Roots of Steiner Polynomials

Martin Henk

joint work with María A. Hernández Cifre and Eugenia Saorín

Otto-von-Guericke Universität Magdeburg

Cortona, June, 2011

• Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - ► Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - ► Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...
 - h-vector polynomials of certain simplicial complexes, Reiner&Welker, Brenti, Stanley, ...

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...
 - *h*-vector polynomials of certain simplicial complexes, Reiner&Welker, Brenti, Stanley, ...
 - ▶ "Graph" polynomials, Cameron, Sokal, Wagner, ...

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...
 - *h*-vector polynomials of certain simplicial complexes, Reiner&Welker, Brenti, Stanley, ...
 - ▶ "Graph" polynomials, Cameron, Sokal, Wagner, ...
 - Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - ► Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...
 - *h*-vector polynomials of certain simplicial complexes, Reiner&Welker, Brenti, Stanley, ...
 - ▶ "Graph" polynomials, Cameron, Sokal, Wagner, ...
 - Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
 - Eulerian polynomials of labeled posets, Borcea&Brändén, Stanley, Wagner, ...
 - *h*-vector polynomials of certain simplicial complexes, Reiner&Welker, Brenti, Stanley, ...
 - ▶ "Graph" polynomials, Cameron, Sokal, Wagner, ...
 - ► Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...
 - •
 - Steiner polynomials, H.& Hernández Cifre&Saorín, Jetter, Katsnelson, Teissier, ...

Steiner, 1840: Let K, E ⊂ ℝⁿ be two convex bodies, where we always assume dim(K + E) = n. For λ ∈ ℝ_{≥0}, the volume of K + λE is a polynomial of degree at most n in λ, the so called Steiner polynomial of K w.r.t. the gauge body E,

$$\operatorname{vol}(\mathcal{K}+\lambda E) = \sum_{i=0}^{n} {n \choose i} \operatorname{W}_{i}(\mathcal{K}; E) \lambda^{i}.$$

The coefficients $W_i(K; E) = V(K, \stackrel{(n-i)}{\dots}, K, E, \stackrel{(i)}{\dots}, E)$ are the so called **quermassintegrals** of K w.r.t. E, $0 \le i \le n$.

$$f_{\mathcal{K};\mathcal{E}}(z) = \sum_{i=0}^{n} {n \choose i} W_i(\mathcal{K};\mathcal{E}) z^i.$$

$$f_{\mathcal{K};\mathcal{E}}(z) = \sum_{i=0}^{n} {n \choose i} W_i(\mathcal{K};\mathcal{E}) z^i.$$

•
$$W_i(K; E) = W_{n-i}(E; K).$$

$$f_{\mathcal{K};\mathcal{E}}(z) = \sum_{i=0}^{n} {n \choose i} W_i(\mathcal{K};\mathcal{E}) z^i.$$

•
$$W_i(K; E) = W_{n-i}(E; K).$$

$$f_{\mathcal{K};\mathcal{E}}(z) = \sum_{i=0}^{n} {n \choose i} W_i(\mathcal{K};\mathcal{E}) z^i.$$

•
$$W_i(K; E) = W_{n-i}(E; K).$$

•
$$W_0(K; E) = vol(K), W_n(K; E) = vol(E).$$

$$f_{\mathcal{K};\mathcal{E}}(z) = \sum_{i=0}^{n} {n \choose i} W_i(\mathcal{K};\mathcal{E}) z^i.$$

•
$$W_i(K; E) = W_{n-i}(E; K).$$

- $W_0(K; E) = vol(K), W_n(K; E) = vol(E).$
- $W_i(\mu_1 K; \mu_2 E) = \mu_1^{n-i} \mu_2^i W_i(K; E), \ \mu_1, \mu_2 \ge 0.$

$$f_{K;E}(z) = \sum_{i=0}^{n} {n \choose i} W_i(K; E) z^i.$$

•
$$W_i(K; E) = W_{n-i}(E; K).$$

- $W_0(K; E) = vol(K), W_n(K; E) = vol(E).$
- $W_i(\mu_1 K; \mu_2 E) = \mu_1^{n-i} \mu_2^i W_i(K; E), \ \mu_1, \mu_2 \ge 0.$
- W_i(K; E) ≥ 0 with equality if and only if dim K < n − i or dim E < i. Hence

$$f_{K;E}(z) = \sum_{i=n-\dim K}^{\dim E} \binom{n}{i} W_i(K;E) z^i$$

Examples

• 0 is a k-fold root of $f_{K;E}(z)$ if and only if dim $K \leq n - k$.

Examples

- 0 is a k-fold root of $f_{K;E}(z)$ if and only if dim $K \leq n k$.
- If $K = t + \mu E$, $\mu \ge 0$, $t \in \mathbb{R}^n$, then

$$f_{\mathcal{K};\mathcal{E}}(z) = \operatorname{vol}(\mathcal{E}) \sum_{i=0}^{n} {n \choose i} \mu^{n-i} z^{i} = \operatorname{vol}(\mathcal{E}) (z+\mu)^{n}.$$

Hence, $-\mu$ is an *n*-fold root.

