
$$Cvx(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} : f \text{ is convex, I-s-c}\}$$

Theorem (Artstein S., Milman V.)

Let $T : Cvx(\mathbb{R}^n) \to Cvx(\mathbb{R}^n)$ be an order isomorphism. Then: • $(Tf)(x) = C_1(\mathcal{L}f)(Bx + v_0) + \langle v_1, x \rangle + C_0$ (reversing).

・吊 ・ ・ ラ ト ・ ラ ト ・ ラ

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

- $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:
- $\forall x, y \in S_1$. $x \le y \iff Ty \le Tx$ (order reversing isomorphism).

•
$$Cvx(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} : f \text{ is convex, I-s-c}\}$$

Theorem (Artstein S., Milman V.)

Let $T : Cvx(\mathbb{R}^n) \to Cvx(\mathbb{R}^n)$ be an order isomorphism. Then:

- $(Tf)(x) = C_1(\mathcal{L}f)(Bx + v_0) + \langle v_1, x \rangle + C_0$ (reversing).
- $(Tf)(x) = C_1 f(Bx + v_0) + \langle v_1, x \rangle + C_0$ (preserving).

(4月) (4日) (4日) 日

Let S_1 , S_2 be two partially ordered sets. A bijection $T : S_1 \rightarrow S_2$ is called an order-isomorphism if either:

- $\forall x, y \in S_1$. $x \le y \iff Tx \le Ty$ (order preserving isomorphism), or:
- $\forall x, y \in S_1$. $x \le y \iff Ty \le Tx$ (order reversing isomorphism).

•
$$Cvx(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} : f \text{ is convex, } I\text{-s-c}\}$$

Theorem (Artstein S., Milman V.)

Let $T : Cvx(\mathbb{R}^n) \to Cvx(\mathbb{R}^n)$ be an order isomorphism. Then:

- $(Tf)(x) = C_1(\mathcal{L}f)(Bx + v_0) + \langle v_1, x \rangle + C_0$ (reversing).
- $(Tf)(x) = C_1 f(Bx + v_0) + \langle v_1, x \rangle + C_0$ (preserving).

•
$$Cvx(K) = \{f : K \to \mathbb{R} \cup \{\infty\} : f \text{ is convex, I-s-c} \}$$

(4月) (4日) (4日) 日

A fractional linear (f.l.) map is defined by:

$$F(x) = \frac{1}{\langle c, x \rangle + d} (Ax + b),$$

where $A \in M_{n imes n}$, $b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ satisfy

$$\left(\begin{array}{cc}A&b\\c^T&d\end{array}\right)\in GL_{n+1}.$$

A fractional linear (f.l.) map is defined by:

$$F(x) = \frac{1}{\langle c, x \rangle + d} (Ax + b),$$

where $A \in M_{n imes n}$, $b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ satisfy

$$\left(\begin{array}{cc}A&b\\c^{T}&d\end{array}\right)\in GL_{n+1}.$$

Dom(F) is an open half space U with $H = \partial U = \{ \langle c, x \rangle = -d \}$ $(U = \mathbb{R}^n \iff c = 0 \iff \text{the map } F \text{ is affine} \}.$

A fractional linear (f.l.) map is defined by:

$$F(x) = \frac{1}{\langle c, x \rangle + d} (Ax + b),$$

where $A \in M_{n imes n}$, $b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ satisfy

$$\left(\begin{array}{cc}A&b\\c^{T}&d\end{array}\right)\in GL_{n+1}.$$

Dom(F) is an open half space U with $H = \partial U = \{ \langle c, x \rangle = -d \}$ $(U = \mathbb{R}^n \iff c = 0 \iff \text{the map } F \text{ is affine} \}.$

- Injective
- Preserves intervals

A fractional linear (f.l.) map is defined by:

$$F(x) = \frac{1}{\langle c, x \rangle + d} (Ax + b),$$

where $A \in M_{n imes n}$, $b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ satisfy

$$\left(\begin{array}{cc}A&b\\c^{T}&d\end{array}\right)\in GL_{n+1}.$$

 $\begin{array}{ll} \mathsf{Dom}(F) \text{ is an open half space } U \text{ with } & H = \partial U = \{\langle c, x \rangle = -d\} \\ (U = \mathbb{R}^n & \Leftrightarrow & c = 0 & \Leftrightarrow & \text{the map } F \text{ is affine}). \end{array}$

- Injective
- Preserves intervals

Theorem (Shiffman '95)

Let $n \ge 2$. Let $K \subset \mathbb{R}^n$ be a convex set of full dimension. Assume that $F : K \to \mathbb{R}^n$ is an injective interval preserving map. Then F is fractional linear.

