Roots of Steiner Polynomials

Martin Henk joint work with
María A. Hernández Cifre and Eugenia Saorín

Otto-von-Guericke Universität Magdeburg

Cortona, June, 2011

- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- h-vector polynomials of certain simplicial complexes, Reiner\&Welker, Brenti, Stanley, ...
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- h-vector polynomials of certain simplicial complexes, Reiner\&Welker, Brenti, Stanley, ...
- "Graph" polynomials, Cameron, Sokal, Wagner, ...
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- h-vector polynomials of certain simplicial complexes, Reiner\&Welker, Brenti, Stanley, ...
- "Graph" polynomials, Cameron, Sokal, Wagner, ...
- Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- h-vector polynomials of certain simplicial complexes, Reiner\&Welker, Brenti, Stanley, ...
- "Graph" polynomials, Cameron, Sokal, Wagner, ...
- Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...
-
- Understanding the (role of the) roots of geometric and/or combinatorial polynomials, e.g.,
- Eulerian polynomials of labeled posets, Borcea\&Brändén, Stanley, Wagner, ...
- h-vector polynomials of certain simplicial complexes, Reiner\&Welker, Brenti, Stanley, ...
- "Graph" polynomials, Cameron, Sokal, Wagner, ...
- Ehrhart polynomials, Beck et al., Bey et al., Hibi, Rodriguez-Villegas,...
-:
- Steiner polynomials, H.\& Hernández Cifre\&Saorín, Jetter, Katsnelson, Teissier, ...
- Steiner, 1840: Let $K, E \subset \mathbb{R}^{n}$ be two convex bodies, where we always assume $\operatorname{dim}(K+E)=n$.
For $\lambda \in \mathbb{R}_{\geq 0}$, the volume of $K+\lambda E$ is a polynomial of degree at most n in λ, the so called Steiner polynomial of K w.r.t. the gauge body E,

$$
\operatorname{vol}(K+\lambda E)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) \lambda^{i}
$$

The coefficients $\mathrm{W}_{i}(K ; E)=\mathrm{V}\left(K, \stackrel{(n-i)}{.}, K, E, \stackrel{(i}{\bullet}^{\circ}, E\right)$ are the so called quermassintegrals of K w.r.t. $E, 0 \leq i \leq n$.

- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$.
- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$.

Hence $f_{K ; E}(z)=z^{n} f_{E ; K}(1 / z)$, and both polynomials have essentially the same roots.

- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$.

Hence $f_{K ; E}(z)=z^{n} f_{E ; K}(1 / z)$, and both polynomials have essentially the same roots.

- $\mathrm{W}_{0}(K ; E)=\operatorname{vol}(K), \mathrm{W}_{n}(K ; E)=\operatorname{vol}(E)$.
- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$.

Hence $f_{K ; E}(z)=z^{n} f_{E ; K}(1 / z)$, and both polynomials have essentially the same roots.

- $\mathrm{W}_{0}(K ; E)=\operatorname{vol}(K), \mathrm{W}_{n}(K ; E)=\operatorname{vol}(E)$.
- $\mathrm{W}_{i}\left(\mu_{1} K ; \mu_{2} E\right)=\mu_{1}^{n-i} \mu_{2}^{i} \mathrm{~W}_{i}(K ; E), \mu_{1}, \mu_{2} \geq 0$.
- For complex $z \in \mathbb{C}$ we denote the Steiner polynomial by

$$
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

- $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$.

Hence $f_{K ; E}(z)=z^{n} f_{E ; K}(1 / z)$, and both polynomials have essentially the same roots.

- $\mathrm{W}_{0}(K ; E)=\operatorname{vol}(K), \mathrm{W}_{n}(K ; E)=\operatorname{vol}(E)$.
- $\mathrm{W}_{i}\left(\mu_{1} K ; \mu_{2} E\right)=\mu_{1}^{n-i} \mu_{2}^{i} \mathrm{~W}_{i}(K ; E), \mu_{1}, \mu_{2} \geq 0$.
- $\mathrm{W}_{i}(K ; E) \geq 0$ with equality if and only if $\operatorname{dim} K<n-i$ or $\operatorname{dim} E<i$. Hence

$$
f_{K ; E}(z)=\sum_{i=n-\operatorname{dim} K}^{\operatorname{dim} E}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}
$$

Examples

- 0 is a k-fold root of $f_{K ; E}(z)$ if and only if $\operatorname{dim} K \leq n-k$.

Examples

- 0 is a k-fold root of $f_{K ; E}(z)$ if and only if $\operatorname{dim} K \leq n-k$.
- If $K=t+\mu E, \mu \geq 0, t \in \mathbb{R}^{n}$, then

$$
f_{K ; E}(z)=\operatorname{vol}(E) \sum_{i=0}^{n}\binom{n}{i} \mu^{n-i} z^{i}=\operatorname{vol}(E)(z+\mu)^{n} .
$$

Hence, $-\mu$ is an n-fold root.

Examples

- 0 is a k-fold root of $f_{K ; E}(z)$ if and only if $\operatorname{dim} K \leq n-k$.
- If $K=t+\mu E, \mu \geq 0, t \in \mathbb{R}^{n}$, then

$$
f_{K ; E}(z)=\operatorname{vol}(E) \sum_{i=0}^{n}\binom{n}{i} \mu^{n-i} z^{i}=\operatorname{vol}(E)(z+\mu)^{n}
$$

Hence, $-\mu$ is an n-fold root.