Examples

- 0 is a k-fold root of $f_{K;E}(z)$ if and only if dim $K \leq n k$.
- If $K = t + \mu E$, $\mu \ge 0$, $t \in \mathbb{R}^n$, then

$$f_{\mathcal{K};\mathcal{E}}(z) = \operatorname{vol}(\mathcal{E}) \sum_{i=0}^{n} {n \choose i} \mu^{n-i} z^{i} = \operatorname{vol}(\mathcal{E}) (z+\mu)^{n}.$$

Hence, $-\mu$ is an *n*-fold root.

• H.&H.C., 2008. $-\mu$ is an *n*-fold root of $f_{K;E}(z)$ if and only if $K = t + \mu E$.

Favard, 1933. Let E ⊆ K ⊂ ℝⁿ, dim E = n, be convex bodies.
 K is a so called *p*-tangential body of E, p ∈ {0,..., n − 1}, if and only if

$$W_0(K; E) = W_1(K; E) = \cdots = W_{n-p}(K; E).$$

Favard, 1933. Let E ⊆ K ⊂ ℝⁿ, dim E = n, be convex bodies.
 K is a so called *p*-tangential body of E, p ∈ {0,..., n − 1}, if and only if

$$W_0(K; E) = W_1(K; E) = \cdots = W_{n-p}(K; E).$$

• Let K be a p-tangential body of E. Then

$$f_{K;E}(z) = \operatorname{vol}(K)\left(\sum_{i=0}^{n-p} \binom{n}{i} z^i\right) + \sum_{i=n-p+1}^n \binom{n}{i} \operatorname{W}_i(K;E) z^i.$$

Favard, 1933. Let E ⊆ K ⊂ ℝⁿ, dim E = n, be convex bodies.
 K is a so called *p*-tangential body of E, p ∈ {0,..., n − 1}, if and only if

$$W_0(K; E) = W_1(K; E) = \cdots = W_{n-p}(K; E).$$

• Let K be a p-tangential body of E. Then

$$f_{K;E}(z) = \operatorname{vol}(K)\left(\sum_{i=0}^{n-p} \binom{n}{i} z^i\right) + \sum_{i=n-p+1}^n \binom{n}{i} \operatorname{W}_i(K;E) z^i.$$

• In particular, let K be a 1-tangential body of E. Then

$$\gamma_k^{-1} = \sqrt[n]{1 - \frac{\operatorname{vol}(E)}{\operatorname{vol}(K)}} e^{\frac{2\pi k}{n}i} - 1$$

are the roots of $f_{K;E}(z)$.

$$f_{C_n;B_n}(z) = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \kappa_i z^i.$$

$$f_{C_n;B_n}(z) = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \kappa_i z^i.$$

$$f_{C_n;B_n}(z) = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \kappa_i z^i.$$

- Roots ??
- ► Katsnelson, 2009. All roots of f_{Cn;Bn}(z) are real, i.e., it is a hyperbolic polynomial.

$$f_{C_n;B_n}(z) = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \kappa_i z^i.$$

- Roots ??
- ► Katsnelson, 2009. All roots of f_{Cn;Bn}(z) are real, i.e., it is a hyperbolic polynomial.
- Are the Steiner polynomials $f_{K;B_n}(z)$ of a regular simplex T_n or crosspolytope C_n^* hyperbolic?

$$f_{C_n;B_n}(z) = \sum_{i=0}^n \binom{n}{i} 2^{n-i} \kappa_i z^i.$$

- Roots ??
- ► Katsnelson, 2009. All roots of f_{Cn;Bn}(z) are real, i.e., it is a hyperbolic polynomial.
- Are the Steiner polynomials f_{K;B_n}(z) of a regular simplex T_n or crosspolytope C^{*}_n hyperbolic?

$$W_i(T_n; B_n) = \kappa_i \frac{n+1}{(n-i)!} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(n-i+1)x^2} \left(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-y^2} dy\right)^i dx.$$

Dimension 2

• In dimension 2 all Steiner polynomials are hyperbolic.

Dimension 2

- In dimension 2 all Steiner polynomials are hyperbolic.
- Bonnesen, 1929, Blaschke, 1955. Let K, E ⊂ ℝ² be planar convex bodies, dim K = dim E = 2. Then for -R(K; E) ≤ λ ≤ -r(K; E) we have

 $W_0(K; E)\lambda^2 + 2W_1(K; E)\lambda + W_2(K; E) \leq 0.$

Dimension 2

- In dimension 2 all Steiner polynomials are hyperbolic.
- Bonnesen, 1929, Blaschke, 1955. Let K, E ⊂ ℝ² be planar convex bodies, dim K = dim E = 2. Then for -R(K; E) ≤ λ ≤ -r(K; E) we have

 $W_0(K; E)\lambda^2 + 2W_1(K; E)\lambda + W_2(K; E) \leq 0.$

Here

$$\begin{split} \mathbf{r}(K; E) &= \max\{r \geq 0 : \text{some translate of } r \ E \subseteq K\},\\ \mathbf{R}(K; E) &= \min\{R > 0 : \text{some translate of } K \subseteq R \ E\}, \end{split}$$

are the inradius and circumradius of K w.r.t. E, respectively.

