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• Understanding the (role of the) roots of
geometric and/or combinatorial polynomials, e.g.,

I Eulerian polynomials of labeled posets, Borcea&Brändén,
Stanley, Wagner, ...

I h-vector polynomials of certain simplicial complexes,
Reiner&Welker, Brenti, Stanley, ...

I “Graph” polynomials, Cameron, Sokal, Wagner, ...

I Ehrhart polynomials, Beck et al., Bey et al., Hibi,
Rodriguez-Villegas,...

I
...

I Steiner polynomials, H.& Hernández Cifre&Saorín, Jetter,
Katsnelson, Teissier, ...
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• Steiner, 1840: Let K ,E ⊂ Rn be two convex bodies, where we
always assume dim(K + E ) = n.
For λ ∈ R≥0, the volume of K + λE is a polynomial of degree
at most n in λ, the so called Steiner polynomial of K
w.r.t. the gauge body E ,

vol(K + λE ) =
n∑

i=0

(
n
i

)
Wi (K ;E )λi .

The coefficients Wi (K ;E ) = V
(
K , (n−i). . . ,K ,E , (i). . .,E

)
are the

so called quermassintegrals of K w.r.t. E , 0 ≤ i ≤ n.
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• For complex z ∈ C we denote the Steiner polynomial by

fK ;E (z) =
n∑

i=0

(
n
i

)
Wi (K ;E )z i .

• Wi (K ;E ) = Wn−i (E ;K ).

Hence fK ;E (z) = zn fE ;K (1/z), and both polynomials have
essentially the same roots.

• W0(K ;E ) = vol(K ), Wn(K ;E ) = vol(E ).

• Wi (µ1 K ;µ2 E ) = µn−i
1 µi

2 Wi (K ;E ), µ1, µ2 ≥ 0.

• Wi (K ;E ) ≥ 0 with equality if and only if dimK < n − i or
dimE < i . Hence

fK ;E (z) =
dim E∑

i=n−dim K

(
n
i

)
Wi (K ;E )z i
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Examples

• 0 is a k-fold root of fK ;E (z) if and only if dimK ≤ n − k .

• If K = t + µE , µ ≥ 0, t ∈ Rn, then

fK ;E (z) = vol(E )
n∑

i=0

(
n
i

)
µn−i z i = vol(E ) (z + µ)n .

Hence, −µ is an n-fold root.

• H.&H.C., 2008. −µ is an n-fold root of fK ;E (z) if and only if
K = t + µE .
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• Favard, 1933. Let E ⊆ K ⊂ Rn, dimE = n, be convex bodies.
K is a so called p-tangential body of E , p ∈ {0, . . . , n − 1}, if
and only if

W0(K ;E ) = W1(K ;E ) = · · · = Wn−p(K ;E ).

• Let K be a p-tangential body of E . Then

fK ;E (z) = vol(K )

(n−p∑
i=0

(
n
i

)
z i

)
+

n∑
i=n−p+1

(
n
i

)
Wi (K ;E ) z i .

• In particular, let K be a 1-tangential body of E . Then

γ−1
k = n

√
1− vol(E )

vol(K )
e

2πk
n i − 1

are the roots of fK ;E (z).
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• Let Bn be the n-unit ball of volume κn. For the cube
Cn = [−1, 1]n we have

fCn;Bn(z) =
n∑

i=0

(
n
i

)
2n−i κi z i .

I Roots ??

I Katsnelson, 2009. All roots of fCn ;Bn (z) are real, i.e., it is a
hyperbolic polynomial.

• Are the Steiner polynomials fK ;Bn(z) of a regular simplex Tn or
crosspolytope C ?

n hyperbolic?

Wi (Tn;Bn) = κi
n + 1
(n − i)!

1√
π

∫ ∞
−∞

e−(n−i+1)x2
(

1√
π

∫ x

−∞
e−y2

dy
)i

dx .
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Dimension 2

• In dimension 2 all Steiner polynomials are hyperbolic.