- H.\&H.C., 2008. $-\mu$ is an n-fold root of $f_{K ; E}(z)$ if and only if $K=t+\mu E$.
- Favard, 1933. Let $E \subseteq K \subset \mathbb{R}^{n}, \operatorname{dim} E=n$, be convex bodies. K is a so called p-tangential body of $E, p \in\{0, \ldots, n-1\}$, if and only if

$$
\mathrm{W}_{0}(K ; E)=\mathrm{W}_{1}(K ; E)=\cdots=\mathrm{W}_{n-p}(K ; E)
$$

- Favard, 1933. Let $E \subseteq K \subset \mathbb{R}^{n}, \operatorname{dim} E=n$, be convex bodies. K is a so called p-tangential body of $E, p \in\{0, \ldots, n-1\}$, if and only if

$$
\mathrm{W}_{0}(K ; E)=\mathrm{W}_{1}(K ; E)=\cdots=\mathrm{W}_{n-p}(K ; E)
$$

- Let K be a p-tangential body of E. Then

$$
f_{K ; E}(z)=\operatorname{vol}(K)\left(\sum_{i=0}^{n-p}\binom{n}{i} z^{i}\right)+\sum_{i=n-p+1}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i} .
$$

- Favard, 1933. Let $E \subseteq K \subset \mathbb{R}^{n}, \operatorname{dim} E=n$, be convex bodies. K is a so called p-tangential body of $E, p \in\{0, \ldots, n-1\}$, if and only if

$$
\mathrm{W}_{0}(K ; E)=\mathrm{W}_{1}(K ; E)=\cdots=\mathrm{W}_{n-p}(K ; E)
$$

- Let K be a p-tangential body of E. Then

$$
f_{K ; E}(z)=\operatorname{vol}(K)\left(\sum_{i=0}^{n-p}\binom{n}{i} z^{i}\right)+\sum_{i=n-p+1}^{n}\binom{n}{i} W_{i}(K ; E) z^{i} .
$$

- In particular, let K be a 1-tangential body of E. Then

$$
\gamma_{k}^{-1}=\sqrt[n]{1-\frac{\operatorname{vol}(E)}{\operatorname{vol}(K)}} \mathrm{e}^{\frac{2 \pi k_{\mathrm{i}}}{n}}-1
$$

are the roots of $f_{K ; E}(z)$.

- Let B_{n} be the n-unit ball of volume κ_{n}. For the cube $C_{n}=[-1,1]^{n}$ we have

$$
f_{C_{n} ; B_{n}}(z)=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \kappa_{i} z^{i}
$$

- Let B_{n} be the n-unit ball of volume κ_{n}. For the cube $C_{n}=[-1,1]^{n}$ we have

$$
f_{C_{n} ; B_{n}}(z)=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \kappa_{i} z^{i}
$$

- Roots ??
- Let B_{n} be the n-unit ball of volume κ_{n}. For the cube $C_{n}=[-1,1]^{n}$ we have

$$
f_{C_{n} ; B_{n}}(z)=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \kappa_{i} z^{i} .
$$

- Roots ??
- Katsnelson, 2009. All roots of $f_{C_{n} ; B_{n}}(z)$ are real, i.e., it is a hyperbolic polynomial.
- Let B_{n} be the n-unit ball of volume κ_{n}. For the cube $C_{n}=[-1,1]^{n}$ we have

$$
f_{C_{n} ; B_{n}}(z)=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \kappa_{i} z^{i} .
$$

- Roots ??
- Katsnelson, 2009. All roots of $f_{C_{n} ; B_{n}}(z)$ are real, i.e., it is a hyperbolic polynomial.
- Are the Steiner polynomials $f_{K ; B_{n}}(z)$ of a regular simplex T_{n} or crosspolytope C_{n}^{\star} hyperbolic?
- Let B_{n} be the n-unit ball of volume κ_{n}. For the cube $C_{n}=[-1,1]^{n}$ we have

$$
f_{C_{n} ; B_{n}}(z)=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} \kappa_{i} z^{i} .
$$

- Roots ??
- Katsnelson, 2009. All roots of $f_{C_{n} ; B_{n}}(z)$ are real, i.e., it is a hyperbolic polynomial.
- Are the Steiner polynomials $f_{K ; B_{n}}(z)$ of a regular simplex T_{n} or crosspolytope C_{n}^{\star} hyperbolic?

$$
\mathrm{W}_{i}\left(T_{n} ; B_{n}\right)=\kappa_{i} \frac{n+1}{(n-i)!} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-(n-i+1) x^{2}}\left(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} \mathrm{e}^{-y^{2}} \mathrm{~d} y\right)^{i} \mathrm{~d} x
$$

Dimension 2

- In dimension 2 all Steiner polynomials are hyperbolic.

Dimension 2

- In dimension 2 all Steiner polynomials are hyperbolic.
- Bonnesen, 1929, Blaschke, 1955. Let $K, E \subset \mathbb{R}^{2}$ be planar convex bodies, $\operatorname{dim} K=\operatorname{dim} E=2$. Then for $-\mathrm{R}(K ; E) \leq \lambda \leq-\mathrm{r}(K ; E)$ we have

$$
\mathrm{W}_{0}(K ; E) \lambda^{2}+2 \mathrm{~W}_{1}(K ; E) \lambda+\mathrm{W}_{2}(K ; E) \leq 0 .
$$

Dimension 2

- In dimension 2 all Steiner polynomials are hyperbolic.
- Bonnesen, 1929, Blaschke, 1955. Let $K, E \subset \mathbb{R}^{2}$ be planar convex bodies, $\operatorname{dim} K=\operatorname{dim} E=2$. Then for $-\mathrm{R}(K ; E) \leq \lambda \leq-\mathrm{r}(K ; E)$ we have

$$
\mathrm{W}_{0}(K ; E) \lambda^{2}+2 \mathrm{~W}_{1}(K ; E) \lambda+\mathrm{W}_{2}(K ; E) \leq 0 .
$$

- Here

$$
\begin{aligned}
\mathrm{r}(K ; E) & =\max \{r \geq 0: \text { some translate of } r E \subseteq K\}, \\
\mathrm{R}(K ; E) & =\min \{R>0: \text { some translate of } K \subseteq R E\},
\end{aligned}
$$

are the inradius and circumradius of K w.r.t. E, respectively.