Order preserving isomorphisms on windows, Cvx

Theorem (Artstein S., Florentin, Milman V.)

If $T : Cvx(K_1) \to Cvx(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R} \to K_2 \times \mathbb{R}$, (in particular, K_2 is a fractional linear image of K_1), such that epi(Tf) = F(epi(f)).

Order preserving isomorphisms on windows, Cvx

Theorem (Artstein S., Florentin, Milman V.)

If $T : Cvx(K_1) \to Cvx(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R} \to K_2 \times \mathbb{R}$, (in particular, K_2 is a fractional linear image of K_1), such that epi(Tf) = F(epi(f)).

• What kind of transform is epi(Tf) = F(epi(f))?

If $T : Cvx(K_1) \to Cvx(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R} \to K_2 \times \mathbb{R}$, (in particular, K_2 is a fractional linear image of K_1), such that epi(Tf) = F(epi(f)).

• What kind of transform is epi(Tf) = F(epi(f))?

When F induces a transform on Cvx(K), then essentially:

$$F(x,y) = \left(\frac{Ax+u}{\langle v,x\rangle + d}, \frac{y}{\langle v,x\rangle + d}\right)$$

If $T : Cvx(K_1) \to Cvx(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R} \to K_2 \times \mathbb{R}$, (in particular, K_2 is a fractional linear image of K_1), such that epi(Tf) = F(epi(f)).

• What kind of transform is epi(Tf) = F(epi(f))?

When F induces a transform on Cvx(K), then essentially:

$$F(x,y) = \left(\frac{Ax+u}{\langle v,x\rangle + d}, \frac{y}{\langle v,x\rangle + d}\right)$$

This implies that there exist affine linear $L_0, L_1 : \mathbb{R}^n \to \mathbb{R}$ and a bijective fractional linear $G : K_2 \to K_1$ s.t. $Tf = \left(\frac{f}{L_0}\right) \circ G + L_1$.

If $T : Cvx(K_1) \to Cvx(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R} \to K_2 \times \mathbb{R}$, (in particular, K_2 is a fractional linear image of K_1), such that epi(Tf) = F(epi(f)).

• What kind of transform is epi(Tf) = F(epi(f))?

When F induces a transform on Cvx(K), then essentially:

$$F(x,y) = \left(\frac{Ax+u}{\langle v,x\rangle + d}, \frac{y}{\langle v,x\rangle + d}\right) \equiv \left(G^{-1}(x), \frac{y}{L_0(x)}\right).$$

This implies that there exist affine linear $L_0, L_1 : \mathbb{R}^n \to \mathbb{R}$ and a bijective fractional linear $G : K_2 \to K_1$ s.t. $Tf = \left(\frac{f}{L_0}\right) \circ G + L_1$.

Order preserving isomorphisms on windows, Cvx_0

Now we consider geometric convex functions in a window:

• If $0 \in K$, let: $Cvx_0(K) = \{f \in Cvx(K) : f \ge 0, f(0) = 0\}$

Order preserving isomorphisms on windows, Cvx_0

Now we consider geometric convex functions in a window:

• If $0 \in K$, let: $Cvx_0(K) = \{f \in Cvx(K) : f \ge 0, f(0) = 0\}$

Theorem (Artstein S., Florentin, Milman V.)

If $T : Cvx_0(K_1) \to Cvx_0(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R}^+ \to K_2 \times \mathbb{R}^+$ such that epi(Tf) = F(epi(f)).

Order preserving isomorphisms on windows, Cvx_0

Now we consider geometric convex functions in a window:

• If $0 \in K$, let: $Cvx_0(K) = \{f \in Cvx(K) : f \ge 0, f(0) = 0\}$

Theorem (Artstein S., Florentin, Milman V.)

If $T : Cvx_0(K_1) \to Cvx_0(K_2)$ is an order preserving isomorphism, then there exists a fractional linear map $F : K_1 \times \mathbb{R}^+ \to K_2 \times \mathbb{R}^+$ such that epi(Tf) = F(epi(f)).

On this class appears another instance of F:

 $F_{\mathcal{J}}(x,y) = (\frac{x}{y}, \frac{1}{y})$. It induces the transform \mathcal{J} defined on $Cvx_0(K)$:

$$(\mathcal{J}f)(x) = \inf\{r > 0 : rf(\frac{x}{r}) \le 1\},$$

and essentially there are no other order preserving isomorphisms on this class, but ${\cal J}$ and ${\cal I}$ - the identity.

• Affine hyperplanes; parallel mapped to parallel? Rarely...

