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Is it feasible to generate these patterns by reflective or refractive op-
tics reshaping the irradiance distribution of a laser beam?
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Irradiance distributions for mask illumination

Our source functions generally have 4-fold symmetry

Field shown is ~ 12 mm square

“aasource” “lvsource”

John Hoffnagle   16 May 2008

Is it feasible to generate these patterns by reflective or
refractive laser beam shaping?

Input can be assumed to be uniform rectangular distribution
with dimensions ~ 3 mm x 6 mm

Input and out are collimated, propagate in same direction

Applications: Computing lithography,...
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Problem: Determine R1 and R2 such that for given refraction indices
n0, n1, the incoming plane wave of cross-section Ω̄ with intensity dis-
tribution I(x) is transformed into a plane wave irradiating at a given T̄d
with prescribed intensity distribution L(p).
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Problems of this type with lenses/mirrors have been usually solved under
a priori assumption of rotational/rectangular symmetry.

Applications: materials processing (welding, cutting, drilling), energy con-
centrators, illumination, antennas, computing lithography, optical data/image
processing, laser weapons, medicine (skin treatment, corneal surgery),
planet detection, ...

In some important applications (lithography, illumination,...) the assump-
tion of rotational/rectangular symmetry is overly restrictive.

Our goal:

Get rid of the symmetry assumption and design freeform lenses!
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The focus of this talk is on freeform two-lens systems.

Some of the earlier (related) work on rotationally symmetric lenses:
B.R. Frieden (’65), J.L. Kreuzer (’69), P.W. Rhodes & D.L. Shealy (’80), W.
Jiang, D.L. Shealy & J.C. Martin (’93), J. A. Hoffnagle & C.M. Jefferson
(’00–’05).

The two-lens system designed by Hoffnagle & Jefferson was fabricated by
QED Technologies (’03?). The authors received the 2003 Kingslake Medal
and Prize for this work.
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Previous (most relevant) work on freeform lenses:
H. Ries - J.Muschaweck, 2002 (no details),
J. Rubinstein - G. Wolansky, 2007-2008 (single lens, 0 < n < 1), -
Weighted least action,
V. Oliker, 2005- (two-lens and single lens systems, n > 1, 0 < n < 1), -
Geometric methods

Our mathematical framework is applicable in many other optics problems.
This, in turn, can be traced to H. Minkowski, A.D. Aleksandrov, A. V.
Pogorelov.

Current work has appeared online in
V. Oliker, Arch. Rational Mech. Anal. 2011.
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Our main claims are:

• Freeform lenses can be designed under very general assumptions.

• Analytically, these problems can be formulated as:
(a) PDE’s of Monge-Ampère type, (b) Variational problems

• Two designs are available for the same data; one of them always con-
sists of a concave and convex lenses.

• Practical computational approaches exist for calculating the solutions
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Part I. FROM OPTICS TO PDE

Assuming the geometrical optics approximation, the following three laws
are used to derive the equations for functions describing the lens surfaces:

• Snell’s (the refraction) law

• Conservation of Energy Along Infinitesimal Tubes of Rays

• Constancy of the Optical Path Length (OPL)
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Notations:

t(x)

x z(x)

d

p=P(x) w(P(x))

R

R

1

2

n n
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Let (R1, R2) = (z(x), w(p)). Put M(z) :=
√

1 + (1− n2)|∇z|2.

The refraction law gives the refracted direction at the lens surfaceR1:

ω(x) = nk +
−n + M(z(x))√

1 + |∇z(x)|2
N(x).

The refraction law and OPL = const give the refractor map:

P (x) = x−
β∇z(x)

M(z(x))
: Ω̄→ T̄

The energy conservation law:

L(P (x))|J(P (x)| = I(x), (J is the Jacobian).

Due to constancy of the OPL, the second lens is given by

w(P (x)) = −
β

n2 − 1

[
n+

1

M(z(x))

]
+ z(x).
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The PDE problem

For bounded planar regions Ω, T ⊂ α, input intensity I, defined on Ω̄, and
output intensity L, defined on T̄ , find z ∈ C2(Ω) ∩ C1(Ω̄) such that, the
map

P (x) = x−
β∇z(x)

M(z(x))
: Ω̄→ T̄ is onto,

and

L(P )
det

{
M(z)

[
Id + (1− n2)∇z ⊗∇z

]
− βHess(z)

}
MN+2(z)

= I in Ω.