- Teissier, 1982. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$ with $\operatorname{Re}\left(\gamma_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\gamma_{n}\right)$. For which convex bodies $K, E \subset \mathbb{R}^{n}$ does it hold

$$
\operatorname{Re}\left(\gamma_{1}\right) \leq-\mathrm{R}(K ; E) \leq-\mathrm{r}(K ; E) \leq \operatorname{Re}\left(\gamma_{n}\right) \leq 0 ?
$$

- Teissier, 1982. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$ with $\operatorname{Re}\left(\gamma_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\gamma_{n}\right)$. For which convex bodies $K, E \subset \mathbb{R}^{n}$ does it hold

$$
\operatorname{Re}\left(\gamma_{1}\right) \leq-\mathrm{R}(K ; E) \leq-\mathrm{r}(K ; E) \leq \operatorname{Re}\left(\gamma_{n}\right) \leq 0 ?
$$

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies K, E.
- Teissier, 1982. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$ with $\operatorname{Re}\left(\gamma_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\gamma_{n}\right)$. For which convex bodies $K, E \subset \mathbb{R}^{n}$ does it hold

$$
\operatorname{Re}\left(\gamma_{1}\right) \leq-\mathrm{R}(K ; E) \leq-\mathrm{r}(K ; E) \leq \operatorname{Re}\left(\gamma_{n}\right) \leq 0 ?
$$

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies K, E.
- By the result of Blaschke and Bonnesen this is true for $n=2$.
- Teissier, 1982. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$ with $\operatorname{Re}\left(\gamma_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\gamma_{n}\right)$. For which convex bodies $K, E \subset \mathbb{R}^{n}$ does it hold

$$
\operatorname{Re}\left(\gamma_{1}\right) \leq-\mathrm{R}(K ; E) \leq-\mathrm{r}(K ; E) \leq \operatorname{Re}\left(\gamma_{n}\right) \leq 0 ?
$$

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies K, E.
- By the result of Blaschke and Bonnesen this is true for $n=2$.
- H.\&H.C., 2008. It is true for 1-tangential bodies K of E.
- Teissier, 1982. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$ with $\operatorname{Re}\left(\gamma_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\gamma_{n}\right)$. For which convex bodies $K, E \subset \mathbb{R}^{n}$ does it hold

$$
\operatorname{Re}\left(\gamma_{1}\right) \leq-\mathrm{R}(K ; E) \leq-\mathrm{r}(K ; E) \leq \operatorname{Re}\left(\gamma_{n}\right) \leq 0 ?
$$

- Sangwine-Yager, 1988, conjectured that it holds for any pair of convex bodies K, E.
- By the result of Blaschke and Bonnesen this is true for $n=2$.
- H.\&H.C., 2008. It is true for 1-tangential bodies K of E.
- Teissier, 1982, also pointed out that for $n \leq 5$, Steiner-polynomials are stable, i.e., the real parts of all roots are non-positive $\left(\operatorname{Re}\left(\gamma_{n}\right) \leq 0\right)$.
- H.\&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
- H.\&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
- There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than $-\mathrm{R}\left(K ; B_{3}\right)$.
- H.\&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
- There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than $-\mathrm{R}\left(K ; B_{3}\right)$.
- There exists a 3 -dimensional convex body K such that the real parts of all roots are smaller than $-\mathrm{r}\left(K ; B_{3}\right)$.
- H.\&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
- There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than $-\mathrm{R}\left(K ; B_{3}\right)$.
- There exists a 3 -dimensional convex body K such that the real parts of all roots are smaller than $-\mathrm{r}\left(K ; B_{3}\right)$.
- There are non-stable Steiner polynomials in dimensions ≥ 12.
- H.\&H.C., 2008. Sangwine-Yager's conjecture is false (in any respect):
- There exists a 3-dimensional convex body K such that the real parts of all roots are bigger than $-\mathrm{R}\left(K ; B_{3}\right)$.
- There exists a 3 -dimensional convex body K such that the real parts of all roots are smaller than $-\mathrm{r}\left(K ; B_{3}\right)$.
- There are non-stable Steiner polynomials in dimensions ≥ 12.
- Katsnelson, 2009. Another family of high dimensional convex bodies contradicting the stability.
- H.\&H.C.\&S., 2011+. The family of Steiner polynomials is stable if and only if $n \leq 9$.
- H.\&H.C.\&S., 2011+. The family of Steiner polynomials is stable if and only if $n \leq 9$.
- Jetter, 2011. Let $n \leq 9$ and let K be a C^{2}-convex body. Let $\rho_{\text {min }}$ and $\rho_{\text {max }}$ be the minimum and maximum values of the principal radii of curvature of K, and let $\gamma_{i}, 1 \leq i \leq n$, be the roots of $f_{K ; B_{n}}(z)$. Then

$$
-\rho_{\max } \leq \operatorname{Re}\left(\gamma_{i}\right) \leq-\rho_{\min } \quad \text { for all } i=1, \ldots, n
$$

Where are the roots?

- Let
$\mathcal{R}(n):=\left\{z \in \mathbb{C}^{+}: f_{K ; E}(z)=0, K, E \subset \mathbb{R}^{n}, \operatorname{dim}(K+E)=n\right\}$
be the set of all roots of Steiner polynomials of convex bodies $K, E \subset \mathbb{R}^{n}$, where we are just interested in the ones lying in the upper complex half plane \mathbb{C}^{+}.
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.

Let γ be a root of $f_{K ; E}(z)$ and $\lambda>0$. Then

- $\lambda \gamma$ is a root of $f_{\lambda K ; E}(z)$.
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.