$\operatorname{Re}(\gamma_1) \leq -\operatorname{R}(K; E) \leq -\operatorname{r}(K; E) \leq \operatorname{Re}(\gamma_n) \leq 0$?

• Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies *K*, *E*.

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies *K*, *E*.
- By the result of Blaschke and Bonnesen this is true for n = 2.

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies *K*, *E*.
- By the result of Blaschke and Bonnesen this is true for n = 2.
- H.&H.C., 2008. It is true for 1-tangential bodies K of E.

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies *K*, *E*.
- By the result of Blaschke and Bonnesen this is true for n = 2.
- H.&H.C., 2008. It is true for 1-tangential bodies K of E.
- Teissier, 1982, also pointed out that for n ≤ 5, Steiner-polynomials are stable, i.e., the real parts of all roots are non-positive (Re(γ_n) ≤ 0).

• H.&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):

- H.&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than -R(K; B₃).

- H.&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than -R(K; B₃).
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are smaller than -r(K; B₃).

- H.&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than -R(K; B₃).
 - There exists a 3-dimensional convex body K such that the real parts of all roots are smaller than $-r(K; B_3)$.
 - There are non-stable Steiner polynomials in dimensions \geq 12.

- H.&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than -R(K; B₃).
 - ► There exists a 3-dimensional convex body K such that the real parts of all roots are smaller than -r(K; B₃).
 - There are non-stable Steiner polynomials in dimensions \geq 12.
- Katsnelson, 2009. Another family of high dimensional convex bodies contradicting the stability.

 H.&H.C.&S., 2011+. The family of Steiner polynomials is stable if and only if n ≤ 9.

- H.&H.C.&S., 2011+. The family of Steiner polynomials is stable if and only if n ≤ 9.
- Jetter, 2011. Let $n \leq 9$ and let K be a C^2 -convex body. Let ρ_{\min} and ρ_{\max} be the minimum and maximum values of the principal radii of curvature of K, and let γ_i , $1 \leq i \leq n$, be the roots of $f_{K;B_n}(z)$. Then

$$-\rho_{\max} \leq \operatorname{Re}(\gamma_i) \leq -\rho_{\min}$$
 for all $i = 1, \dots, n$.

Where are the roots?

• Let

$$\mathcal{R}(n) := \left\{ z \in \mathbb{C}^+ : f_{\mathcal{K}; \mathcal{E}}(z) = 0, \, \mathcal{K}, \mathcal{E} \subset \mathbb{R}^n, \, \dim(\mathcal{K} + \mathcal{E}) = n \right\}$$

be the set of all roots of Steiner polynomials of convex bodies $K, E \subset \mathbb{R}^n$, where we are just interested in the ones lying in the upper complex half plane \mathbb{C}^+ .

• H.&H.C., 2011, H.&H.C.&S. 2011+.

Let γ be a root of $f_{\mathcal{K};\mathcal{E}}(z)$ and $\lambda > 0$. Then

• $\lambda \gamma$ is a root of $f_{\lambda K;E}(z)$.

• H.&H.C., 2011, H.&H.C.&S. 2011+.

Let γ be a root of $f_{\mathcal{K};\mathcal{E}}(z)$ and $\lambda > 0$. Then

- $\lambda \gamma$ is a root of $f_{\lambda K;E}(z)$.
- $\gamma \lambda$ is a root of $f_{K+\lambda E;E}(z)$.

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
 - Moreover

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.

Moreover

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.

Moreover

•
$$\mathcal{R}(2) = \mathbb{R}_{\leq 0}$$

•
$$\mathcal{R}(3) = \{x + yi \in \mathbb{C}^+ : x + \sqrt{3}y \le 0\}$$

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
 - Moreover

•
$$\mathcal{R}(2) = \mathbb{R}_{\leq 0}$$

•
$$\mathcal{R}(3) = \left\{ x + yi \in \mathbb{C}^+ : x + \sqrt{3}y \le \mathbf{0} \right\}$$

•
$$\mathcal{R}(4) = \{x + yi \in \mathbb{C}^+ : x + y \le 0\}$$

- H.&H.C., 2011, H.&H.C.&S. 2011+.
 - $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
 - Moreover

For n = 3, 4, the "complex" boundary of R(n) is generated by a root of a truncated binomial polynomial:

$$\sum_{i=0}^{2} \binom{3}{i} z^{i} \quad \text{and} \quad \sum_{i=0}^{3} \binom{4}{i} z^{i},$$

which can be realized as 1-tangential bodies K of lower dimensional bodies E.

• $\mathcal{R}(n)$ closed?

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?

•
$$\lim_{n\to\infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$$
?

