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Introduction

Let L be a convex body in Rn containing 0 in its interior.

The intersection body I (L) of L is defined by its radial function:

ρI (L)(u) = vol(L ∩ u⊥), u ∈ Sn−1

The cross-section body C (L) of L, is defined by

ρC(L)(u) = max
t

vol
(
(L ∩ (tu + u⊥)

)
.

In general, I (L) and C (L) are not convex bodies, although they are
identical and convex when L is centrally symmetric. This follows from
Brunn-Minkowski theorem and Busemann’s theorem (1950). We
define a new convex body associated with L, generalizing I (L) and
C (L), the convex intersection body CI (L) of L by its radial function

ρCI (L)(u) = min
z∈Pu(L∗g(L))

voln−1

([
Pu(L∗g(L))

]∗z)
. (1)
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Introduction

In the formula : ρCI (L)(u) = min
z∈Pu(L∗g(L))

voln−1

([
Pu(L∗g(L))

]∗z)
,

g(L) is the centroid of L, Pu denotes the orthogonal projection from
Rn onto u⊥, and if E ⊂ Rn is an affine subspace, M ⊂ E and z ∈ E ,
M∗z = {y ∈ E ; 〈y − z , x − z〉 ≤ 1 for every x ∈ M}.

This means thus : First apply duality with respect to g(L), then
project onto u⊥, finally apply duality with respect to z and minimize
the (n − 1)-dimensional volume over z .

As we shall see, this convex intersection body of L is actually convex !
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Notation

If L a convex set in Rn, let [L] be the affine space spanned by L and
z ∈ relint(L), the polar body of L with respect to z is

L∗z = {y ∈ [L]; 〈y − z , x− z〉 ≤ 1 for all x ∈ L} =
((

L− z)∗+ z
)
∩ [L],

where M∗ = M∗0.

The function z → vol(L∗z) is strictly convex on the
relative interior of L and tends to +∞ as z approaches the relative
boundary of L in [L]. So it reaches a minimum at a unique point
s(L) ∈ int(L), the Santaló point of L. We denote L∗s := L∗s(L).

The Santaló point s(L) is the unique point z ∈ int(L) which is the
centroid of L∗z : one has z = s(L) iff g(L∗z) = z , where g(M)
denotes the centroid of M in [M]. In general, s(L) 6= g(L).

Mathieu Meyer and Shlomo Reisner The convex intersection body of a convex body



Notation

If L a convex set in Rn, let [L] be the affine space spanned by L and
z ∈ relint(L), the polar body of L with respect to z is

L∗z = {y ∈ [L]; 〈y − z , x− z〉 ≤ 1 for all x ∈ L} =
((

L− z)∗+ z
)
∩ [L],

where M∗ = M∗0. The function z → vol(L∗z) is strictly convex on the
relative interior of L and tends to +∞ as z approaches the relative
boundary of L in [L]. So it reaches a minimum at a unique point
s(L) ∈ int(L), the Santaló point of L.
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The Santaló point s(L) is the unique point z ∈ int(L) which is the
centroid of L∗z : one has z = s(L) iff g(L∗z) = z , where g(M)
denotes the centroid of M in [M]. In general, s(L) 6= g(L).

Mathieu Meyer and Shlomo Reisner The convex intersection body of a convex body



Notation

If L a convex set in Rn, let [L] be the affine space spanned by L and
z ∈ relint(L), the polar body of L with respect to z is

L∗z = {y ∈ [L]; 〈y − z , x− z〉 ≤ 1 for all x ∈ L} =
((

L− z)∗+ z
)
∩ [L],

where M∗ = M∗0. The function z → vol(L∗z) is strictly convex on the
relative interior of L and tends to +∞ as z approaches the relative
boundary of L in [L]. So it reaches a minimum at a unique point
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The body J(K )

We define first define a body J(K ) attached to a body K . For, x 6= 0,
let Px : Rn → x⊥ be the orthogonal projection onto x⊥.