Let γ be a root of $f_{K ; E}(z)$ and $\lambda>0$. Then

- $\lambda \gamma$ is a root of $f_{\lambda K ; E}(z)$.
- $\gamma-\lambda$ is a root of $f_{K+\lambda E ; E}(z)$.
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- Moreover
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- Moreover

- $\mathcal{R}(2)=\mathbb{R}_{\leq 0}$
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- Moreover

- $\mathcal{R}(2)=\mathbb{R}_{\leq 0}$
- $\mathcal{R}(3)=\left\{x+y i \in \mathbb{C}^{+}: x+\sqrt{3} y \leq 0\right\}$
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- Moreover

- $\mathcal{R}(2)=\mathbb{R}_{\leq 0}$
- $\mathcal{R}(3)=\left\{x+y i \in \mathbb{C}^{+}: x+\sqrt{3} y \leq 0\right\}$
- $\mathcal{R}(4)=\left\{x+y i \in \mathbb{C}^{+}: x+y \leq 0\right\}$
- H.\&H.C., 2011, H.\&H.C.\&S. 2011+.
- $\mathcal{R}(n)$ is a convex cone containing the non-positive real axis.
- Moreover

- $\mathcal{R}(2)=\mathbb{R}_{\leq 0}$
- $\mathcal{R}(3)=\left\{x+y i \in \mathbb{C}^{+}: x+\sqrt{3} y \leq 0\right\}$
- $\mathcal{R}(4)=\left\{x+y i \in \mathbb{C}^{+}: x+y \leq 0\right\}$
- For $n=3,4$, the "complex" boundary of $\mathcal{R}(n)$ is generated by a root of a truncated binomial polynomial:

$$
\sum_{i=0}^{2}\binom{3}{i} z^{i} \quad \text { and } \quad \sum_{i=0}^{3}\binom{4}{i} z^{i}
$$

which can be realized as 1 -tangential bodies K of lower dimensional bodies E.

Questions:

- $\mathcal{R}(n)$ closed?

Questions:

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?

Questions:

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$?

Questions:

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$?
- Is int $\mathcal{R}(n)$ independent of the gauge body $E(\operatorname{dim} E=n)$?

Questions:

- $\mathcal{R}(n)$ closed?
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$?
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$?
- Is int $\mathcal{R}(n)$ independent of the gauge body $E(\operatorname{dim} E=n)$?
- Which bodies K, E form the "complex" boundary?
- Let

$$
C(n)=\left\{a=\left(a_{0}, \ldots, a_{n}\right)^{\top} \in \mathbb{R}_{\geq 0}^{n+1}: \sum_{i=0}^{n}\binom{n}{i} a_{i} z^{i}=f_{K ; E}(z)\right.
$$

for convex bodies K, E with $\operatorname{dim}(K+E)=n\}$
be the "set of all quermassintegrals".

- Let

$$
C(n)=\left\{a=\left(a_{0}, \ldots, a_{n}\right)^{\top} \in \mathbb{R}_{\geq 0}^{n+1}: \sum_{i=0}^{n}\binom{n}{i} a_{i} z^{i}=f_{K ; E}(z)\right.
$$ for convex bodies K, E with $\operatorname{dim}(K+E)=n\}$

be the "set of all quermassintegrals".

- In view of the Alexsandrov-Fenchel inequality we have

$$
C(n) \subset\left\{a \in \mathbb{R}_{\geq 0}^{n+1}: a_{i}^{2} \geq a_{i-1} a_{i+1}\right\}
$$

but for $n \geq 3$ the inclusion is strict.

- Let

$$
C(n)=\left\{a=\left(a_{0}, \ldots, a_{n}\right)^{\top} \in \mathbb{R}_{\geq 0}^{n+1}: \sum_{i=0}^{n}\binom{n}{i} a_{i} z^{i}=f_{K ; E}(z)\right.
$$ for convex bodies K, E with $\operatorname{dim}(K+E)=n\}$

be the "set of all quermassintegrals".

- In view of the Alexsandrov-Fenchel inequality we have

$$
C(n) \subset\left\{a \in \mathbb{R}_{\geq 0}^{n+1}: a_{i}^{2} \geq a_{i-1} a_{i+1}\right\}
$$

but for $n \geq 3$ the inclusion is strict.
For instance, $(1,0,0,1)$ cannot be the coefficients of a Steiner polynomial.

- Shephard, 1960.

$$
\begin{aligned}
C(n) \cap \mathbb{R}_{>0}^{n+1} & =\left\{a \in \mathbb{R}_{>0}^{n+1}: a_{i}^{2} \geq a_{i-1} a_{i+1}\right\} \\
C(n) & =\left\{a \in \mathbb{R}_{\geq 0}^{n+1}: a_{i} a_{j} \geq a_{i-1} a_{j+1}\right\}
\end{aligned}
$$

- Shephard, 1960.

$$
\begin{aligned}
C(n) \cap \mathbb{R}_{>0}^{n+1} & =\left\{a \in \mathbb{R}_{>0}^{n+1}: a_{i}^{2} \geq a_{i-1} a_{i+1}\right\} \\
C(n) & =\left\{a \in \mathbb{R}_{\geq 0}^{n+1}: a_{i} a_{j} \geq a_{i-1} a_{j+1}\right\} .
\end{aligned}
$$

- For more than two bodies a complete description of the "set of mixed volumes" is not known. Shephard also showed that "only" the Alexsandrov-Fenchel inequalities do not form a complete system for $n+2$ (n-dimensional) bodies.
- Shephard, 1960.

$$
\begin{aligned}
C(n) \cap \mathbb{R}_{>0}^{n+1} & =\left\{a \in \mathbb{R}_{>0}^{n+1}: a_{i}^{2} \geq a_{i-1} a_{i+1}\right\} \\
C(n) & =\left\{a \in \mathbb{R}_{\geq 0}^{n+1}: a_{i} a_{j} \geq a_{i-1} a_{j+1}\right\} .
\end{aligned}
$$

- For more than two bodies a complete description of the "set of mixed volumes" is not known. Shephard also showed that "only" the Alexsandrov-Fenchel inequalities do not form a complete system for $n+2$ (n-dimensional) bodies.
- Question: Find a complete description for more than 2 bodies?
- Idea of Shephard's proof: Let $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ and let

$$
K=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\} \text { and } E=\operatorname{conv}\left\{0, \lambda_{1} e_{1}, \ldots, \lambda_{n} e_{n}\right\}
$$