• Affine hyperplanes; parallel mapped to parallel? Rarely...

• Affine subspaces through any given point - mapped "linearly".

• Affine hyperplanes; parallel mapped to parallel? Rarely...

• Affine subspaces through any given point - mapped "linearly".

• Cones and half cylinders interchanged.

• Observe the fractional linear map $F_0(x) = \frac{x}{x_1-1}$.

▲聞▶ ▲ 国▶ ▲ 国▶

3

- Observe the fractional linear map $F_0(x) = \frac{x}{x_1-1}$.
- It is an involution on $H^- = \{x_1 < 1\}$ (and on H^+).

- Observe the fractional linear map $F_0(x) = \frac{x}{x_1-1}$.
- It is an involution on $H^- = \{x_1 < 1\}$ (and on H^+).
- It is a "typical" fractional linear map, in the following sense:

ヨッ イヨッ イヨッ

- Observe the fractional linear map $F_0(x) = \frac{x}{x_1-1}$.
- It is an involution on $H^- = \{x_1 < 1\}$ (and on H^+).
- It is a "typical" fractional linear map, in the following sense:

Fact

Let F be an injective non-affine fractional linear map with $F(x_0) = y_0$. Then there exist $B, C \in GL_n$ such that $B(F(Cx + x_0) - y_0) = F_0(x)$.

ヨッ イヨッ イヨッ

- Observe the fractional linear map $F_0(x) = \frac{x}{x_1-1}$.
- It is an involution on $H^- = \{x_1 < 1\}$ (and on H^+).
- It is a "typical" fractional linear map, in the following sense:

Fact

Let F be an injective non-affine fractional linear map with $F(x_0) = y_0$. Then there exist $B, C \in GL_n$ such that $B(F(Cx + x_0) - y_0) = F_0(x)$.

Fact (connection with classical polarity)

Let $K \subseteq H^- \subset \mathbb{R}^n$ be a closed convex set with $0 \in K$. Then:

$$F_0(K) = (e_1 - K^\circ)^\circ.$$

くほし くほし くほし

Properties of fractional linear maps:

Fact

Let $\Delta_1, \Delta_2 \subset \mathbb{R}^n$ be two non degenerate open simplices. Let $p_1 \in \Delta_1$, and $p_2 \in \Delta_2$. There exists a bijective fractional linear map $F : \Delta_1 \to \Delta_2$ s.t. $F(p_1) = p_2$.

Properties of fractional linear maps:

Fact

Let $\Delta_1, \Delta_2 \subset \mathbb{R}^n$ be two non degenerate open simplices. Let $p_1 \in \Delta_1$, and $p_2 \in \Delta_2$. There exists a bijective fractional linear map $F : \Delta_1 \to \Delta_2$ s.t. $F(p_1) = p_2$.

Fact

Let B_n denote the open unit ball in \mathbb{R}^n , and \mathcal{E} be some open ellipsoid, with $p \in \mathcal{E}$. Then there exists a bijective fractional linear map $F : B_n \to \mathcal{E}$ with F(0) = p.

伺 ト イ ヨ ト イ ヨ ト

Fact

Let $K \subset \mathbb{R}^n$ be a symmetric, closed, convex set, and $F : K \to K$ a bijective fractional linear map.

- ₹ 🖬 🕨

Fact

Let $K \subset \mathbb{R}^n$ be a symmetric, closed, convex set, and $F : K \to K$ a bijective fractional linear map. If F(0) = 0, then F is linear.

ゆ ト イヨ ト イヨト

Fact

Let $K \subset \mathbb{R}^n$ be a symmetric, closed, convex set, and $F : K \to K$ a bijective fractional linear map. If F(0) = 0, then F is linear.

Fact

Any bijective fractional linear map $F : B_{\infty}^n \to B_{\infty}^n$ is linear.

Fact

Any bijective fractional linear map $F : B_1^n \to B_1^n$ is linear.

伺 ト イヨト イヨト

Let $K_1, K_2 \subseteq \mathbb{R}^n$ be convex sets with non empty interior, such that either $K_1 \neq \mathbb{R}^n$ or $K_2 \neq \mathbb{R}^n$. Then there does not exist any order reversing isomorphism $T : Cvx(K_1) \rightarrow Cvx(K_2)$.

Let $K_1, K_2 \subseteq \mathbb{R}^n$ be convex sets with non empty interior, such that either $K_1 \neq \mathbb{R}^n$ or $K_2 \neq \mathbb{R}^n$. Then there does not exist any order reversing isomorphism $T : Cvx(K_1) \rightarrow Cvx(K_2)$.

