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Steiner symmetrization

Let K ⊆ Rn be a compact convex set, and let u ∈ Rn be a unit
vector. Think of K as a family of line segments parallel to u.
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Steiner symmetrization

Translate each of these line segments along the direction u until
they are all balanced symmetrically around the plane u⊥. The
result is a new convex set suK , called the Steiner symmetrization
of K with respect to the direction u.

Figure: A convex set and its Steiner symmetral
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Steiner symmetrization

suK is symmetric under reflection across u⊥.

Vn(suK ) = Vn(K )
– by Cavalieri’s principle – here Vn denotes volume in Rn.

If B is a Euclidean ball then suB is a translate of B.

suK is a translate of K iff K has reflectional symmetry in the
direction of u.

The only compact set stable under every Steiner
symmetrization is a Euclidean ball centered at the origin.
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Steiner symmetrization - Elementary Properties

Monotonicity with respect to inclusion:

If K ⊆ L then suK ⊆ suL.

Preserves convexity, volume, shadow (projection) onto u⊥.

Decreases surface area (or perimeter), diameter, circumradius.

Increases inradius.

Super-additivity with respect to Minkowski sum:

su(K + L) ⊇ suK + suL.

Steiner symmetrization may increase or decrease minimum width.

Dan Klain UMass Lowell Steiner symmetrization and convergence



Steiner symmetrization - Continuity (sometimes)

Steiner symmetrization is continuous in the following limited sense:

If K has non-empty interior, and Ki → K in the Hausdorff
topology, then

suKi → suK .

However, if K has empty interior (measure zero), there may be
discontinuous behavior.
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Idempotence and non-commutativity

Note that Steiner symmetrization is idempotent: susuK = suK

But it is typically non-commutative when more than one direction
is used; that is, usually:

susv K � sv suK .

Moreover, while sv K is symmetric under reflection about v⊥, the
symmetral susv K may no longer have this kind of symmetry.

Dan Klain UMass Lowell Steiner symmetrization and convergence



Non-commutativity

Figure: susv K � sv suK in general.
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Accumulating symmetry

Exception: when u ⊥ v the accumulated symmetry is retained.

(Although we may still have susv K � sv suK .)

Dan Klain UMass Lowell Steiner symmetrization and convergence



A fundamental convergence theorem

Theorem (Steiner, 1838 (?); Gross, 1917 (?))

Given a convex body K , there exists a sequence of directions ui

such that the sequence of Steiner symmetrals

sui · · · su1K

converges to a Euclidean ball with the same volume as K .

There are many applications! (recall lecture on Tuesday by Franz
Schuster)

Recently, Bianchi and Gronchi (2003), Klartag and Milman (2003),
and Klartag (2004) have given estimates on rates of convergence.

An analogous theorem replaces Steiner symmetrization with
shaking and the Euclidean ball with a specified simplex.
Campi, Colesanti, and Gronchi (2001) extended this Shaking
Theorem to all compact sets.
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Random symmetrization

Mani (1986)

Given a sequence of unit directions ui chosen uniformly at random,
the corresponding sequence of Steiner symmetrals of K converges
to a ball almost surely; that is, with unit probability.

Van Schaftingen (2006) and Volčič (2009) have both given
extensions of Mani’s theorem to compact sets.
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Proof of the convergence theorem (Sketch)

A classical proof of the convergence theorem runs roughly as
follows: If K is not a ball already, the B denote the smallest ball
that contains K .

Since K is compact, some relatively open set on the boundary of B
avoids K .

Steiner symmetrization will enlarge the portion avoided on the
boundary of B.
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Proof of the convergence theorem (Sketch continued)

By judicious choice of directions, a finite sequence of Steiner
symmetrizations will yield a symmetral K̃ that avoids the boundary
of B altogether, so that the circumradius of K̃ is strictly less than
that of K .

The argument then proceeds by minimizing circumradius over all
successive Steiner symmetrals of K and applying standard
compactness arguments (Blaschke selection) along with the
continuity and/or monotonicity of Steiner symmetrization and
circumradius.
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A dense set of directions is sufficient

In a recent paper by Lutwak, Yang, and Zhang (2010), the authors
required a sequence of Steiner symmetrizations that rounded out a
given convex body, using only directions drawn from a restricted
dense set of directions in the unit sphere.

Is a dense set of directions sufficient?

A careful analysis of the proof of the convergence theorem reveals
the answer is Yes. (Bianchi, K., Lutwak, Yang, Zhang 2010)

This leads to the question, however, of whether the order matters.

Can we apply a sequence Steiner symmetrizations in a dense set of
directions willy-nilly to round out any convex body to a ball?

The answer this question is No.
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A dense set of directions may not even work at all!

It also turns out the the order in which we apply Steiner
symmetrizations in a countable dense set of directions
{u1, u2, . . . , } will affect the existence of a limit for the sequence

Ki = sui · · · su2su1K .

It can be shown that IF the limit of the sequence {Ki} exists, then
it must be a ball. This follows from a very general theorem of Van
Schaftingen (2005, 2006) as well as from more elementary
arguments.
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A dense set of directions may not even work at all!

However, it has recently been shown (Bianchi, K., Lutwak, Yang,
Zhang 2010) that the limit of the sequence {Ki} does not always
exist.

This was also discovered independently by Burchard and Fortier
(2011) and by Gronchi (2010).
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An explicit counterexample

Let {p1, p2, · · · } denote the sequence of positive prime integers.

Recall that the sum

∞∑
i=1

1

pi
diverges.

For m ≥ 1, let um denote the unit vector in R2 having
counter-clockwise angle

θm =
m∑

i=1

√
2

pi

with the horizontal axis, measured in radians.