Theorem
If K is a convex body in Rn. Define NK : Rn → R+ by :

NK (u) =
1

vol
((

PuK)∗s
) =

1

minz∈u⊥ vol
((

PuK)∗z
) for u ∈ Sn−1,

and NK (ru) = rNK (u) for r ≥ 0. Then NK is a norm on Rn.

Definition. The preceding theorem associates to any convex body K
a centrally symmetric convex body J(K ) in Rn defined by

J(K ) = {x ∈ Rn; NK (x) ≤ 1}.

Its radial function is rJ(K)(u) = vol
((

PuK)∗s
)
.
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Why is J(K ) convex ?

I recall some facts.

Definition. Let v ∈ Sn−1, B ⊂ Rn bounded and V : B → R bounded.
The shadow system (Lt), t ∈ [0, 1], of convex bodies in Rn, with
direction v , basis B and speed V , is the family of convex bodies

Lt = conv({b + tV (b)v ; b ∈ B}, for t ∈ [0, 1]).

The following, due to Shephard, was also used by Campi-Gronchi.

Proposition Let K be a convex body in Rn. Then, for u, v ∈ Sn−1,
such that 〈u, v〉 = 0, the family Lt = Πu+tv ,u⊥K , t ∈ R, is a shadow

system of convex bodies in u⊥, in the direction v .

Here Πx ,y⊥ : Rn → y⊥ denotes the linear projection onto y⊥ with

direction parallel to x 6∈ y⊥ := {z ∈ Rn; 〈z , y〉 = 0}
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The converse statement

Observe that the converse statement of the last proposition is true :

Every shadow system Lt in Rn can be seen as Lt = Πu+tv ,u⊥(K ) for
some convex body K ⊂ Rn+1 and u, v ∈ Sn.

This is very simple : embed Rn into Rn+1 with v = en and u = en+1.
Let M = conv({b − V (b)u; b ∈ B}. Then

Πu+tv ,u⊥(b − V (b)u) = b + tV (b)v ∈ u⊥

because b − V (b)u − (b + tV (b)v) = −V (b)(u + tv) is parallel to
u + tv . It follows that

Πu+tv ,u⊥M = Lt .
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The volume of the polar in shadow systems

The following result was proved by S. Reisner and M. Meyer (07):

Theorem
Let t ∈ [0, 1]→ Lt be a shadow system in Rn; define

φ(t) =
1

vol
(
(Lt)∗s

) =
1

minz vol
(
(Lt)∗z

) .
Then φ is a convex function on [0, 1].

We use also :

Lemma Suppose that N : Rn → R satisfies N(x) > 0 for x 6= 0,
N(αx) = |α|N(x) for all α ∈ R, x ∈ Rn and that for all u, v ∈ Sn−1

with 〈u, v〉 = 0, t 7→ N(u + tv) is convex. Then N is a norm on Rn.
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Proof of the convexity of J(K ).

We want to prove the following :

Theorem For a convex body K , rJ(K)(u) = minz∈u⊥ vol
((

PuK)∗z
)

is
the radial function of a centrally symmetric convex body.

Proof. By the lemma, we need only to check that if u, v ∈ Sn−1

satisfy 〈u, v〉 = 0, then t → gu,v (t) = NK (u + tv) is convex. The
projection Pu+tvK of K on {u + tv}⊥ in the direction u + tv is an
affine image of Πu+tv ,u⊥K and

vol(Pu+tvK) =
1√

1 + t2
vol(Πu+tv,u⊥K).

Hence

min
z∈{u+tv}⊥

vol
(
(Pu+tvK)∗z

)
=
√

1 + t2 min
z∈u⊥

vol
(
(Πu+tv,u⊥K)∗z)

)
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)
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Proof of the theorem about J(K ).

It follows that

N(u + tv) =
|u + tv |

minz∈{u+tv}⊥ vol
(
(Pu+tvK)∗z)

)
=

1

minz∈u⊥ vol
(
(Πu+tv,u⊥K)∗z

) .

By the proposition, t → Πu+tv ,u⊥K is a shadow system. Thus by the
last theorem, gu,v is convex.
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Remarks

Remarks.