• Bonnesen, 1929, Blaschke, 1955. Let K ,E ⊂ R2 be planar
convex bodies, dimK = dimE = 2. Then for
−R(K ;E ) ≤ λ ≤ −r(K ;E ) we have

W0(K ;E )λ2 + 2W1(K ;E )λ+ W2(K ;E ) ≤ 0.

I Here

r(K ;E ) = max
{
r ≥ 0 : some translate of r E ⊆ K

}
,

R(K ;E ) = min
{
R > 0 : some translate of K ⊆ R E

}
,

are the inradius and circumradius of K w.r.t. E , respectively.
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• Teissier, 1982. Let γ1, . . . , γn be the roots of fK ;E (z) with
Re(γ1) ≤ · · · ≤ Re(γn). For which convex bodies K ,E ⊂ Rn

does it hold

Re(γ1) ≤ −R(K ;E ) ≤ −r(K ;E ) ≤ Re(γn) ≤ 0 ?

• Sangwine-Yager, 1988, conjectured that it holds for any pair of
convex bodies K ,E .

• By the result of Blaschke and Bonnesen this is true for n = 2.

• H.&H.C., 2008. It is true for 1-tangential bodies K of E .

• Teissier, 1982, also pointed out that for n ≤ 5,
Steiner-polynomials are stable, i.e., the real parts of all roots
are non-positive (Re(γn) ≤ 0).
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• H.&H.C., 2008. Sangwine-Yager’s conjecture is false (in any
respect):

I There exists a 3-dimensional convex body K such that the real
parts of all roots are bigger than −R(K ;B3).

I There exists a 3-dimensional convex body K such that the real
parts of all roots are smaller than −r(K ;B3).

I There are non-stable Steiner polynomials in dimensions ≥ 12.

• Katsnelson, 2009. Another family of high dimensional convex
bodies contradicting the stability.
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• H.&H.C.&S., 2011+. The family of Steiner polynomials is
stable if and only if n ≤ 9.

• Jetter, 2011. Let n ≤ 9 and let K be a C 2-convex body. Let
ρmin and ρmax be the minimum and maximum values of the
principal radii of curvature of K , and let γi , 1 ≤ i ≤ n, be the
roots of fK ;Bn(z). Then

−ρmax ≤ Re(γi ) ≤ −ρmin for all i = 1, . . . , n.
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Where are the roots?

• Let

R(n) :=
{
z ∈ C+ : fK ;E (z) = 0, K ,E ⊂ Rn, dim(K+E ) = n

}
be the set of all roots of Steiner polynomials of convex bodies
K ,E ⊂ Rn, where we are just interested in the ones lying in
the upper complex half plane C+.
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• H.&H.C., 2011, H.&H.C.&S. 2011+.

I R(n) is a convex cone containing the non-positive real axis.

I Moreover

I R(2) = R≤0

I R(3) =
{

x + y i ∈ C+ : x +
√

3y ≤ 0
}

I R(4) =
{

x + y i ∈ C+ : x + y ≤ 0
}

I For n = 3, 4, the ”complex” boundary of R(n) is generated by
a root of a truncated binomial polynomial:

2∑
i=0

(
3
i

)
z i and

3∑
i=0

(
4
i

)
z i ,

which can be realized as 1-tangential bodies K of lower
dimensional bodies E .

Let γ be a root of fK ;E (z) and λ > 0. Then
I λ γ is a root of fλK ;E (z).

I γ − λ is a root of fK+λE ;E (z).
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Questions:

• R(n) closed?

• R(n) ( R(n + 1)?

• limn→∞R(n) = C+ \ R>0?

• Is intR(n) independent of the gauge body E (dimE = n)?

• Which bodies K ,E form the ”complex” boundary?
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• Let

C (n) =
{

a = (a0, . . . , an)
ᵀ ∈ Rn+1

≥0 :
n∑

i=0

(
n
i

)
ai z i = fK ;E (z)

for convex bodies K ,E with dim(K + E ) = n
}

be the ”set of all quermassintegrals”.