Since θm →∞, while each successive incremental angle
√

2
pm
→ 0,

the unit vectors um form a countable dense subset of the unit
circle.
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A counterexample (cont’d)

Applying Taylor’s theorem and the Euler product formula, we
obtain( ∞∏

i=1

cos

(√
2

pi

))−1

≤
∞∏
i=1

(
1

1− 1
p2

i

)

=
∞∏
i=1

(
1 +

1

p2
i

+
1

p4
i

+ · · ·
)

=
∞∑

k=1

1

k2
=

π2

6
,

so that
∞∏
i=1

cos

(√
2

pi

)
≥ 6

π2
.
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A counterexample (cont’d)

Let ` be a vertical line segment, centered at the origin, of length 1.

Apply the sequence of Steiner symmetrizations sum to `.
Each symmetrization has the effect of projecting the previous line
segment onto the line perpendicular to um, thereby multiplying the

previous length by the next incremental cosine, cos
(√

2
pm

)
.

Dan Klain UMass Lowell Steiner symmetrization and convergence



A counterexample (cont’d)

Let ` be a vertical line segment, centered at the origin, of length 1.
Apply the sequence of Steiner symmetrizations sum to `.

Each symmetrization has the effect of projecting the previous line
segment onto the line perpendicular to um, thereby multiplying the

previous length by the next incremental cosine, cos
(√

2
pm

)
.

Dan Klain UMass Lowell Steiner symmetrization and convergence



A counterexample (cont’d)

Let ` be a vertical line segment, centered at the origin, of length 1.
Apply the sequence of Steiner symmetrizations sum to `.
Each symmetrization has the effect of projecting the previous line
segment onto the line perpendicular to um, thereby multiplying the

previous length by the next incremental cosine, cos
(√

2
pm

)
.

Dan Klain UMass Lowell Steiner symmetrization and convergence



A counterexample (cont’d)

Since the limiting value of the cosine product is strictly positive
(greater than 1/2, in fact), while the angles θm cycle around the
circle forever, the iterated Steiner symmetrals of ` also spin in
circles forever, while approaching a limiting positive length.

In particular, the sequence of line segments

`m = sum · · · su1`

has no limit.
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A counterexample (cont’d)

For an example with interior, let K be a cigar-shaped convex body
of area ε containing that line segment ` as an axis of symmetry.

By the monotonicity of Steiner symmetrization, each element in
the sequence of Steiner symmetrals

Km = sum · · · su1K

must contain the corresponding symmetral `m, so that the
diameter of each Km exceeds 6

π2 .

Since each Km has the same area ε as the original body K , which
could be made arbitrarily small beforehand, it follows that the
sequence Km cannot approximate a ball.
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A counterexample (cont’d)

Indeed, for ε < 9
π3 the sequence Km has no limit, since the

diameter line revolves forever, but does not shrink enough to
accomodate the tiny given area ε.
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A counterexample (cont’d)

Gronchi (2010) has shown independently that a more general
family of examples can be constructed starting with any decreasing
sequence of incremental angles θi provided that

∑∞
i=1 θ

2
i converges

and
∑∞

i=1 θi diverges.

Counterexamples to convergence are also described in a recent
paper by Burchard and Fortier (2011).

Dan Klain UMass Lowell Steiner symmetrization and convergence



A counterexample (cont’d)

Gronchi (2010) has shown independently that a more general
family of examples can be constructed starting with any decreasing
sequence of incremental angles θi provided that

∑∞
i=1 θ

2
i converges

and
∑∞

i=1 θi diverges.

Counterexamples to convergence are also described in a recent
paper by Burchard and Fortier (2011).

Dan Klain UMass Lowell Steiner symmetrization and convergence



A dense set of directions is not necessary

Alternatively, one might ask: do the directions of symmetrization
used to attain a ball need to be dense?
Is it even necessary to use an infinite number of distinct directions?

Again the answer is No.

Eggleston (1958) has shown that, given a basis of directions
u1, . . . , un for Rn having mutually irrational angle differences, the
sequence

sun · · · su2su1

iterated infinitely many times to any compact convex set K will
result in a sequence of bodies converging to a ball of the same
volume as K .

This result is extended to compact sets in recent work of Burchard
and Fortier (2011).
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A related convergence theorem

Theorem (K. (2010))

Let F = {v1, . . . , vm} be a finite set of unit vectors in Rn. If each
symmetral direction ui is taken from the finite set F , then the limit

L = lim
j→∞

suj · · · su1K

exists for all compact convex K ⊆ Rn. Moreover, the limit L is
symmetric under reflection through each of the vi ∈ F that is used
infinitely often in the sequence.

In particular, if the sequence of symmetral directions {ui} uses
each of the vi infinitely often, then the resulting operator on
compact convex sets is idempotent.
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Open questions

Earlier we described a convex body K and a sequence of directions
ui for which the sequence of Steiner symmetrals

Ki = sui · · · su1K

failed to converge in the Hausdorff topology.

However, the bodies Ki appear to converge in shape: there appears
to be a corresponding sequence of isometries ψi such that the
sequence {ψiKi} converges.

Is this always the case?

Very recent news: Bianchi, Burchard, Campi, Gronchi, and
Volčič have found a proof that this is true.
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Open questions

A related open question: What happens if K is permitted to be an
arbitrary (possibly non-convex) compact set?

More generally, under what conditions is the limit

lim
j→∞

suj · · · su1K

guaranteed to exist?

For a particular set K ?
For all compact convex sets K ?
For all compact sets K ?
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The End

Thank you
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