1) If K is centrally symmetric (centered at 0), then all its projections
PuK are centrally symmetric (centered at 0) so that

min
z∈u⊥

vol
(
PuK)∗z

)
= vol

(
PuK)∗0

)
= vol(K∗0 ∩ u⊥).

We get that u → vol(K∗0 ∩ u⊥) is the radial function of a convex
body. This is Busemann theorem for the sections of K ∗.

2) Let J(K ) = {x ∈ Rn; NK (x) ≤ 1}. One has J(K + x) = J(K ) and
for all linear isomorphism A, J

(
(AK )

)
= | det(A)| (A∗)−1

(
J(K )

)
.

3) If n = 2 and if R is the rotation with angle π/2 in R2, then

vol(PuK) = hK(Ru) + hK(−Ru) = hK(Ru) + h−K(Ru),

so that J(K ) = 1
4 R(K − K ).
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The convex intersection bodies IC (L, z) of a convex body L.

Let L be a convex body in Rn.

For z ∈ int(L), the intersection body
I (L, z) of L with respect to z is the star-body with radial function
ρI (L,z) defined by

ρI (L,z)(u) = vol
(
{x ∈ L; 〈x− z,u〉 = 0}

)
= vol

(
L ∩ (z + u⊥)

)
.

The cross-section body C (L) of L is defined by its radial function :

ρC(L)(u) = max
x∈L

vol
(
L ∩ (x + u⊥)

)
.

Of course, I (L, z) ⊂ C (L). Makai, Martini and Odor proved that
I (L, z) = C (L) iff L is centrally symmetric about z . We define the
convex intersection body CI (L, z) of L with respect to z by

CI (L, z) = J(L∗z) .

If z = g(L), the centroid of L, we set CI (L) = CI
(
L, g(L)

)
.
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The convex intersection bodies IC (L, z) of a convex body L.

The radial function of CI (L, z) is thus given for u ∈ Sn−1 by

ρCI (L,z)(u) = min
x∈u⊥

vol
((

Pu(L∗z)
)∗x)

= vol
((

Pu(L∗z)
)∗s)

.

In view of the first theorem, one has

Theorem
Let L be a convex body. Then for every z ∈ int(L), the convex
intersection body CI (L, z) of L with respect to z is a centrally
symmetric convex body such that CI (L, z) ⊂ I (L, z).
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Remarks.

Remarks.

1) For every one-to-one affine map A : Rn → Rn,
I (AL,Az) = | det(A)|A∗−1

(
I (L, z)

)
, as well as

CI (AL,Az) = | det(A)|A∗−1
(
CI (L)

)
.

2) The inclusion CI (L, z) ⊂ I (L, z) is exact: there exists u such that

vol
(
L ∩ (z + u⊥)

)
= vol

((
Pu(L∗z)

)∗s)
,

because this equality means that the z is centroid of L ∩ (z + u⊥). To
see that such a u exists, define φ : Sn−1 → R by
φ(v) = vol({x ∈ L; 〈x− z; v〉 ≥ 0}). Since φ is continuous, it reaches
its maximum at some u ∈ Sn−1, and we know that z is then the
centroid of L ∩ (z + u⊥).
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Remarks.

3) It was proved by Grünbaum that for every convex body L ∈ Rn,
there exists some z0 ∈ int(L) such that z0 is the centroid of
L ∩ (z + u⊥i ) for (n + 1) different hyperplanes through z0, with
normals u1, . . . , un+1. For this z0, the boundaries of CI (L, z0) and of
I (L, z0) have at least 2(n + 1) contact points.

4) When L is centrally symmetric about z , CI (L, z) = I (L, z) and the
theorem reduces to the classical Busemann’s theorem. Conversely, :

Proposition CI (L, z) = I (L, z) iff L is centrally symmetric about z .

This follows from the following lemma:

Lemma
Let L be a convex body and z ∈ L. Then z is the centroid of every
hyperplane section of L through itself iff L− z is centrally symmetric.
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Proof of the lemma.

Fix some z0 ∈ int(L), z0 6= z . Define F : Rn → R by

F (y) = vol
(
{x ∈ L− z0; 〈x, y〉 ≥ 1}

)
.