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?
- $\lim_{n\to\infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$?
- Is int $\mathcal{R}(n)$ independent of the gauge body E (dim E = n)?

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?
- $\lim_{n\to\infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$?
- Is int $\mathcal{R}(n)$ independent of the gauge body E (dim E = n)?
- Which bodies *K*, *E* form the "complex" boundary?

• Let

$$C(n) = \left\{ a = (a_0, \dots, a_n)^{\mathsf{T}} \in \mathbb{R}_{\geq 0}^{n+1} : \sum_{i=0}^n \binom{n}{i} a_i z^i = f_{K;E}(z) \right\}$$
for convex bodies *K*, *E* with dim(*K* + *E*) = *n*

be the "set of all quermassintegrals".

Let

$$C(n) = \left\{ a = (a_0, \dots, a_n)^{\mathsf{T}} \in \mathbb{R}_{\geq 0}^{n+1} : \sum_{i=0}^n \binom{n}{i} a_i z^i = f_{K;E}(z) \right\}$$
for convex bodies K, E with $\dim(K + E) = n$

be the "set of all quermassintegrals".

• In view of the Alexsandrov-Fenchel inequality we have

$$\mathcal{C}(n) \subset \left\{ a \in \mathbb{R}^{n+1}_{\geq 0} : a_i^2 \geq a_{i-1} a_{i+1} \right\},$$

but for $n \ge 3$ the inclusion is strict.

Let

$$C(n) = \left\{ a = (a_0, \dots, a_n)^{\mathsf{T}} \in \mathbb{R}_{\geq 0}^{n+1} : \sum_{i=0}^n \binom{n}{i} a_i z^i = f_{K;E}(z) \right\}$$
for convex bodies K, E with $\dim(K + E) = n$

be the "set of all quermassintegrals".

• In view of the Alexsandrov-Fenchel inequality we have

$$\mathcal{C}(n) \subset \left\{ a \in \mathbb{R}^{n+1}_{\geq 0} : a_i^2 \geq a_{i-1} a_{i+1} \right\},$$

but for $n \ge 3$ the inclusion is strict. For instance, (1,0,0,1) cannot be the coefficients of a Steiner polynomial. • Shephard, 1960.

$$\mathcal{C}(n) \cap \mathbb{R}_{>0}^{n+1} = \Big\{ a \in \mathbb{R}_{>0}^{n+1} : a_i^2 \ge a_{i-1} a_{i+1} \Big\},$$

 $\mathcal{C}(n) = \Big\{ a \in \mathbb{R}_{\ge 0}^{n+1} : a_i a_j \ge a_{i-1} a_{j+1} \Big\}.$

• Shephard, 1960.

$$\mathcal{C}(n) \cap \mathbb{R}^{n+1}_{>0} = \Big\{ a \in \mathbb{R}^{n+1}_{>0} : a_i^2 \ge a_{i-1} a_{i+1} \Big\},$$

 $\mathcal{C}(n) = \Big\{ a \in \mathbb{R}^{n+1}_{\ge 0} : a_i a_j \ge a_{i-1} a_{j+1} \Big\}.$

 For more than two bodies a complete description of the "set of mixed volumes" is not known. Shephard also showed that "only" the Alexsandrov-Fenchel inequalities do not form a complete system for n + 2 (n-dimensional) bodies. • Shephard, 1960.

$$\mathcal{C}(n) \cap \mathbb{R}_{>0}^{n+1} = \Big\{ a \in \mathbb{R}_{>0}^{n+1} : a_i^2 \ge a_{i-1} a_{i+1} \Big\},$$

 $\mathcal{C}(n) = \Big\{ a \in \mathbb{R}_{\ge 0}^{n+1} : a_i a_j \ge a_{i-1} a_{j+1} \Big\}.$

- For more than two bodies a complete description of the "set of mixed volumes" is not known. Shephard also showed that "only" the Alexsandrov-Fenchel inequalities do not form a complete system for n + 2 (n-dimensional) bodies.
- Question: Find a complete description for more than 2 bodies?

 $\mathcal{K} = \operatorname{conv} \{0, e_1, \dots, e_n\}$ and $\mathcal{E} = \operatorname{conv} \{0, \lambda_1 e_1, \dots, \lambda_n e_n\}$

 $K = \operatorname{conv} \{0, e_1, \dots, e_n\}$ and $E = \operatorname{conv} \{0, \lambda_1 e_1, \dots, \lambda_n e_n\}$

Based on a dissection of K + E into n + 1 simplices he finds

$$W_i(K; E) = vol(K) \lambda_1 \lambda_2 \cdots \lambda_i, \quad i = 0, \dots, n.$$

 $K = \operatorname{conv} \{0, e_1, \dots, e_n\}$ and $E = \operatorname{conv} \{0, \lambda_1 e_1, \dots, \lambda_n e_n\}$

Based on a dissection of K + E into n + 1 simplices he finds

$$W_i(K; E) = vol(K) \lambda_1 \lambda_2 \cdots \lambda_i, \quad i = 0, \dots, n.$$

Now, let $a_i > 0$, $0 \le i \le n$ with $a_i^2 \ge a_{i+1}a_{i-1}$ and let $a_0 = 1/n!$.