- Idea of Shephard's proof: Let $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ and let

$$
K=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\} \text { and } E=\operatorname{conv}\left\{0, \lambda_{1} e_{1}, \ldots, \lambda_{n} e_{n}\right\}
$$

Based on a dissection of $K+E$ into $n+1$ simplices he finds

$$
\mathrm{W}_{i}(K ; E)=\operatorname{vol}(K) \lambda_{1} \lambda_{2} \cdots \lambda_{i}, \quad i=0, \ldots, n .
$$

- Idea of Shephard's proof: Let $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ and let

$$
K=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\} \text { and } E=\operatorname{conv}\left\{0, \lambda_{1} e_{1}, \ldots, \lambda_{n} e_{n}\right\}
$$

Based on a dissection of $K+E$ into $n+1$ simplices he finds

$$
\mathrm{W}_{i}(K ; E)=\operatorname{vol}(K) \lambda_{1} \lambda_{2} \cdots \lambda_{i}, \quad i=0, \ldots, n
$$

Now, let $a_{i}>0,0 \leq i \leq n$ with $a_{i}^{2} \geq a_{i+1} a_{i-1}$ and let $a_{0}=1 / n!$.

- Idea of Shephard's proof: Let $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ and let

$$
K=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\} \text { and } E=\operatorname{conv}\left\{0, \lambda_{1} e_{1}, \ldots, \lambda_{n} e_{n}\right\}
$$

Based on a dissection of $K+E$ into $n+1$ simplices he finds

$$
\mathrm{W}_{i}(K ; E)=\operatorname{vol}(K) \lambda_{1} \lambda_{2} \cdots \lambda_{i}, \quad i=0, \ldots, n
$$

Now, let $a_{i}>0,0 \leq i \leq n$ with $a_{i}^{2} \geq a_{i+1} a_{i-1}$ and let $a_{0}=1 / n!$.

Then $a_{0}=W_{0}(K ; E)$ and with

$$
\lambda_{1}=\frac{a_{1}}{a_{0}} \quad \lambda_{i}=\frac{a_{i-2} a_{i}}{a_{i-1}^{2}} \lambda_{i-1}
$$

we have $\lambda_{i} \geq \lambda_{i-1}$ and $\mathrm{W}_{i}(K ; E)=a_{i}$.

- Using the complete characterization of $C(n)$ one can show H.\&H.C.\&S., 2011+. $\mathcal{R}(n)$ is closed.
- Using the complete characterization of $C(n)$ one can show H.\&H.C.\&S., 2011+. $\mathcal{R}(n)$ is closed.
- Strict monotonicity?
- Let $\gamma \in \mathcal{R}(n)$ and $K, E \subset \mathbb{R}^{n}$ such that $f_{K ; E}(\gamma)=0$. With $E^{\prime}=E \times \operatorname{conv}\left\{0, e_{n+1}\right\} \subset \mathbb{R}^{n+1}$ we have
$\operatorname{vol}\left(K+\lambda E^{\prime}\right)=\operatorname{vol}\left((K+\lambda E) \times \lambda \operatorname{conv}\left\{0, e_{n+1}\right\}\right)=\lambda \operatorname{vol}_{n}(K+\lambda E)$,
i.e., $f_{K ; E^{\prime}}(z)=z f_{K ; E}(z)$ and thus $f_{K ; E^{\prime}}(\gamma)=0$. Hence $\mathcal{R}(n) \subseteq \mathcal{R}(n+1)$.
- Using the complete characterization of $C(n)$ one can show H.\&H.C.\&S., 2011+. $\mathcal{R}(n)$ is closed.
- Strict monotonicity?
- Let $\gamma \in \mathcal{R}(n)$ and $K, E \subset \mathbb{R}^{n}$ such that $f_{K ; E}(\gamma)=0$. With $E^{\prime}=E \times \operatorname{conv}\left\{0, e_{n+1}\right\} \subset \mathbb{R}^{n+1}$ we have
$\operatorname{vol}\left(K+\lambda E^{\prime}\right)=\operatorname{vol}\left((K+\lambda E) \times \lambda \operatorname{conv}\left\{0, e_{n+1}\right\}\right)=\lambda \operatorname{vol}_{n}(K+\lambda E)$,
i.e., $f_{K ; E^{\prime}}(z)=z f_{K ; E}(z)$ and thus $f_{K ; E^{\prime}}(\gamma)=0$. Hence $\mathcal{R}(n) \subseteq \mathcal{R}(n+1)$.
- H.\&H.C.\&S. 2011+. $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$.
- From the complete characterization of $C(n)$ one can deduce

A real polynomial $\sum_{i=0}^{n} a_{i} z^{i}, a_{i} \geq 0$, is a Steiner polynomial $f_{K ; E}(z)$ for $K, E \subset \mathbb{R}^{n}$, with

$$
\operatorname{dim} E=r, \quad \operatorname{dim} K=s, \quad \operatorname{dim}(K+E)=n,
$$

if and only if
i) $a_{i}>0$ for all $n-s \leq i \leq r$, and $a_{i}=0$ otherwise, and

- From the complete characterization of $C(n)$ one can deduce

A real polynomial $\sum_{i=0}^{n} a_{i} z^{i}, a_{i} \geq 0$, is a Steiner polynomial $f_{K ; E}(z)$ for $K, E \subset \mathbb{R}^{n}$, with

$$
\operatorname{dim} E=r, \quad \operatorname{dim} K=s, \quad \operatorname{dim}(K+E)=n,
$$

if and only if
i) $a_{i}>0$ for all $n-s \leq i \leq r$, and $a_{i}=0$ otherwise, and
ii) the sequence a_{0}, \ldots, a_{n} is ultra-logconcave, i.e.,

$$
c_{i, n} a_{i}^{2} \geq a_{i-1} a_{i+1} \text { for } 1 \leq i \leq n-1 .
$$

with $c_{i, n}=\binom{n}{i-1}\binom{n}{i+1} /\binom{n}{i}^{2}$.

