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The Minkowski problem

The Minkowski problem concerns

Existence

Uniqueness

Stability

of convex hypersurfaces whose Gauss curvature (possibly in a
generalized sense) is prescribed as a function of the outer unit
normals.
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Definitions

Convex bodies

A convex body is a compact convex subset of Rn with non-empty
interior.

Support function

hK (x) = max{x · y : y ∈ K}

Surface area measure of a convex body

SK (ω) = Hn−1{x ∈ ∂K : x has an outer unit normal in ω}
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The Minkowski problem

The Minkowski problem

Which measures on the sphere are surface area measures?

Theorem (Minkowski 1897, Fenchel & Jessen 1938)

If µ ∈M(Sn−1) satisfies∫
Sn−1

u dµ(u) = o

and µ(s) < µ(Sn−1) for each great subsphere s of Sn−1, then

µ = SK .
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The Lp-Minkowski problem

The Lp-Minkowski problem

What are necessary and sufficient conditions on µ ∈M(Sn−1)
such that there exists K ∈ Kn with

h1−p
K dSK = dµ?

(Chen, Chou, Guan, Hu, Hug, Jiang, Lin, Lutwak, Ma, Oliker,
Shen, Stancu, Umanskiy, Wang, Yang, Zhang,... )

Even case (p 6= n): Lutwak ’93

p > n: Chou & Wang ’06, Guan & Lin

Polytopal case for p > 1: Chou & Wang ’06

different approach by Hug, Lutwak, Yang & Zhang
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An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p‖∇f ‖p.
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An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p Ep(f ).

Ep(f )−n = dn,p

∫
Sn−1

‖u · ∇f ‖−np du
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For 1 < p < n
‖f ‖ np

n−p
≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p Ep(f ).

The affine inequality is stronger than the classical one

Ep(f ) ≤ ‖∇f ‖p.
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An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n
‖f ‖ np

n−p
≤ cn,p Ep(f ).

H., Schuster ’09: Further strengthening of the affine Lp
Sobolev inequality

Affine inequalities for p ≥ n (Cianchi, Lutwak, Yang,
Zhang, H., Schuster, Xiao, Bastero, Romance, Alonso,...)
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An application of the even Lp-Minkowski problem

The geometry behind Ep(f ):

Let µt be the even measure∫
Sn−1

g(v) dµt(v) =

∫
{|f |=t}

g

(
∇f (x)

|∇f (x)|

)
|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−p
K dSK and

‖u · ∇f ‖pp =

∫
Rn

|u · ∇f (x)|p dx

=

∫ ∞
0

∫
{|f |=t}

|u · ∇f (x)|p

|∇f (x)|
dHn−1(x) dt

=

∫ ∞
0

∫
Sn−1

|u · v |ph1−p
Kt

(v)dSK (v) dt

=

∫ ∞
0

h(ΠpKt , v)p dt
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Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL
= hpK + hpL, p ≥ 1

(Firey ’62)

which is based on t 7→ tp.
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Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL
= hpK + hpL, p ≥ 1

(Firey ’62) which is based on t 7→ tp.

Orlicz Brunn-Minkowski theory

Is there a theory of convex bodies based on general convex
functions φ?

Uncovered elements of an Orlicz Brunn-Minkowski theory

Lutwak, Yang, Zhang ’10: Orlicz projection and centroid
bodies

Ludwig, Reitzner ’10: Orlicz affine surface areas
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The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) is
not concentrated on a great subsphere of Sn−1.

Does there
exist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

The even Orlicz Minkowski problem



The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) is
not concentrated on a great subsphere of Sn−1. Does there
exist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Chou & Wang ’06: Smooth setting
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The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) is
not concentrated on a great subsphere of Sn−1. Does there
exist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Theorem (H., Lutwak, Yang, Zhang ’10)

If ϕ is decreasing, then there exists an origin symmetric
convex body K such that

cϕ(hK ) dSK = dµ

where c = V (K )
1

2n
−1
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The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) is
not concentrated on a great subsphere of Sn−1. Does there
exist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Theorem (H., Lutwak, Yang, Zhang ’10)

If ϕ is decreasing, then there exists an origin symmetric
convex body K such that

cϕ(hK ) dSK = dµ

where c = V (K )
1

2n
−1

ϕ ≡ 1: Solution to classical even Minkowski problem.
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Sketch of the proof

φ(t) :=

∫ t

0

1

ϕ(s)
ds.

Crucial functional

Φ(f ) = 2nV (f )
1

2n −
∫
Sn−1

φ ◦ f dµ, f ∈ C+
e (Sn−1)

V (f ) := V (
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ f (u)})

Goal

Find a function where Φ attains maximum.
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Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )
1

2n −
∫
Sn−1

φ ◦ f dµ, f ∈ C+
e (Sn−1)

The search can be restricted to support functions of origin
symmetric convex bodies: The Aleksandrov body K of
h ∈ C+

e (Sn−1) is origin symmetric with

0 < hK ≤ h.

φ increasing, V (h) = V (hK ) =⇒ Φ(h) ≤ Φ(hK ).
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Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )
1

2n −
∫
Sn−1

φ ◦ f dµ, f ∈ C+
e (Sn−1)

The search can be restricted to support functions of origin
symmetric convex bodies contained in some ball of fixed
radius: Choose vK ∈ Sn−1 such that for rK > 0 the point
rKvK ∈ K has maximal distance from the origin.∫

Sn−1

φ(hK ) dµ ≥
∫
Sn−1

φ(rKh[−v̄K ,v̄K ]) dµ

≥ |µ|φ
(

1

|µ|

∫
Sn−1

rKh[−v̄K ,v̄K ] dµ

)
≥ |µ|φ(crK ).
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1
2n − |µ|φ(crK )

rK > r =⇒ Φ(hK ) < 0.
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Sketch of the proof

F = {K ∈ Kn
e : K ⊂ rB}.

lim
i→∞

Φ(hKi
) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)
1

2n = lim
i→∞

2nV (hKi
)

1
2n ≥ lim

i→∞
Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).
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Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).
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d

dt
(Φ ◦ ht)

∣∣∣∣
t=0

= 0.

d

dt
2nV (ht)

1
2n

∣∣∣∣
t=0

= V (K0)
1

2n
−1

∫
Sn−1

f dSK0 ,

d

dt

∫
Sn−1

φ ◦ ht dµ
∣∣∣∣
t=0

=

∫
Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)
1

2n
−1ϕ(hK0) dSK0 = dµ.
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The even Orlicz Minkowski problem

Theorem (H., Lutwak, Yang, Zhang ’10)

If φ(t) =
∫ t

0 1/ϕ(s) ds exists and is unbounded for t →∞, then
there exists an origin symmetric convex body K and c > 0 such
that

cϕ(hK ) dSK = dµ

and ‖hK‖φ = 1.

‖hK‖φ = inf

{
λ > 0 :

1

|µ|

∫
Sn−1

φ

(
hK
λ

)
dµ ≤ φ(1)

}
.

ϕ(t) = t1−p: Solution of even Lp-Minkowski problem for
0 < p 6= n
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