 $K = \operatorname{conv} \{0, e_1, \dots, e_n\}$ and $E = \operatorname{conv} \{0, \lambda_1 e_1, \dots, \lambda_n e_n\}$

Based on a dissection of K + E into n + 1 simplices he finds

$$W_i(K; E) = vol(K) \lambda_1 \lambda_2 \cdots \lambda_i, \quad i = 0, \dots, n.$$

Now, let $a_i > 0$, $0 \le i \le n$ with $a_i^2 \ge a_{i+1}a_{i-1}$ and let $a_0 = 1/n!$.

Then $a_0 = W_0(K; E)$ and with

$$\lambda_1 = \frac{a_1}{a_0} \quad \lambda_i = \frac{a_{i-2} a_i}{a_{i-1}^2} \lambda_{i-1}$$

we have $\lambda_i \geq \lambda_{i-1}$ and $W_i(K; E) = a_i$.

Using the complete characterization of C(n) one can show
 H.&H.C.&S., 2011+. R(n) is closed.

- Using the complete characterization of C(n) one can show
 H.&H.C.&S., 2011+. R(n) is closed.
- Strict monotonicity?
 - ▶ Let $\gamma \in \mathcal{R}(n)$ and $K, E \subset \mathbb{R}^n$ such that $f_{K;E}(\gamma) = 0$. With $E' = E \times \operatorname{conv} \{0, e_{n+1}\} \subset \mathbb{R}^{n+1}$ we have

 $\operatorname{vol}(\mathcal{K} + \lambda \, \mathcal{E}') = \operatorname{vol}((\mathcal{K} + \lambda \mathcal{E}) \times \lambda \operatorname{conv} \{0, e_{n+1}\}) = \lambda \operatorname{vol}_n(\mathcal{K} + \lambda \mathcal{E}),$

i.e.,
$$f_{K;E'}(z) = z f_{K;E}(z)$$
 and thus $f_{K;E'}(\gamma) = 0$. Hence $\mathcal{R}(n) \subseteq \mathcal{R}(n+1)$.

- Using the complete characterization of C(n) one can show
 H.&H.C.&S., 2011+. R(n) is closed.
- Strict monotonicity?
 - ▶ Let $\gamma \in \mathcal{R}(n)$ and $K, E \subset \mathbb{R}^n$ such that $f_{K;E}(\gamma) = 0$. With $E' = E \times \operatorname{conv} \{0, e_{n+1}\} \subset \mathbb{R}^{n+1}$ we have

 $\operatorname{vol}(\mathcal{K} + \lambda E') = \operatorname{vol}((\mathcal{K} + \lambda E) \times \lambda \operatorname{conv} \{0, e_{n+1}\}) = \lambda \operatorname{vol}_n(\mathcal{K} + \lambda E),$

i.e., $f_{K;E'}(z) = z f_{K;E}(z)$ and thus $f_{K;E'}(\gamma) = 0$. Hence $\mathcal{R}(n) \subseteq \mathcal{R}(n+1)$.

• H.&H.C.&S. 2011+. $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$.

• From the complete characterization of C(n) one can deduce

A real polynomial $\sum_{i=0}^{n} a_i z^i$, $a_i \ge 0$, is a Steiner polynomial $f_{K;E}(z)$ for $K, E \subset \mathbb{R}^n$, with

 $\dim E = r$, $\dim K = s$, $\dim(K + E) = n$,

if and only if

i) $a_i > 0$ for all $n - s \le i \le r$, and $a_i = 0$ otherwise, and

• From the complete characterization of C(n) one can deduce

A real polynomial $\sum_{i=0}^{n} a_i z^i$, $a_i \ge 0$, is a Steiner polynomial $f_{K;E}(z)$ for $K, E \subset \mathbb{R}^n$, with

 $\dim E = r, \quad \dim K = s, \quad \dim(K + E) = n,$

if and only if

i) $a_i > 0$ for all $n - s \le i \le r$, and $a_i = 0$ otherwise, and

ii) the sequence a_0, \ldots, a_n is ultra-logconcave, i.e.,

$$c_{i,n} a_i^2 \ge a_{i-1} a_{i+1}$$
 for $1 \le i \le n-1$.

with $c_{i,n} = \binom{n}{i-1} \binom{n}{i+1} / \binom{n}{i}^2$.

• From the complete characterization of C(n) one can deduce

A real polynomial $\sum_{i=0}^{n} a_i z^i$, $a_i \ge 0$, is a Steiner polynomial $f_{K;E}(z)$ for $K, E \subset \mathbb{R}^n$, with

 $\dim E = r, \quad \dim K = s, \quad \dim(K + E) = n,$

if and only if

i) $a_i > 0$ for all $n - s \le i \le r$, and $a_i = 0$ otherwise, and

ii) the sequence a_0, \ldots, a_n is ultra-logconcave, i.e.,

$$c_{i,n} a_i^2 \ge a_{i-1} a_{i+1}$$
 for $1 \le i \le n-1$.

with $c_{i,n} = {n \choose i-1} {n \choose i+1} / {n \choose i}^2$.