• Same for $T : Cvx_0(K_1) \rightarrow Cvx_0(K_2)$.

Let $K_1, K_2 \subseteq \mathbb{R}^n$ be convex sets with non empty interior, such that either $K_1 \neq \mathbb{R}^n$ or $K_2 \neq \mathbb{R}^n$. Then there does not exist any order reversing isomorphism $T : Cvx(K_1) \rightarrow Cvx(K_2)$.

- Same for $T : Cvx_0(K_1) \rightarrow Cvx_0(K_2)$.
- Generalizing geometric convex functions ($T \subset K \subseteq \mathbb{R}^n$):

$$Cvx_{T}(K) = \{f \in Cvx(\mathbb{R}^{n}) : 1_{K}^{\infty} \leq f \leq 1_{T}^{\infty}\}$$

where 1_K^∞ is the function attaining 0 on K and ∞ elsewhere.

Let $K_1, K_2 \subseteq \mathbb{R}^n$ be convex sets with non empty interior, such that either $K_1 \neq \mathbb{R}^n$ or $K_2 \neq \mathbb{R}^n$. Then there does not exist any order reversing isomorphism $T : Cvx(K_1) \rightarrow Cvx(K_2)$.

- Same for $T : Cvx_0(K_1) \rightarrow Cvx_0(K_2)$.
- Generalizing geometric convex functions ($T \subset K \subseteq \mathbb{R}^n$):

$$Cvx_T(K) = \{f \in Cvx(\mathbb{R}^n) : 1_K^\infty \le f \le 1_T^\infty\}$$

where 1_K^∞ is the function attaining 0 on K and ∞ elsewhere.

通 と イ ヨ と イ ヨ と

• Geometric duality: $(\mathcal{A}f)(y) = \sup_{X} \{\frac{\langle x, y \rangle - 1}{f(x)}\}.$

Let $K_1, K_2 \subseteq \mathbb{R}^n$ be convex sets with non empty interior, such that either $K_1 \neq \mathbb{R}^n$ or $K_2 \neq \mathbb{R}^n$. Then there does not exist any order reversing isomorphism $T : Cvx(K_1) \rightarrow Cvx(K_2)$.

- Same for $T : Cvx_0(K_1) \rightarrow Cvx_0(K_2)$.
- Generalizing geometric convex functions ($T \subset K \subseteq \mathbb{R}^n$):

$$Cvx_T(K) = \{f \in Cvx(\mathbb{R}^n) : 1_K^\infty \le f \le 1_T^\infty\}$$

where $\mathbf{1}_{K}^{\infty}$ is the function attaining 0 on K and ∞ elsewhere.

- Geometric duality: $(\mathcal{A}f)(y) = \sup_{x} \{\frac{\langle x, y \rangle 1}{f(x)}\}.$
- $\mathcal{A}: Cvx_{\mathcal{T}}(\mathcal{K}) \to Cvx_{\mathcal{K}^{\circ}}(\mathcal{T}^{\circ})$ is an order reversing isomorphism.

伺 ト イ ヨ ト イ ヨ ト

Let $n \ge 2$ and $T : Cvx_0(K) \to Cvx_{K^\circ}(\mathbb{R}^n)$ an order reversing isomorphism. Then $\exists F : K \times \mathbb{R}^+ \to K \times \mathbb{R}^+$, fractional linear, such that

$$Tf = \mathcal{A}F(f),$$

where F(f) satisfies epi(F(f)) = F(epi(f)). We say that T is essentially the geometric duality A.

• Moreover, the same holds for $Cvx_T(K)$:

Let $n \geq 2$ and $T : Cvx_0(K) \to Cvx_{K^\circ}(\mathbb{R}^n)$ an order reversing isomorphism. Then $\exists F : K \times \mathbb{R}^+ \to K \times \mathbb{R}^+$, fractional linear, such that

 $Tf = \mathcal{A}F(f),$

where F(f) satisfies epi(F(f)) = F(epi(f)). We say that T is essentially the geometric duality A.

• Moreover, the same holds for $Cvx_T(K)$:

Theorem (Artstein S., Florentin, Milman V.)

Let $n \ge 2$, and $A \subset int(B)$, $C \subset int(D)$ be compact convex sets in \mathbb{R}^n . If $T : Cvx_A(B) \to Cvx_C(D)$ is an order reversing isomorphism, then T is essentially the geometric duality A. In particular, C is a fractional linear image of B° and D is a fractional linear image of A° .

The End

Dan Florentin, Tel Aviv University Joint work with Shiri Artstein- Order isomorphisms for convex functions on windows

э

э

▲圖 ▶ ▲ 圖 ▶