• In view of the Alexsandrov-Fenchel inequality we have

C (n) ⊂
{

a ∈ Rn+1
≥0 : a2

i ≥ ai−1 ai+1

}
,

but for n ≥ 3 the inclusion is strict.
For instance, (1, 0, 0, 1) cannot be the coefficients of a Steiner
polynomial.
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• Shephard, 1960.

C (n) ∩ Rn+1
>0 =

{
a ∈ Rn+1

>0 : a2
i ≥ ai−1 ai+1

}
,

C (n) =
{

a ∈ Rn+1
≥0 : ai aj ≥ ai−1 aj+1

}
.

• For more than two bodies a complete description of the ”set of
mixed volumes” is not known. Shephard also showed that
”only” the Alexsandrov-Fenchel inequalities do not form a
complete system for n + 2 (n-dimensional) bodies.

• Question: Find a complete description for more than 2 bodies?
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• Idea of Shephard’s proof: Let λ1 ≥ · · · ≥ λn > 0 and let

K = conv {0, e1, . . . , en} and E = conv {0, λ1 e1, . . . , λn en}

Based on a dissection of K + E into n + 1 simplices he finds

Wi (K ;E ) = vol(K )λ1λ2 · · ·λi , i = 0, . . . , n.

Now, let ai > 0, 0 ≤ i ≤ n with a2
i ≥ ai+1ai−1 and let

a0 = 1/n!.

Then a0 = W0(K ;E ) and with

λ1 =
a1

a0
λi =

ai−2 ai

a2
i−1

λi−1

we have λi ≥ λi−1 and Wi (K ;E ) = ai .
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• Using the complete characterization of C (n) one can show

H.&H.C.&S., 2011+. R(n) is closed.

• Strict monotonicity?
I Let γ ∈ R(n) and K ,E ⊂ Rn such that fK ;E (γ) = 0. With

E ′ = E × conv {0, en+1} ⊂ Rn+1 we have

vol(K + λE ′) = vol
(
(K + λE )× λconv {0, en+1}

)
= λ voln(K + λE ),

i.e., fK ;E ′(z) = z fK ;E (z) and thus fK ;E ′(γ) = 0. Hence
R(n) ⊆ R(n + 1).

• H.&H.C.&S. 2011+. R(n) ( R(n + 1).
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• From the complete characterization of C (n) one can deduce

A real polynomial
∑n

i=0 aiz i , ai ≥ 0, is a Steiner polynomial
fK ;E (z) for K ,E ⊂ Rn, with

dimE = r , dimK = s, dim(K + E ) = n,

if and only if

i) ai > 0 for all n − s ≤ i ≤ r , and ai = 0 otherwise, and

ii) the sequence a0, . . . , an is ultra-logconcave, i.e.,

ci,n a2
i ≥ ai−1 ai+1 for 1 ≤ i ≤ n − 1.

with ci ,n =
( n
i−1

)( n
i+1

)
/
(n

i

)2.
• Gurvits, 2009. ”Steiner polynomial proof” of Liggett’s theorem

on the convolution of ultra-logconcave sequences.
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• The proof of the strict monotonicity implies

H.&H.C.&S. 2011+ For n ≥ 3, let γ ∈ bdR(n)\R≤0 and let
K ,E ⊂ Rn with fK ;E (γ) = 0. Then there exists
i ∈ {1, . . . , n − 1} such that K ,E satisfy

Wi (K ;E )2 = Wi−1(K ;E )Wi+1(K ;E ),

with Wi (K ;E ) > 0, i.e., they are extremal sets for at least one
Aleksandrov-Fenchel inequality.
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Possible candidates for the boundary?