• Gurvits, 2009. "Steiner polynomial proof" of Liggett's theorem on the convolution of ultra-logconcave sequences.

• The proof of the strict monotonicity implies

H.&H.C.&S. 2011+ For $n \ge 3$, let $\gamma \in \operatorname{bd} \mathcal{R}(n) \setminus \mathbb{R}_{\le 0}$ and let $K, E \subset \mathbb{R}^n$ with $f_{K;E}(\gamma) = 0$. Then there exists $i \in \{1, \ldots, n-1\}$ such that K, E satisfy

$$W_i(K; E)^2 = W_{i-1}(K; E)W_{i+1}(K; E),$$

with $W_i(K; E) > 0$, i.e., they are extremal sets for at least one Aleksandrov-Fenchel inequality.

Possible candidates for the boundary?

Any sequence

$$a = (\underbrace{0, \dots, 0}_{n-s}, \underbrace{1, \dots, 1}_{r+s+1-n}, \underbrace{0, \dots, 0}_{n-r})$$

of length n + 1 corresponds to a Steiner polynomial

$$f_{K;E}(z) = \sum_{i=n-s}^{r} \binom{n}{i} z^{i} =: P_{n-s,r}^{n}(z)$$

with dim(K + E) = n, dim K = s, dim E = r, which is a truncated binomial polynomial.

•
$$P_{0,r}^n(z) = \sum_{i=0}^r \binom{n}{i} z^i$$

can be realized (for instance) as an (n - r)-fold pyramid over an *r*-dimensional polytope *E*, which is an (n - r)-tangential body *K* of *E*.

•
$$P_{0,r}^n(z) = \sum_{i=0}^r \binom{n}{i} z^i$$

can be realized (for instance) as an (n - r)-fold pyramid over an *r*-dimensional polytope *E*, which is an (n - r)-tangential body *K* of *E*.

• In dimensions 3 and 4

$$P^3_{0,2}(z)$$
 and $P^4_{0,3}(z)$

have roots on the "complex boundary".

• But they are not "extremal" in dimension \geq 5.

Optimal $P_{j,k}^n(z)$ in dimension ≤ 15 :

. . .

<i>n</i> = 3:	$j = 0, \ k = 2$	$\gamma = -$	-1.5000 + 0.8660i	lpha= 2.6179
<i>n</i> = 4:	j = 0, k = 3	$\gamma = -$	-1.0000 + 1.0000i	lpha= 2.3561
<i>n</i> = 5:	$j = 1, \ k = 4$	$\gamma = -$	-0.5000 + 0.8660i	$\alpha = 2.0943$
<i>n</i> = 6:	$j = 1, \ k = 5$	$\gamma = -$	-0.3856 + 0.9226i	lpha= 1.9667
<i>n</i> = 7:	$j = 1, \ k = 5$	$\gamma = -$	-0.3249 + 1.2279i	lpha= 1.8294
<i>n</i> = 8:	$j = 2, \ k = 6$	$\gamma = -$	-0.1464 + 0.9892i	$\alpha = 1.7177$
<i>n</i> = 9:	$j = 2, \ k = 7$	$\gamma = -$	-0.0698 + 0.9975i	lpha= 1.6406
<i>n</i> = 10:	$j = 2, \ k = 7$	$\gamma =$	0.0158 + 1.1903i	lpha= 1.5574
<i>n</i> = 11:	j = 3, k = 8	$\gamma =$	0.0854 + 0.9963i	$\alpha = 1.4852$
<i>n</i> = 12:	$j = 3, \ k = 8$	$\gamma =$	0.1533 + 1.1549i	$\alpha = 1.4388$
<i>n</i> = 13:	j = 3, k = 9	$\gamma =$	0.2127 + 1.1256i	lpha= 1.3840
<i>n</i> = 14:	$j = 4, \ k = 10$	$\gamma =$	0.2400 + 0.9707i	$\alpha = 1.3284$
<i>n</i> = 15:	$j = 4, \ k = 10$	$\gamma =$	0.3139 + 1.0864i	$\alpha = 1.2895$

• Question: Which convex bodies $K, E \subset \mathbb{R}^n$ satisfy

$$f_{K;E}(z) = P_{j,k}^n(z)$$

for $j, k \in \{1, ..., n-1\}$?

Where do they go?

• H.&H.C.&S. 2011+. Let $\gamma \in \mathbb{C}^+ \setminus \mathbb{R}_{>0}$. Then there exists an $n_{\gamma} \in \mathbb{N}$ with $\gamma \in \mathcal{R}(n)$ for all $n \ge n_{\gamma}$.

