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Volume comparison problems

A typical comparison problem for the volume of convex bodies asks whether
inequalities

fK (ξ)≤ fL(ξ), ∀ξ ∈ Sn−1

imply
Voln(K)≤ Voln(L)

for any K ,L from a certain class of origin-symmetric convex bodies in IRn,
where fK is a certain geometric characteristic of K and Voln is the
n-dimensional volume.
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Examples

Busemann-Petty problem (1956); fK (ξ) = SK (ξ) = Voln−1(K ∩ ξ⊥)

Suppose K and L are origin symmetric convex bodies in IRn such that

SK (ξ)≤ SL(ξ), ∀ξ ∈ Sn−1.

Does it follow that
Voln(K)≤ Voln(L)?

Yes if n ≤ 4, no if n ≥ 5; solution completed in the end of the 90’s
Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis,
Rogers, Schlumprecht, Zhang

Shephard’s problem (1964); fK (ξ) = PK (ξ) = Voln−1(K |ξ⊥)

Suppose K and L are origin symmetric convex bodies in IRn such that

PK (ξ)≤ PL(ξ), ∀ξ ∈ Sn−1.

Does it follow that
Voln(K)≤ Voln(L)?

Yes if n = 2, no if n ≥ 3; Petty and Schneider, independently
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More examples

Modified Busemann-Petty problem; K., Yaskin, Yaskina (2006)

For two origin-symmetric infinitely smooth bodies K ,L in IRn and
α ∈ [n−4,n−1) the inequalities

(−∆)α/2SK (ξ)≤ (−∆)α/2SL(ξ), ∀ξ ∈ Sn−1

imply
Voln(K)≤ Voln(L),

while for α < n−4 this is not necessarily true.
Here ∆ is the Laplace operator on IRn and the functions SK and SL are
extended to homogeneous functions of degree -1 on the whole IRn.

Modified Shephard’s problem; Yaskin (2008)
For α ∈ [n,n +1) the inequalities

(−∆)α/2PK (ξ)≥ (−∆)α/2PL(ξ), ∀ξ ∈ Sn−1

imply Voln(K)≤ Voln(L), where the projection functions are extended to
homogeneous functions of degree 1 on the whole IRn. The latter result is no
longer true for α < n.
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Arbitrary measures in place of volume

The Busemann-Petty problem for arbitrary measures; Zvavitch (2005)
Let f be an even continuous non-negative function on IRn, and denote by µ the
measure on IRn with density f . For every closed bounded set B ⊂ IRn define

µ(B) =

∫
B

f (x) dx .

If n ≤ 4, then for any convex origin-symmetric bodies K and L in IRn the
inequalities

µ(K ∩ ξ⊥)≤ µ(L∩ ξ⊥), ∀ξ ∈ Sn−1

imply
µ(K)≤ µ(L).

This is generally not true if n ≥ 5 in the sense that for every strictly positive f
there exist K ,L providing a counterexample.
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Stability and separation

Stability
Let ε > 0. The inequalities

fK (ξ)≤ fL(ξ) +ε, ∀ξ ∈ Sn−1

imply
Voln(K)

n−1
n ≤ Voln(L)

n−1
n + Cε.

Separation
Let ε > 0. The inequalities

fK (ξ)≤ fL(ξ)−ε, ∀ξ ∈ Sn−1

imply
Voln(K)

n−1
n ≤ Voln(L)

n−1
n − cε.
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Stability for sections and projections

Stability for sections
Suppose that ε > 0, K and L are origin-symmetric star bodies in IRn, and K is
an intersection body. If for every ξ ∈ Sn−1

SK (ξ)≤ SL(ξ) +ε,

then
Voln(K)

n−1
n ≤ Voln(L)

n−1
n +ε.

Stability for projections
Suppose that ε > 0, K and L are origin-symmetric convex bodies in IRn, and L
is a projection body. If for every ξ ∈ Sn−1

PK (ξ)≤ PL(ξ) +ε,

then

Voln(K)
n−1

n ≤ Voln(L)
n−1

n +

√
2π
n R(L) ε,

where R(L) is the normalized circumradius of L.
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Separation for sections and projections

Separation for sections
Suppose that ε > 0, K and L are origin-symmetric star bodies in IRn, and K is
an intersection body. If for every ξ ∈ Sn−1

SK (ξ)≤ SL(ξ)−ε,

then

Voln(K)
n−1

n ≤ Voln(L)
n−1

n −
√

2π
n +1 r(K)ε,

where r(K) is the normalized inradius of K .