By Meyer-Reisner (89), F is C 1 on {F > 0} = Rn \ {0} and for y 6= 0

∇F (y) = 〈∇F (y), y〉
(
g({x ∈ L; 〈x − z0, y〉 = 1})− z0

)
.

Let H = {y ∈ Rn; 〈z − z0, y〉 = 1}. For y ∈ H, the hyperplane
{x ∈ Rn; 〈x − z0, y〉 = 1} passes through z , so that by the hypothesis,
g({w ∈ L; 〈x − z0, y〉 = 1}) = z , and thus

∇F (y) = 〈∇F (y), y〉(z − z0).

Now if y , y ′ ∈ H, one has 〈y ′ − y , z − z0〉 = 0 and for every t ∈ R,
(1− t)y ′ + ty ∈ H, so that

F (y ′)− F (y) =

∫ 1

0
〈y ′ − y ,∇F

(
(1− t)y + ty ′

)
)〉dt = 0.
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Proof of the lemma.

Thus F is equal to some constant c on H.

Define a function
G : Sn−1 → R by

G (u) = vol{x ∈ L; 〈x− z,u〉 ≥ 0}.

and let
U = {u ∈ Sn−1; 〈u, z − z0〉 > 0}.

Then u → y(u) := u
〈u,z−z0〉 is one-to-one from U onto H, and

G (u) = F
(
y(u)

)
for every u ∈ U.

It follows that G = c on U, and since G (u) + G (−u) = vol(L) for all
u ∈ Sn−1, G = vol(L)− c on −U. Now, Sn−1 ∩ (z − z0)⊥ is
contained in the closures of both U and of −U in Sn−1. Since G is
continuous on Sn−1, G = c = 1− c = vol(L)

2 on Sn−1. Thus L− z is
centrally symmetric (Funk-Falconer).
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Additional comments and some open problems

The bodies C (L) and I (L, z) are not in general convex : C (L) is
always convex only for n ≤ 3 (Meyer) and Brehm proved that if ∆n is
a simplex in Rn, n ≥ 4, C (∆n) is not convex.

However C (L), and
I (L, g(L)), where g(L) is the centroid of L, are almost convex, and
even almost ellipsoids, in the sense that for some c > d > 0,
independent on n and L, and for all u ∈ Sn−1, one has

d

vol(L)
3
2

(∫
L−g(L)

〈x , u〉2dx
) 1

2 ≤ 1

maxt vol
(
L ∩ (tu + u⊥)

) = ρC(L)(u)

≤ 1

vol(L ∩ u⊥)
= ρ

I
(
L,g(L)

)(u) ≤ c

vol(L)
3
2

(∫
L−g(L)

〈x , u〉2dx
) 1

2
.

For centrally symmetric L, this was proved by Hensley (Ball for sharp
constants), and in the general case by Schütt (Fradelizi for sharp
constants) (see also Milman-Pajor).
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Additional comments and some open problems

By definition one has ρI (L,g(L)) ≤ ρCI (L,g(L)).

A natural question is :

Open problem 1. Does there exist a universal constant C > 0,
independent on the convex body L in Rn and on n ≥ 1, such that
ρCI (L,g(L)) ≤ CρI (L,g(L)) ? This would say that the the radial
functions of C (L), CI (L) and I (L, g(L)) are all equivalent.

An other formulation of this problem is the following : Let K be a
convex body in Rn with Santaló point is at 0. Does there exist an
absolute constant C > 0, independent on n and K such that

vol
(
(PuK)∗Puz

)
≥ C vol

(
(PuK)∗0

)
for every z ∈ int(K ) ?