▶ It was shown by Ostrovskii, 2000 and Janson&Norfolk, 2009 that for any sequence $(k_n) \in \mathbb{N}$ such that $\alpha = \lim_{n \to \infty} \frac{k_n}{n} \in (0, 1)$ the set of accumulation points of $\bigcup_{n=1}^{\infty} \{z \in \mathbb{C} : P_{0,k_n}^n(z) = 0\}$ coincide with the set

$$\left\{ z \in \mathbb{C} : |z| = \alpha \left(1 - \alpha\right)^{1/\alpha - 1} |1 + z|^{1/\alpha} \text{ and} \right.$$
$$\left| z - \frac{\alpha}{1 - \alpha^2} \right| \le \frac{\alpha^2}{1 - \alpha^2} \right\}.$$

▶ It was shown by Ostrovskii, 2000 and Janson&Norfolk, 2009 that for any sequence $(k_n) \in \mathbb{N}$ such that $\alpha = \lim_{n \to \infty} \frac{k_n}{n \in (0, 1)}$ the set of accumulation points of $\bigcup_{n=1}^{\infty} \{z \in \mathbb{C} : P_{0,k_n}^n(z) = 0\}$ coincide with the set

$$\left\{ z \in \mathbb{C} : |z| = \alpha \left(1 - \alpha\right)^{1/\alpha - 1} |1 + z|^{1/\alpha} \text{ and} \right.$$
$$\left| z - \frac{\alpha}{1 - \alpha^2} \right| \le \frac{\alpha^2}{1 - \alpha^2} \right\}.$$

▶ Hence, for $k_n = \lfloor n/2 \rfloor$, i.e., $\alpha = 1/2$, the number 1 is an accumulation point, and so there exists a sequence $\gamma_n \in \mathbb{C}^+ \setminus \mathbb{R}_{>0}$ such that $\lim_{n\to\infty} \gamma_n = 1$ and

$$\mathcal{P}^n_{0,\lfloor n/2 \rfloor}(\gamma_n) = 0 \quad \text{ for all } n \in \mathbb{N}.$$

• Since $P_{0,|n/2|}^n$ are Steiner polynomials we are done.

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes

•
$$\lim_{n \to \infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$$
? Yes

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes
- $\lim_{n\to\infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$? Yes
- Is int $\mathcal{R}(n)$ independent of the gauge body E (dim E = n)?

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes
- $\lim_{n\to\infty} \mathcal{R}(n) = \mathbb{C}^+ \setminus \mathbb{R}_{>0}$? Yes
- Is int $\mathcal{R}(n)$ independent of the gauge body E (dim E = n)?
- Which bodies *K*, *E* form the "complex" boundary?

• Do the roots carry information about the geometric structure of the set?

- Do the roots carry information about the geometric structure of the set?
- For instance:

• H.&H.C., 2008. $-\mu$ is an *n*-fold root of $f_{K;E}(z)$ if and only if $K = t + \mu E$.

- Do the roots carry information about the geometric structure of the set?
- For instance:
 - H.&H.C., 2008. $-\mu$ is an *n*-fold root of $f_{K;E}(z)$ if and only if $K = t + \mu E$.
 - ▶ 0 is a k-fold root of $f_{K;E}(z)$ if and only if dim $K \leq n k$.

 H.&H.C., 2008. Let K, E ⊂ ℝⁿ, E ⊂ K, dim E = n, and let γ₁,..., γ_n be the roots of f_{K;E}(z). Then K is a 1-tangential body of E if and only if there exists α ∈ (0, 1) such that

$$\gamma_k^{-1} = \alpha^{1/n} e^{\frac{2\pi(k-1)}{n}i} - 1, \quad \text{for } k = 1, \dots, n$$

• H.&H.C., 2010.

▶ Let b > 0. Convex bodies $K, E \subset \mathbb{R}^n$ verifies the relations

$$W_{n-k}(K;E) = \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} b^{k-i} W_{n-i}(K;E) \qquad (\star)$$

for k = 0, 1, ..., n, if and only if all the roots of its Steiner polynomial are symmetric with respect to -b/2, i.e., γ root if and only if $-b - \gamma$ is a root.

• H.&H.C., 2010.

▶ Let b > 0. Convex bodies $K, E \subset \mathbb{R}^n$ verifies the relations

$$W_{n-k}(K;E) = \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} b^{k-i} W_{n-i}(K;E) \qquad (\star)$$

for k = 0, 1, ..., n, if and only if all the roots of its Steiner polynomial are symmetric with respect to -b/2, i.e., γ root if and only if $-b - \gamma$ is a root.

When E = B_n, bodies K of constant width verify (★). Thus, a constant width set K with breath b verifies that all the roots of f_{K;B_n}(z) are symmetric with respect to −b/2.

 Recall that for K with dim K = n, -r(K; B_n) is an n-fold root of f_{K;B_n}(z) if and only if K = x + r(K; B_n)B_n for some x ∈ ℝⁿ.