• Any sequence

a = (0, . . . , 0︸ ︷︷ ︸
n−s

, 1, . . . , 1︸ ︷︷ ︸
r+s+1−n

, 0 . . . , 0︸ ︷︷ ︸
n−r

)

of length n + 1 corresponds to a Steiner polynomial

fK ;E (z) =
r∑

i=n−s

(
n
i

)
z i =: Pn

n−s,r (z)

with dim(K + E ) = n, dimK = s, dimE = r , which is a
truncated binomial polynomial.
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• Pn
0,r (z) =

r∑
i=0

(
n
i

)
z i

can be realized (for instance) as an (n − r)-fold pyramid over
an r -dimensional polytope E , which is an (n − r)-tangential
body K of E .

• In dimensions 3 and 4

P3
0,2(z) and P4

0,3(z)

have roots on the ”complex boundary”.
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• But they are not ”extremal” in dimension ≥ 5.

Optimal Pn
j ,k(z) in dimension ≤ 15:

n = 3: j = 0, k = 2 γ = −1.5000+ 0.8660i α = 2.6179
n = 4: j = 0, k = 3 γ = −1.0000+ 1.0000i α = 2.3561
n = 5: j = 1, k = 4 γ = −0.5000+ 0.8660i α = 2.0943
n = 6: j = 1, k = 5 γ = −0.3856+ 0.9226i α = 1.9667
n = 7: j = 1, k = 5 γ = −0.3249+ 1.2279i α = 1.8294
n = 8: j = 2, k = 6 γ = −0.1464+ 0.9892i α = 1.7177
n = 9: j = 2, k = 7 γ = −0.0698+ 0.9975i α = 1.6406
n = 10: j = 2, k = 7 γ = 0.0158+ 1.1903i α = 1.5574
n = 11: j = 3, k = 8 γ = 0.0854+ 0.9963i α = 1.4852
n = 12: j = 3, k = 8 γ = 0.1533+ 1.1549i α = 1.4388
n = 13: j = 3, k = 9 γ = 0.2127+ 1.1256i α = 1.3840
n = 14: j = 4, k = 10 γ = 0.2400+ 0.9707i α = 1.3284
n = 15: j = 4, k = 10 γ = 0.3139+ 1.0864i α = 1.2895
· · ·
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• Question: Which convex bodies K ,E ⊂ Rn satisfy

fK ;E (z) = Pn
j ,k(z)

for j , k ∈ {1, . . . , n − 1}?
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Where do they go?

n = 2

n ≥ 10

n = 3

n = 4

n = 9

?
R(n)

n→∞−→ C+?

• H.&H.C.&S. 2011+. Let γ ∈ C+ \ R>0. Then there exists an
nγ ∈ N with γ ∈ R(n) for all n ≥ nγ .
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I It was shown by Ostrovskii, 2000 and Janson&Norfolk, 2009
that for any sequence (kn) ∈ N such that
α = limn→∞ kn/n ∈ (0, 1) the set of accumulation points of⋃∞

n=1

{
z ∈ C : Pn

0,kn
(z) = 0

}
coincide with the set{

z ∈ C : |z | = α (1− α)1/α−1 |1+ z |1/α and∣∣∣∣z − α

1− α2

∣∣∣∣ ≤ α2

1− α2

}
.

I Hence, for kn = bn/2c, i.e., α = 1/2, the number 1 is an
accumulation point, and so there exists a sequence
γn ∈ C+ \ R>0 such that limn→∞ γn = 1 and

Pn
0,bn/2c(γn) = 0 for all n ∈ N.

I Since Pn
0,bn/2c are Steiner polynomials we are done.

Roots of Steiner Polynomials 26 / 34



I It was shown by Ostrovskii, 2000 and Janson&Norfolk, 2009
that for any sequence (kn) ∈ N such that
α = limn→∞ kn/n ∈ (0, 1) the set of accumulation points of⋃∞

n=1

{
z ∈ C : Pn

0,kn
(z) = 0

}
coincide with the set{

z ∈ C : |z | = α (1− α)1/α−1 |1+ z |1/α and∣∣∣∣z − α

1− α2

∣∣∣∣ ≤ α2

1− α2

}
.