- From the complete characterization of $C(n)$ one can deduce

A real polynomial $\sum_{i=0}^{n} a_{i} z^{i}, a_{i} \geq 0$, is a Steiner polynomial $f_{K ; E}(z)$ for $K, E \subset \mathbb{R}^{n}$, with

$$
\operatorname{dim} E=r, \quad \operatorname{dim} K=s, \quad \operatorname{dim}(K+E)=n,
$$

if and only if
i) $a_{i}>0$ for all $n-s \leq i \leq r$, and $a_{i}=0$ otherwise, and
ii) the sequence a_{0}, \ldots, a_{n} is ultra-logconcave, i.e.,

$$
c_{i, n} a_{i}^{2} \geq a_{i-1} a_{i+1} \text { for } 1 \leq i \leq n-1 .
$$

with $c_{i, n}=\binom{n}{i-1}\binom{n}{i+1} /\binom{n}{i}^{2}$.

- Gurvits, 2009. "Steiner polynomial proof" of Liggett's theorem on the convolution of ultra-logconcave sequences.
- The proof of the strict monotonicity implies
H.\&H.C.\&S. 2011+ For $n \geq 3$, let $\gamma \in \operatorname{bd} \mathcal{R}(n) \backslash \mathbb{R}_{\leq 0}$ and let $K, E \subset \mathbb{R}^{n}$ with $f_{K ; E}(\gamma)=0$. Then there exists
$i \in\{1, \ldots, n-1\}$ such that K, E satisfy

$$
\mathrm{W}_{i}(K ; E)^{2}=\mathrm{W}_{i-1}(K ; E) \mathrm{W}_{i+1}(K ; E),
$$

with $\mathrm{W}_{i}(K ; E)>0$, i.e., they are extremal sets for at least one Aleksandrov-Fenchel inequality.

Possible candidates for the boundary?

- Any sequence

$$
a=(\underbrace{0, \ldots, 0}_{n-s}, \underbrace{1, \ldots, 1}_{r+s+1-n}, \underbrace{0 \ldots, 0}_{n-r})
$$

of length $n+1$ corresponds to a Steiner polynomial

$$
f_{K ; E}(z)=\sum_{i=n-s}^{r}\binom{n}{i} z^{i}=: P_{n-s, r}^{n}(z)
$$

with $\operatorname{dim}(K+E)=n, \operatorname{dim} K=s, \operatorname{dim} E=r$, which is a truncated binomial polynomial.

- $P_{0, r}^{n}(z)=\sum_{i=0}^{r}\binom{n}{i} z^{i}$
can be realized (for instance) as an ($n-r$)-fold pyramid over an r-dimensional polytope E, which is an $(n-r)$-tangential body K of E.
- $P_{0, r}^{n}(z)=\sum_{i=0}^{r}\binom{n}{i} z^{i}$
can be realized (for instance) as an ($n-r$)-fold pyramid over an r-dimensional polytope E, which is an $(n-r)$-tangential body K of E.
- In dimensions 3 and 4

$$
P_{0,2}^{3}(z) \text { and } P_{0,3}^{4}(z)
$$

have roots on the "complex boundary".

- But they are not "extremal" in dimension ≥ 5.

Optimal $P_{j, k}^{n}(z)$ in dimension ≤ 15 :

$$
\begin{array}{llll}
n=3: & j=0, k=2 & \gamma=-1.5000+0.8660 \mathrm{i} & \alpha=2.6179 \\
n=4: & j=0, k=3 & \gamma=-1.0000+1.0000 \mathrm{i} & \alpha=2.3561 \\
n=5: & j=1, k=4 & \gamma=-0.5000+0.8660 \mathrm{i} & \alpha=2.0943 \\
n=6: & j=1, k=5 & \gamma=-0.3856+0.9226 \mathrm{i} & \alpha=1.9667 \\
n=7: & j=1, k=5 & \gamma=-0.3249+1.2279 \mathrm{i} & \alpha=1.8294 \\
n=8: & j=2, k=6 & \gamma=-0.1464+0.9892 \mathrm{i} & \alpha=1.7177 \\
n=9: & j=2, k=7 & \gamma=-0.0698+0.9975 \mathrm{i} & \alpha=1.6406 \\
n=10: & j=2, k=7 & \gamma=0.0158+1.1903 \mathrm{i} & \alpha=1.5574 \\
n=11: & j=3, k=8 & \gamma=0.0854+0.9963 \mathrm{i} & \alpha=1.4852 \\
n=12: & j=3, k=8 & \gamma=0.1533+1.1549 \mathrm{i} & \alpha=1.4388 \\
n=13: & j=3, k=9 & \gamma=0.2127+1.1256 \mathrm{i} & \alpha=1.3840 \\
n=14: & j=4, k=10 & \gamma=0.2400+0.9707 \mathrm{i} & \alpha=1.3284 \\
n=15: & j=4, k=10 & \gamma=0.3139+1.0864 \mathrm{i} & \alpha=1.2895
\end{array}
$$

- Question: Which convex bodies $K, E \subset \mathbb{R}^{n}$ satisfy

$$
f_{K ; E}(z)=P_{j, k}^{n}(z)
$$

for $j, k \in\{1, \ldots, n-1\}$?

Where do they go?