- Recall that for K with dim K = n, $-r(K; B_n)$ is an *n*-fold root of $f_{K;B_n}(z)$ if and only if $K = x + r(K; B_n)B_n$ for some $x \in \mathbb{R}^n$.
- Conjecture. Let $K \subset \mathbb{R}^n$, and let $m \in \{0, ..., n-1\}$. Then $-r(K; B_n)$ is an (n-m)-fold root of $f_{K;B_n}(z)$ if and only if

$$K = M + r(K; B_n)B_n$$

for some convex body M with dim M = m.

- Recall that for K with dim K = n, -r(K; B_n) is an n-fold root of f_{K;B_n}(z) if and only if K = x + r(K; B_n)B_n for some x ∈ ℝⁿ.
- Conjecture. Let $K \subset \mathbb{R}^n$, and let $m \in \{0, ..., n-1\}$. Then $-r(K; B_n)$ is an (n m)-fold root of $f_{K;B_n}(z)$ if and only if

$$K = M + r(K; B_n)B_n$$

for some convex body M with dim M = m.

• H.&H.C., 2010. Let $n \ge 2$. Then K is a sausage with inradius $r(K; B_n)$ if and only if $-r(K; B_n)$ is an (n - 1)-fold root of $f_{K;B_n}(z)$ and all its 2-dimensional projections have inradius $r(K; B_n)$.

• Let
$$-\mathbf{r} = -\mathbf{r}(\mathcal{K}; \mathcal{B}_n)$$
 be a root of $f_{\mathcal{K};\mathcal{B}_n}^{(n-2)}(z)$, i.e.,
 $W_{n-2}(\mathcal{K}) - 2\mathbf{r}W_{n-1}(\mathcal{K}) + \mathbf{r}^2W_n(\mathcal{K}) = 0.$

• Let
$$-r = -r(K; B_n)$$
 be a root of $f_{K;B_n}^{(n-2)}(z)$, i.e.,
 $W_{n-2}(K) - 2rW_{n-1}(K) + r^2W_n(K) = 0$

• Kubota's integral recursion formula implies

$$\begin{split} \int_{\mathcal{L}_2^n} f_{\mathcal{K}|L;B_2}(-\mathbf{r}) \, d\sigma(L) &= \int_{\mathcal{L}_2^n} \mathbf{W}_0^{(2)}(\mathcal{K}|L) \, d\sigma(L) - 2\mathbf{r} \int_{\mathcal{L}_2^n} \mathbf{W}_1^{(2)}(\mathcal{K}|L) \, d\sigma(L) \\ &+ \mathbf{r}^2 \int_{\mathcal{L}_2^n} \mathbf{W}_2^{(2)}(\mathcal{K}|L) \, d\sigma(L) \\ &= \frac{\mathrm{vol}_2(B_2)}{\mathrm{vol}(B_n)} \big[\mathbf{W}_{n-2}(\mathcal{K}) - 2\mathbf{r} \mathbf{W}_{n-1}(\mathcal{K}) + \mathbf{r}^2 \mathbf{W}_n(\mathcal{K}) \big] = 0. \end{split}$$

• Since $r = r(K|L; B_n \cap L)$ for all $L \in \mathcal{L}_2^n$, Bonnesen's inequality states that

$$f_{\mathcal{K}|\mathcal{L};\mathcal{B}_2}(-\mathbf{r}) = \mathrm{W}_0^{(2)}(\mathcal{K}|\mathcal{L}) - 2\mathrm{W}_1^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r} + \mathrm{W}_2^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r}^2 \leq 0,$$

with equality if and only if K|L is a 2-dimensional sausage with inradius r.

• Since $r = r(K|L; B_n \cap L)$ for all $L \in \mathcal{L}_2^n$, Bonnesen's inequality states that

$$f_{\mathcal{K}|\mathcal{L};\mathcal{B}_2}(-\mathbf{r}) = \mathrm{W}_0^{(2)}(\mathcal{K}|\mathcal{L}) - 2\mathrm{W}_1^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r} + \mathrm{W}_2^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r}^2 \leq 0,$$

with equality if and only if K|L is a 2-dimensional sausage with inradius r.

• Hence K|L is a 2-dimensional sausage with inradius r for any $L \in \mathcal{L}_2^n$.

• Since $r = r(K|L; B_n \cap L)$ for all $L \in \mathcal{L}_2^n$, Bonnesen's inequality states that

$$f_{\mathcal{K}|\mathcal{L};\mathcal{B}_2}(-\mathbf{r}) = \mathrm{W}_0^{(2)}(\mathcal{K}|\mathcal{L}) - 2\mathrm{W}_1^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r} + \mathrm{W}_2^{(2)}(\mathcal{K}|\mathcal{L})\mathbf{r}^2 \leq 0,$$

with equality if and only if K|L is a 2-dimensional sausage with inradius r.

- Hence K|L is a 2-dimensional sausage with inradius r for any $L \in \mathcal{L}_2^n$.
- Then r B_n is a summand of K, i.e., there exists a convex body M with K = M + r B_n. Since any 2-dimensional projection is a sausage, dim M = 1.

The End Thank you for your attention!