Separation for projections
Suppose that ε > 0, K and L are origin-symmetric convex bodies in IRn, and L
is a projection body. If for every ξ ∈ Sn−1

PK (ξ)≤ PL(ξ)−ε,

then
Voln(K)

n−1
n ≤ Voln(L)

n−1
n − ε√

e
.
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The hyperplane problem.

Does there exist an absolute constant C such that for any origin-symmetric
convex body K in IRn

Voln(K)
n−1

n ≤ C max
ξ∈Sn−1

Voln−1(K ∩ ξ⊥).

Best-to-date: Klartag, C ∼ n1/4, improving the previous estimate of Bourgain

Dimension n ≤ 4

Voln(K)
n−1

n ≤
|Bn

2 |
n−1

n∣∣Bn−1
2
∣∣ max
ξ∈Sn−1

Voln−1(K ∩ ξ⊥).

Denote the constant by cn; note that cn is less than 1.
Follows from the affirmative answer to the Busemann-Petty problem: if
Voln(K) = |Bn

2 | , then it cannot happen that Vol(K ∩ ξ⊥)<
∣∣Bn−1

2
∣∣ for every ξ,

so
maxξ∈Sn−1 Voln−1(K ∩ ξ⊥)

Voln(K)
n−1

n
≥

∣∣Bn−1
2
∣∣∣∣Bn

2
∣∣ n−1

n
.
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Stability must imply a stronger inequality?

Stability for sections in dimensions n ≤ 4
Suppose that ε > 0, K and L are origin-symmetric convex bodies in IRn, n ≤ 4.
If for every ξ ∈ Sn−1

Voln−1(K ∩ ξ⊥)≤ Voln−1(L∩ ξ⊥) +ε,

then
Voln(K)

n−1
n ≤ Voln(L)

n−1
n + cnε.

Switch K ,L∣∣∣Voln(K)
n−1

n −Voln(L)
n−1

n

∣∣∣≤ cn max
ξ∈Sn−1

∣∣∣Voln−1(K ∩ ξ⊥)−Voln−1(L∩ ξ⊥)
∣∣∣ .

Put L = ∅ :

Voln(K)
n−1

n ≤ cn max
ξ∈Sn−1

Voln−1(K ∩ ξ⊥).
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Hyperplane inequality for arbitrary measures, n ≤ 4

Stability in Zvavitch’s result
Let f be an even positive continuous function on IRn, 2≤ n ≤ 4, µ is the
measure with density f , K and L are origin-symmetric convex bodies in IRn,
and ε > 0. Suppose that for every ξ ∈ Sn−1,

µ(K ∩ ξ⊥)≤ µ(L∩ ξ⊥) +ε.

Then
µ(K)≤ µ(L) +

n
n−1cnVoln(K)1/n ε.

Switch K ,L

|µ(K)−µ(L)| ≤ n
n−1cn max

ξ∈Sn−1

∣∣∣µ(K ∩ ξ⊥)−µ(L∩ ξ⊥)
∣∣∣max

(
Voln(K)

1
n ,Voln(L)

1
n

)
.

Put L = ∅

µ(K)≤ n
n−1cn max

ξ∈Sn−1
µ(K ∩ ξ⊥) Voln(K)1/n.
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The constant is the best possible

Recall the inequality:

µ(K)≤ n
n−1cn max

ξ∈Sn−1
µ(K ∩ ξ⊥) Voln(K)1/n.

The case of (asymptotic) equality

Let K = Bn
2 and, for every j ∈ N, let fj be a non-negative continuous function

on [0,1] supported in (1− 1
j ,1) and such that

∫ 1
0 fj (t)dt = 1. Let µj be the

measure on IRn with density fj (|x |2), where |x |2 is the Euclidean norm. Then

lim
j→∞

µj (Bn
2 )

maxξ∈Sn−1 µj (Bn
2 ∩ ξ⊥) Voln(Bn

2 )1/n =
n

n−1cn.
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