- H.\&H.C.\&S. 2011+. Let $\gamma \in \mathbb{C}^{+} \backslash \mathbb{R}_{>0}$. Then there exists an $n_{\gamma} \in \mathbb{N}$ with $\gamma \in \mathcal{R}(n)$ for all $n \geq n_{\gamma}$.
- It was shown by Ostrovskii, 2000 and Janson\&Norfolk, 2009 that for any sequence $\left(k_{n}\right) \in \mathbb{N}$ such that $\alpha=\lim _{n \rightarrow \infty} k_{n} / n \in(0,1)$ the set of accumulation points of $\bigcup_{n=1}^{\infty}\left\{z \in \mathbb{C}: P_{0, k_{n}}^{n}(z)=0\right\}$ coincide with the set

$$
\begin{gathered}
\left\{z \in \mathbb{C}:|z|=\alpha(1-\alpha)^{1 / \alpha-1}|1+z|^{1 / \alpha}\right. \text { and } \\
\left.\left|z-\frac{\alpha}{1-\alpha^{2}}\right| \leq \frac{\alpha^{2}}{1-\alpha^{2}}\right\} .
\end{gathered}
$$

- It was shown by Ostrovskii, 2000 and Janson\&Norfolk, 2009 that for any sequence $\left(k_{n}\right) \in \mathbb{N}$ such that
$\alpha=\lim _{n \rightarrow \infty} k_{n} / n \in(0,1)$ the set of accumulation points of $\bigcup_{n=1}^{\infty}\left\{z \in \mathbb{C}: P_{0, k_{n}}^{n}(z)=0\right\}$ coincide with the set

$$
\begin{gathered}
\left\{z \in \mathbb{C}:|z|=\alpha(1-\alpha)^{1 / \alpha-1}|1+z|^{1 / \alpha}\right. \text { and } \\
\left.\left|z-\frac{\alpha}{1-\alpha^{2}}\right| \leq \frac{\alpha^{2}}{1-\alpha^{2}}\right\} .
\end{gathered}
$$

- Hence, for $k_{n}=\lfloor n / 2\rfloor$, i.e., $\alpha=1 / 2$, the number 1 is an accumulation point, and so there exists a sequence $\gamma_{n} \in \mathbb{C}^{+} \backslash \mathbb{R}_{>0}$ such that $\lim _{n \rightarrow \infty} \gamma_{n}=1$ and

$$
P_{0,\lfloor n / 2\rfloor}^{n}\left(\gamma_{n}\right)=0 \quad \text { for all } n \in \mathbb{N} .
$$

- Since $P_{0,\lfloor n / 2\rfloor}^{n}$ are Steiner polynomials we are done.

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$? Yes

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$? Yes
- Is $\operatorname{int} \mathcal{R}(n)$ independent of the gauge body $E(\operatorname{dim} E=n)$?

Questions:

- $\mathcal{R}(n)$ closed? Yes
- $\mathcal{R}(n) \subsetneq \mathcal{R}(n+1)$? Yes
- $\lim _{n \rightarrow \infty} \mathcal{R}(n)=\mathbb{C}^{+} \backslash \mathbb{R}_{>0}$? Yes
- Is int $\mathcal{R}(n)$ independent of the gauge body $E(\operatorname{dim} E=n)$?
- Which bodies K, E form the "complex" boundary?
- Do the roots carry information about the geometric structure of the set?
- Do the roots carry information about the geometric structure of the set?
- For instance:
- H.\&H.C., 2008. $-\mu$ is an n-fold root of $f_{K ; E}(z)$ if and only if $K=t+\mu E$.
- Do the roots carry information about the geometric structure of the set?
- For instance:
- H.\&H.C., 2008. $-\mu$ is an n-fold root of $f_{K ; E}(z)$ if and only if $K=t+\mu E$.
- 0 is a k-fold root of $f_{K ; E}(z)$ if and only if $\operatorname{dim} K \leq n-k$.
- H.\&H.C., 2008. Let $K, E \subset \mathbb{R}^{n}, E \subset K, \operatorname{dim} E=n$, and let $\gamma_{1}, \ldots, \gamma_{n}$ be the roots of $f_{K ; E}(z)$. Then K is a 1-tangential body of E if and only if there exists $\alpha \in(0,1)$ such that

$$
\gamma_{k}^{-1}=\alpha^{1 / n} \mathrm{e}^{\frac{2 \pi(k-1)}{n} \mathrm{i}}-1, \quad \text { for } \quad k=1, \ldots, n
$$

- H.\&H.C., 2010.
- Let $\mathrm{b}>0$. Convex bodies $K, E \subset \mathbb{R}^{n}$ verifies the relations

$$
\mathrm{W}_{n-k}(K ; E)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \mathrm{~b}^{k-i} \mathrm{~W}_{n-i}(K ; E)
$$

for $k=0,1, \ldots, n$, if and only if all the roots of its Steiner polynomial are symmetric with respect to $-\mathrm{b} / 2$, i.e., γ root if and only if $-b-\gamma$ is a root.

- H.\&H.C., 2010.
- Let $\mathrm{b}>0$. Convex bodies $K, E \subset \mathbb{R}^{n}$ verifies the relations

$$
\mathrm{W}_{n-k}(K ; E)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \mathrm{~b}^{k-i} \mathrm{~W}_{n-i}(K ; E)
$$

for $k=0,1, \ldots, n$, if and only if all the roots of its Steiner polynomial are symmetric with respect to $-\mathrm{b} / 2$, i.e., γ root if and only if $-b-\gamma$ is a root.

- When $E=B_{n}$, bodies K of constant width verify (\star). Thus, a constant width set K with breath b verifies that all the roots of $f_{K ; B_{n}}(z)$ are symmetric with respect to $-\mathrm{b} / 2$.
- Recall that for K with $\operatorname{dim} K=n,-r\left(K ; B_{n}\right)$ is an n-fold root of $f_{K ; B_{n}}(z)$ if and only if $K=x+r\left(K ; B_{n}\right) B_{n}$ for some $x \in \mathbb{R}^{n}$.
- Recall that for K with $\operatorname{dim} K=n,-r\left(K ; B_{n}\right)$ is an n-fold root of $f_{K ; B_{n}}(z)$ if and only if $K=x+r\left(K ; B_{n}\right) B_{n}$ for some $x \in \mathbb{R}^{n}$.
- Conjecture. Let $K \subset \mathbb{R}^{n}$, and let $m \in\{0, \ldots, n-1\}$. Then $-\mathrm{r}\left(K ; B_{n}\right)$ is an $(n-m)$-fold root of $f_{K ; B_{n}}(z)$ if and only if

$$
K=M+\mathrm{r}\left(K ; B_{n}\right) B_{n}
$$

for some convex body M with $\operatorname{dim} M=m$.

