Stability in volume comparison problems.

Alexander Koldobsky

University of Missouri-Columbia

A typical comparison problem for the volume of convex bodies asks whether inequalities

$$f_{\mathcal{K}}(\xi) \leq f_{\mathcal{L}}(\xi), \quad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$$

for any K, L from a certain class of origin-symmetric convex bodies in \mathbb{R}^n , where f_K is a certain geometric characteristic of K and Vol_n is the *n*-dimensional volume.

< ≣ >

Busemann-Petty problem (1956); $f_{\mathcal{K}}(\xi) = S_{\mathcal{K}}(\xi) = \operatorname{Vol}_{n-1}(\mathcal{K} \cap \xi^{\perp})$

Suppose K and L are origin symmetric convex bodies in \mathbb{R}^n such that

 $S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi), \quad \forall \xi \in S^{n-1}.$

Does it follow that

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$$
?

Yes if $n \le 4$, no if $n \ge 5$; solution completed in the end of the 90's Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

► < Ξ ►</p>

Busemann-Petty problem (1956); $f_{\mathcal{K}}(\xi) = S_{\mathcal{K}}(\xi) = \operatorname{Vol}_{n-1}(\mathcal{K} \cap \xi^{\perp})$

Suppose K and L are origin symmetric convex bodies in \mathbb{R}^n such that

 $S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi), \qquad \forall \xi \in S^{n-1}.$

Does it follow that

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$$
?

Yes if $n \le 4$, no if $n \ge 5$; solution completed in the end of the 90's Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

Shephard's problem (1964); $f_{\mathcal{K}}(\xi) = P_{\mathcal{K}}(\xi) = \operatorname{Vol}_{n-1}(\mathcal{K}|\xi^{\perp})$

Suppose K and L are origin symmetric convex bodies in \mathbb{R}^n such that

$$P_{\mathcal{K}}(\xi) \leq P_{\mathcal{L}}(\xi), \qquad \forall \xi \in S^{n-1}.$$

Does it follow that

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$$
?

Yes if n = 2, no if $n \ge 3$; Petty and Schneider, independently

Modified Busemann-Petty problem; K., Yaskin, Yaskina (2006)

For two origin-symmetric infinitely smooth bodies K, L in \mathbb{R}^n and $\alpha \in [n-4, n-1)$ the inequalities

$$(-\Delta)^{\alpha/2}S_{\mathcal{K}}(\xi) \leq (-\Delta)^{\alpha/2}S_{\mathcal{L}}(\xi), \qquad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L),$$

while for $\alpha < n-4$ this is not necessarily true.

Here Δ is the Laplace operator on \mathbb{R}^n and the functions S_K and S_L are extended to homogeneous functions of degree -1 on the whole \mathbb{R}^n .

Modified Busemann-Petty problem; K., Yaskin, Yaskina (2006)

For two origin-symmetric infinitely smooth bodies K, L in \mathbb{R}^n and $\alpha \in [n-4, n-1)$ the inequalities

$$(-\Delta)^{\alpha/2}S_{\mathcal{K}}(\xi) \leq (-\Delta)^{\alpha/2}S_{\mathcal{L}}(\xi), \qquad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L),$$

while for $\alpha < n-4$ this is not necessarily true.

Here Δ is the Laplace operator on \mathbb{R}^n and the functions S_K and S_L are extended to homogeneous functions of degree -1 on the whole \mathbb{R}^n .

Modified Shephard's problem; Yaskin (2008)

For $\alpha \in [n, n+1)$ the inequalities

$$(-\Delta)^{\alpha/2} P_{\mathcal{K}}(\xi) \ge (-\Delta)^{\alpha/2} P_{\mathcal{L}}(\xi), \qquad \forall \xi \in S^{n-1}$$

imply $\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$, where the projection functions are extended to homogeneous functions of degree 1 on the whole \mathbb{R}^n . The latter result is no longer true for $\alpha < n$.

The Busemann-Petty problem for arbitrary measures; Zvavitch (2005) Let f be an even continuous non-negative function on \mathbb{R}^n , and denote by μ the measure on \mathbb{R}^n with density f. For every closed bounded set $B \subset \mathbb{R}^n$ define

$$\mu(B) = \int\limits_B f(x) \, dx.$$

If $n \leq 4$, then for any convex origin-symmetric bodies K and L in \mathbb{R}^n the inequalities

$$\mu(K \cap \xi^{\perp}) \leq \mu(L \cap \xi^{\perp}), \qquad \forall \xi \in S^{n-1}$$

imply

 $\mu(K) \leq \mu(L).$

This is generally not true if $n \ge 5$ in the sense that for every strictly positive f there exist K, L providing a counterexample.