I Hence, for kn = bn/2c, i.e., α = 1/2, the number 1 is an
accumulation point, and so there exists a sequence
γn ∈ C+ \ R>0 such that limn→∞ γn = 1 and

Pn
0,bn/2c(γn) = 0 for all n ∈ N.

I Since Pn
0,bn/2c are Steiner polynomials we are done.

Roots of Steiner Polynomials 26 / 34



Questions:

• R(n) closed? Yes

• R(n) ( R(n + 1)? Yes

• limn→∞R(n) = C+ \ R>0? Yes

• Is intR(n) independent of the gauge body E (dimE = n)?

• Which bodies K ,E form the ”complex” boundary?
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• Do the roots carry information about the geometric structure
of the set?

• For instance:

I H.&H.C., 2008. −µ is an n-fold root of fK ;E (z) if and only if
K = t + µE .

I 0 is a k-fold root of fK ;E (z) if and only if dimK ≤ n − k.
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• H.&H.C., 2008. Let K ,E ⊂ Rn, E ⊂ K , dimE = n, and let
γ1, . . . , γn be the roots of fK ;E (z). Then K is a 1-tangential
body of E if and only if there exists α ∈ (0, 1) such that

γ−1
k = α1/n e

2π(k−1)
n i − 1, for k = 1, . . . , n
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• H.&H.C., 2010.
I Let b > 0. Convex bodies K ,E ⊂ Rn verifies the relations

Wn−k(K ;E ) =
k∑

i=0

(−1)i
(

k
i

)
bk−iWn−i (K ;E ) (?)

for k = 0, 1, . . . , n, if and only if all the roots of its Steiner
polynomial are symmetric with respect to −b/2, i.e., γ root if
and only if −b − γ is a root.

I When E = Bn, bodies K of constant width verify (?). Thus, a
constant width set K with breath b verifies that all the roots
of fK ;Bn (z) are symmetric with respect to −b/2.
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• Recall that for K with dimK = n, −r(K ;Bn) is an n-fold root
of fK ;Bn(z) if and only if K = x + r(K ;Bn)Bn for some x ∈ Rn.

• Conjecture. Let K ⊂ Rn, and let m ∈ {0, . . . , n − 1}. Then
−r(K ;Bn) is an (n −m)-fold root of fK ;Bn(z) if and only if

K = M + r(K ;Bn)Bn

for some convex body M with dimM = m.

• H.&H.C., 2010. Let n ≥ 2. Then K is a sausage with inradius
r(K ;Bn) if and only if −r(K ;Bn) is an (n − 1)-fold root of
fK ;Bn(z) and all its 2-dimensional projections have inradius
r(K ;Bn).
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• Let −r = −r(K ;Bn) be a root of f (n−2)
K ;Bn

(z), i.e.,

Wn−2(K )− 2rWn−1(K ) + r2Wn(K ) = 0.

• Kubota’s integral recursion formula implies∫
Ln

2

fK |L;B2(−r) dσ(L) =
∫
Ln

2

W(2)
0 (K |L) dσ(L)− 2r

∫
Ln

2

W(2)
1 (K |L) dσ(L)

+ r2
∫
Ln

2

W(2)
2 (K |L) dσ(L)

=
vol2(B2)

vol(Bn)

[
Wn−2(K )− 2rWn−1(K ) + r2Wn(K )

]
= 0.
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• Since r = r(K |L;Bn ∩ L) for all L ∈ Ln
2, Bonnesen’s inequality

states that

fK |L;B2(−r) = W(2)
0 (K |L)− 2W(2)

1 (K |L)r + W(2)
2 (K |L)r2 ≤ 0,

with equality if and only if K |L is a 2-dimensional sausage with
inradius r.

• Hence K |L is a 2-dimensional sausage with inradius r for any
L ∈ Ln

2.

• Then r Bn is a summand of K , i.e., there exists a convex body
M with K = M + r Bn. Since any 2-dimensional projection is a
sausage, dimM = 1.
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The End

Thank you for your attention!
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