- Recall that for K with $\operatorname{dim} K=n,-r\left(K ; B_{n}\right)$ is an n-fold root of $f_{K ; B_{n}}(z)$ if and only if $K=x+r\left(K ; B_{n}\right) B_{n}$ for some $x \in \mathbb{R}^{n}$.
- Conjecture. Let $K \subset \mathbb{R}^{n}$, and let $m \in\{0, \ldots, n-1\}$. Then $-\mathrm{r}\left(K ; B_{n}\right)$ is an $(n-m)$-fold root of $f_{K ; B_{n}}(z)$ if and only if

$$
K=M+\mathrm{r}\left(K ; B_{n}\right) B_{n}
$$

for some convex body M with $\operatorname{dim} M=m$.

- H.\&H.C., 2010. Let $n \geq 2$. Then K is a sausage with inradius $\mathrm{r}\left(K ; B_{n}\right)$ if and only if $-\mathrm{r}\left(K ; B_{n}\right)$ is an $(n-1)$-fold root of $f_{K ; B_{n}}(z)$ and all its 2-dimensional projections have inradius $r\left(K ; B_{n}\right)$.
- Let $-\mathrm{r}=-\mathrm{r}\left(K ; B_{n}\right)$ be a root of $f_{K ; B_{n}}^{(n-2)}(z)$, i.e.,

$$
\mathrm{W}_{n-2}(K)-2 \mathrm{rW}_{n-1}(K)+\mathrm{r}^{2} \mathrm{~W}_{n}(K)=0
$$

- Let $-\mathrm{r}=-\mathrm{r}\left(K ; B_{n}\right)$ be a root of $f_{K ; B_{n}}^{(n-2)}(z)$, i.e.,

$$
\mathrm{W}_{n-2}(K)-2 \mathrm{rW}_{n-1}(K)+\mathrm{r}^{2} \mathrm{~W}_{n}(K)=0 .
$$

- Kubota's integral recursion formula implies

$$
\begin{aligned}
\int_{\mathcal{L}_{2}^{n}} f_{K \mid L ; B_{2}}(-\mathrm{r}) d \sigma(L)= & \int_{\mathcal{L}_{2}^{n}} \mathrm{~W}_{0}^{(2)}(K \mid L) d \sigma(L)-2 \mathrm{r} \int_{\mathcal{L}_{2}^{n}} \mathrm{~W}_{1}^{(2)}(K \mid L) d \sigma(L) \\
& +\mathrm{r}^{2} \int_{\mathcal{L}_{2}^{n}} \mathrm{~W}_{2}^{(2)}(K \mid L) d \sigma(L) \\
= & \frac{\operatorname{vol}_{2}\left(B_{2}\right)}{\operatorname{vol}\left(B_{n}\right)}\left[\mathrm{W}_{n-2}(K)-2 \mathrm{rW}_{n-1}(K)+\mathrm{r}^{2} \mathrm{~W}_{n}(K)\right]=0
\end{aligned}
$$

- Since $\mathrm{r}=\mathrm{r}\left(K \mid L ; B_{n} \cap L\right)$ for all $L \in \mathcal{L}_{2}^{n}$, Bonnesen's inequality states that

$$
f_{K \mid L ; B_{2}}(-\mathrm{r})=\mathrm{W}_{0}^{(2)}(K \mid L)-2 \mathrm{~W}_{1}^{(2)}(K \mid L) \mathrm{r}+\mathrm{W}_{2}^{(2)}(K \mid L) \mathrm{r}^{2} \leq 0,
$$

with equality if and only if $K \mid L$ is a 2-dimensional sausage with inradius r.

- Since $\mathrm{r}=\mathrm{r}\left(K \mid L ; B_{n} \cap L\right)$ for all $L \in \mathcal{L}_{2}^{n}$, Bonnesen's inequality states that

$$
f_{K \mid L ; B_{2}}(-\mathrm{r})=\mathrm{W}_{0}^{(2)}(K \mid L)-2 \mathrm{~W}_{1}^{(2)}(K \mid L) \mathrm{r}+\mathrm{W}_{2}^{(2)}(K \mid L) \mathrm{r}^{2} \leq 0,
$$

with equality if and only if $K \mid L$ is a 2-dimensional sausage with inradius r.

- Hence $K \mid L$ is a 2-dimensional sausage with inradius r for any $L \in \mathcal{L}_{2}^{n}$.
- Since $\mathrm{r}=\mathrm{r}\left(K \mid L ; B_{n} \cap L\right)$ for all $L \in \mathcal{L}_{2}^{n}$, Bonnesen's inequality states that

$$
f_{K \mid L ; B_{2}}(-\mathrm{r})=\mathrm{W}_{0}^{(2)}(K \mid L)-2 \mathrm{~W}_{1}^{(2)}(K \mid L) \mathrm{r}+\mathrm{W}_{2}^{(2)}(K \mid L) \mathrm{r}^{2} \leq 0,
$$

with equality if and only if $K \mid L$ is a 2-dimensional sausage with inradius r.

- Hence $K \mid L$ is a 2-dimensional sausage with inradius r for any $L \in \mathcal{L}_{2}^{n}$.
- Then $\mathrm{r} B_{n}$ is a summand of K, i.e., there exists a convex body M with $K=M+\mathrm{r} B_{n}$. Since any 2 -dimensional projection is a sausage, $\operatorname{dim} M=1$.

The End

Thank you for your attention!