- < ⊒ >

Stability

Let $\varepsilon > 0$. The inequalities

$$f_{\mathcal{K}}(\xi) \leq f_{\mathcal{L}}(\xi) + \varepsilon, \qquad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + C\varepsilon.$$

ヨト ・ヨトー

æ

Stability

Let $\varepsilon > 0$. The inequalities

$$f_{\mathcal{K}}(\xi) \leq f_{\mathcal{L}}(\xi) + \varepsilon, \qquad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + C\varepsilon.$$

Separation

Let $\varepsilon > 0$. The inequalities

$$f_{\mathcal{K}}(\xi) \leq f_{\mathcal{L}}(\xi) - \varepsilon, \qquad \forall \xi \in S^{n-1}$$

imply

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} - c\varepsilon.$$

문에 비용에 다

æ

Stability for sections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n , and K is an intersection body. If for every $\xi \in S^{n-1}$

$$S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + \varepsilon.$$

< ∃⇒

Stability for sections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n , and K is an intersection body. If for every $\xi \in S^{n-1}$

$$S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + \varepsilon.$$

Stability for projections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n , and L is a projection body. If for every $\xi \in S^{n-1}$

$$P_{\mathcal{K}}(\xi) \leq P_{\mathcal{L}}(\xi) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + \sqrt{\frac{2\pi}{n}} R(L) \varepsilon,$$

where R(L) is the normalized circumradius of L.

Separation for sections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n , and K is an intersection body. If for every $\xi \in S^{n-1}$

$$S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi) - \varepsilon,$$

then

$$\operatorname{Vol}_{n}(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_{n}(L)^{\frac{n-1}{n}} - \sqrt{\frac{2\pi}{n+1}} r(K)\varepsilon,$$

where r(K) is the normalized inradius of K.

< ∃⇒

Separation for sections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n , and K is an intersection body. If for every $\xi \in S^{n-1}$

$$S_{\mathcal{K}}(\xi) \leq S_{\mathcal{L}}(\xi) - \varepsilon,$$

then

$$\operatorname{Vol}_{n}(\mathcal{K})^{\frac{n-1}{n}} \leq \operatorname{Vol}_{n}(\mathcal{L})^{\frac{n-1}{n}} - \sqrt{\frac{2\pi}{n+1}} r(\mathcal{K})\varepsilon,$$

where r(K) is the normalized inradius of K.

Separation for projections

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n , and L is a projection body. If for every $\xi \in S^{n-1}$

$$P_{\mathcal{K}}(\xi) \leq P_{\mathcal{L}}(\xi) - \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} - \frac{\varepsilon}{\sqrt{e}}.$$

Does there exist an absolute constant C such that for any origin-symmetric convex body K in \mathbb{R}^n

$$\operatorname{Vol}_n(K)^{rac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}(K \cap \xi^{\perp}).$$

Best-to-date: Klartag, $C \sim n^{1/4}$, improving the previous estimate of Bourgain

▲ 프 ▶ = 프

Does there exist an absolute constant C such that for any origin-symmetric convex body K in \mathbb{R}^n

$$\operatorname{Vol}_n(K)^{rac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}(K \cap \xi^{\perp}).$$

Best-to-date: Klartag, $C \sim n^{1/4}$, improving the previous estimate of Bourgain

Dimension $n \le 4$

$$\operatorname{Vol}_{n}(K)^{\frac{n-1}{n}} \leq \frac{|B_{2}^{n}|^{\frac{n-1}{n}}}{|B_{2}^{n-1}|} \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}(K \cap \xi^{\perp}).$$

Denote the constant by c_n ; note that c_n is less than 1.

Does there exist an absolute constant C such that for any origin-symmetric convex body K in \mathbb{R}^n

$$\operatorname{Vol}_n(K)^{rac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}(K \cap \xi^{\perp}).$$

Best-to-date: Klartag, $C \sim n^{1/4}$, improving the previous estimate of Bourgain

Dimension $n \le 4$

$$\operatorname{Vol}_{n}({\mathcal{K}})^{\frac{n-1}{n}} \leq \frac{|B_{2}^{n}|^{\frac{n-1}{n}}}{|B_{2}^{n-1}|} \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}({\mathcal{K}} \cap \xi^{\perp}).$$

Denote the constant by c_n ; note that c_n is less than 1.

Follows from the affirmative answer to the Busemann-Petty problem: if $\operatorname{Vol}_n(K) = |B_2^n|$, then it cannot happen that $\operatorname{Vol}(K \cap \xi^{\perp}) < |B_2^{n-1}|$ for every ξ , so

$$\frac{\max_{\xi\in S^{n-1}}\mathsf{Vol}_{n-1}(K\cap\xi^{\perp})}{\mathsf{Vol}_{n}(K)^{\frac{n-1}{n}}} \geq \frac{\left|B_2^{n-1}\right|}{\left|B_2^{n}\right|^{\frac{n-1}{n}}}$$

Alexander Koldobsky Stability in volume comparison problems.

▲ 臣 ▶ | ▲ 臣 ▶ | |

æ.