Or, given a convex M ⊂ u⊥, with Santaló point s(M), and a convex
body K in Rn, with Santaló point s(K ), such that PuK = M, does

vol(M∗s(M)) ≥ Cvol(M∗Pus(K))

for some universal constant C > 0 ?
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Additional comments and some open problems

If one could prove that in this situation, for some universal constant
c > 0, it is true that Pus(K )− s(M) ∈ c

n

(
M − s(M)

)
,

then an
affirmative answer could be given, using the following lemma :

Lemma
Let V be a convex body in Rn and x , y ∈ int(V ). Then

(1− ||x − y ||V−y )n vol(V∗x) ≤ vol(V∗y) ≤ vol(V∗x)(
1− ||y − x||V−x

)n
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Additional comments and some open problems

It is known (see Milman-Pajor) that for some affine mapping
A : Rn → Rn, M := AL is isotropic, that is satisfies vol(M) = 1 and(∫

M−g(M)
〈x , u〉2dx

) 1
2

= cM for all u ∈ Sn−1.

where cM is the isotropy constant of M. Problem 1 is equivalent to

Open problem 2. Let M be an isotropic convex body. Is CI (M)
equivalent to the Euclidean ball, independently on M and n ?

Of course, problems 1 and 2 are non-trivial only if L or M are not
centrally symmetric. The particular case of the simplex is open :

Open problem 3. Let ∆n be a simplex in Rn with g(∆n) = 0. Is
there a constant c such that for every n ≥ 2 and every u ∈ Sn−1

vol(∆n ∩ u⊥) ≤ c vol
((

Pu(∆∗gn )
)∗s)

= c vol
((

(∆n ∩ u⊥)∗0
)∗s)

?
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there a constant c such that for every n ≥ 2 and every u ∈ Sn−1

vol(∆n ∩ u⊥) ≤ c vol
((

Pu(∆∗gn )
)∗s)

= c vol
((

(∆n ∩ u⊥)∗0
)∗s)

?
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Additional comments and some open problems

When ∆n is a regular simplex inscribed in the Euclidean ball,
(∆n)∗ = −n∆n and

(∆n ∩ u⊥)∗0 = Pu

(
(∆n)∗0

)
= Pu(−n∆n).

Thus

vol
((

(∆n ∩ u⊥)∗0
)∗s)

=
1

nn−1vol
(
(Pu∆n)∗s

)
.

Let e1, . . . , en+1, |ei | = 1, be the vertices of ∆n so that
0 = e1 + · · ·+ en+1 and for 1 ≤ i 6= j ≤ n + 1, 〈ei , ej〉 = − 1

n .
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Additional comments and some open problems

Fact. Let A ⊂ {1, . . . , n + 1} satisfy 1 ≤ k := card(A) ≤ n. Define

uA =

∑
i∈A ei

|
∑

i∈A ei |
=

√
n

k(n + 1− k)

∑
i∈A

ei ∈ Sn−1.

Then 0 is the centroid of ∆n ∩ u⊥A .

We get thus:

Proposition For every A ⊂ {1, . . . , n + 1}, with 1 ≤ card(A) ≤ n,
one has : ||uA||CI (∆n,0) = ||uA||I (∆n,0).
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Additional comments and some open problems

When u⊥ ∩∆n is a simplex, one can also conclude :

Proposition Let u ∈ Sn−1, and if u =
∑n+1

i=1 uiei ∈ Sn−1 with∑n+1
i=1 ui = 0 and u1, . . . , un ≥ 0 > un+1, then u⊥ ∩∆n is a simplex

and

ρI (∆n,0)(u) = vol(∆n ∩ u⊥) =
1

(n− 1)!

(n + 1)
n+1
2

n
n
2
−1

1∏n
i=1(ui +

∑n
j=1 uj)

and

ρCI (∆n,0)(u) = vol
((

∆n ∩ u⊥)∗0
)∗s)

=
1

(n− 1)!

n
n
2

+1

(n + 1)n+1
2

1∑n
i=1 ui

.

Thus CI (∆n, 0) has 2n + 2 small faces around u = ±ei , 1 ≤ i ≤ n + 1.
It is easy to check that for such directions u ∈ Sn−1 one has

1 ≤ vol(∆n ∩ u⊥)

vol
((

∆n ∩ u⊥)∗0
)∗s) ≤ e

2
.
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Additional comments and some open problems

These u’s around which the two norms are equal or almost equal are
not enough to be able to conclude, but this will be my conclusion.

THANK YOU FOR YOUR ATTENTION

THE END
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