Stability for sections in dimensions $n \leq 4$

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n , $n \le 4$. If for every $\xi \in S^{n-1}$

$$\operatorname{Vol}_{n-1}(K \cap \xi^{\perp}) \leq \operatorname{Vol}_{n-1}(L \cap \xi^{\perp}) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + c_n \varepsilon.$$

≣ ▶

Stability for sections in dimensions $n \leq 4$

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in $I\!\!R^n$, $n \le 4$. If for every $\xi \in S^{n-1}$

$$\operatorname{Vol}_{n-1}(K \cap \xi^{\perp}) \leq \operatorname{Vol}_{n-1}(L \cap \xi^{\perp}) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + c_n \varepsilon.$$

Switch K, L

$$\left|\operatorname{Vol}_n(K)^{\frac{n-1}{n}} - \operatorname{Vol}_n(L)^{\frac{n-1}{n}}\right| \leq c_n \max_{\xi \in S^{n-1}} \left|\operatorname{Vol}_{n-1}(K \cap \xi^{\perp}) - \operatorname{Vol}_{n-1}(L \cap \xi^{\perp})\right|.$$

.≣⇒

Stability for sections in dimensions $n \le 4$

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n , $n \le 4$. If for every $\xi \in S^{n-1}$

$$\operatorname{Vol}_{n-1}(K \cap \xi^{\perp}) \leq \operatorname{Vol}_{n-1}(L \cap \xi^{\perp}) + \varepsilon,$$

then

$$\operatorname{Vol}_n(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_n(L)^{\frac{n-1}{n}} + c_n \varepsilon.$$

Switch K, L

$$\left|\operatorname{Vol}_{n}(K)^{\frac{n-1}{n}} - \operatorname{Vol}_{n}(L)^{\frac{n-1}{n}}\right| \leq c_{n} \max_{\xi \in S^{n-1}} \left|\operatorname{Vol}_{n-1}(K \cap \xi^{\perp}) - \operatorname{Vol}_{n-1}(L \cap \xi^{\perp})\right|.$$

Put $L = \emptyset$:

$$\operatorname{Vol}_{n}(K)^{\frac{n-1}{n}} \leq c_{n} \max_{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}(K \cap \xi^{\perp}).$$

Alexander Koldobsky Stability in volume comparison problems.

▲ 臣 ▶ | ▲ 臣 ▶ | |

Stability in Zvavitch's result

Let f be an even positive continuous function on \mathbb{R}^n , $2 \le n \le 4$, μ is the measure with density f, K and L are origin-symmetric convex bodies in \mathbb{R}^n , and $\varepsilon > 0$. Suppose that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^{\perp}) \leq \mu(L \cap \xi^{\perp}) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n \operatorname{Vol}_n(K)^{1/n} \varepsilon.$$

Stability in Zvavitch's result

Let f be an even positive continuous function on \mathbb{R}^n , $2 \le n \le 4$, μ is the measure with density f, K and L are origin-symmetric convex bodies in \mathbb{R}^n , and $\varepsilon > 0$. Suppose that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^{\perp}) \leq \mu(L \cap \xi^{\perp}) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n \operatorname{Vol}_n(K)^{1/n} \varepsilon.$$

Switch K, L

$$|\mu(K) - \mu(L)| \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \left| \mu(K \cap \xi^{\perp}) - \mu(L \cap \xi^{\perp}) \right| \max\left(\operatorname{Vol}_n(K)^{\frac{1}{n}}, \operatorname{Vol}_n(L)^{\frac{1}{n}} \right)$$

< ∃⇒

Stability in Zvavitch's result

Let f be an even positive continuous function on \mathbb{R}^n , $2 \le n \le 4$, μ is the measure with density f, K and L are origin-symmetric convex bodies in \mathbb{R}^n , and $\varepsilon > 0$. Suppose that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^{\perp}) \leq \mu(L \cap \xi^{\perp}) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n \operatorname{Vol}_n(K)^{1/n} \varepsilon.$$

Switch K, L

$$|\mu(K) - \mu(L)| \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \left| \mu(K \cap \xi^{\perp}) - \mu(L \cap \xi^{\perp}) \right| \max\left(\operatorname{Vol}_n(K)^{\frac{1}{n}}, \operatorname{Vol}_n(L)^{\frac{1}{n}} \right)$$

Put $L = \emptyset$

$$\mu(K) \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(K \cap \xi^{\perp}) \operatorname{Vol}_n(K)^{1/n}.$$

Recall the inequality:

$$\mu(K) \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(K \cap \xi^{\perp}) \operatorname{Vol}_n(K)^{1/n}.$$

< ≣ >

æ

Recall the inequality:

$$\mu(K) \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(K \cap \xi^{\perp}) \operatorname{Vol}_n(K)^{1/n}.$$

The case of (asymptotic) equality

Let $K = B_2^n$ and, for every $j \in N$, let f_j be a non-negative continuous function on [0,1] supported in $(1-\frac{1}{j},1)$ and such that $\int_0^1 f_j(t)dt = 1$. Let μ_j be the measure on \mathbb{R}^n with density $f_j(|x|_2)$, where $|x|_2$ is the Euclidean norm. Then

$$\lim_{j \to \infty} \frac{\mu_j(B_2^n)}{\max_{\xi \in S^{n-1}} \mu_j(B_2^n \cap \xi^{\perp}) \operatorname{Vol}_n(B_2^n)^{1/n}} = \frac{n}{n-1} c_n.$$