This PDE is of Monge-Ampère type (fully nonlinear).
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BACK TO DESCARTES!

Part II. FROM PDE’s TO GEOMETRY. WEAK SOLUTIONS
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Refracting properties of quadrics. Main Lemma.

1. The constancy of the (reduced) optical path length

ROPL :
√

[w − z]2 + (p− x)2−n[w−z] = β 6= 0, (x, z), (p, w) ∈ R3

Implies

{
z −

[
w + βn

n2−1

]}2

β2

(n2−1)2

−
[x− p]2

β2

n2−1

= 1.

2. If n > 1, β < 0 and (p, w) is fixed, this is a hyperboloid of revolution
of two sheets Hl, Hr with eccentricity n, center (p, w + nβ

n2−1
), foci:

F l = (p, w +
n

n2 − 1
(β − |β|)), F r = (p, w +

n

n2 − 1
(β + |β|)),

Left branch Hl : z(x) =
nβ − c(x, p)

n2 − 1
+ w, x ∈ α.
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3. For n > 1, β < 0 and fixed (x, z) we get again a hyperboloid of
revolution with branches Hl

1, H
r
1, eccentricity n, center (x, z − nβ

n2−1
),

foci:

F l1 = (x, z −
n

n2 − 1
(β + |β|)), F r1 = (x, z −

n

n2 − 1
(β − |β|)),

Right branch Hr
1 : w(p) = −

nβ − c(x, p)

n2 − 1
+ z, p ∈ α.

4. When 0 < n < 1, β > 0, instead of hyperboloids we get branches
of ellipsoids of revolution.
5. The case n > 1, β > 0 is not physically usefull.
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Fact A: if n > 1, β < 0 all rays refracted by Hl pass through focus F r.
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Proof. Use z(x) in the Main Lemma and calculate ω(x) or see R. Descartes
and R. Luneburg.
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FACT B: We can change the directions of rays at F r

{w(p)−[z(x)− βn

n2−1]}
2

β2

(n2−1)2

− (p−x)2

β2

n2−1

= 1
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Hl, Hr are the left and right branches of the hyperboloid with foci F l, F r.
To change direction of the ray F l1F

r at F r, we refract it in Hr
1 with foci

F l1 ∈ H
l and F r1. Repeat this for all rays refracted by Hl. The point F r lies

on all such appropriately translatedHr
1. Thus, we mapped [a, b]→ (p, d).
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Thus, we constructed a “two-lens” system with active area of the second
lens being ONE POINT F r. For that system each point (x, z(x)) ∈ Hl is
a focus of a branch passing through F r and F r is the focus of Hl.

Using several {Hl}, we can construct a a multifocal system:

x
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b
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r

r r
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Main Lemma and Facts A and B imply:
Suppose we already have two lenses as required (R1, R2) = (z(x), w(p)).
Then we have the map (x, z(x)) −→ (p = P (x), w(P (x)).
Since ROPL = β, it must be that R1 at (x, z(x)) is tangent to Hl with
right focus (P (x), w(P (x))) ∈ Hr

1 andR2 at (P (x), w(P (x))) is tangent
to Hr

1 with left focus (x, z(x)) ∈ Hl.

t(x)

x z(x)

p=P(x)
w(P(x))

R

R

1

2

n n

(p,d)

Ω
Td

T

H l

H r
1

N(x)

N(P(x))

Main Idea: (n > 1, β < 0) Construct R1, R2 as envelopes of families
of branches of two-sheeted hyperboloids of revolution with foci on R1 and
R2.
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How to construct such envelopes?

Definition: Lower and Upper envelopes (using branches of hyperboloids).

Assume n > 1, β < 0. Let z ∈ C(Ω̄), w ∈ C(T̄ ). If

z(x) = inf
p∈T̄

{
βn− c(x, p)

n2 − 1
+ w(p)

}
, x ∈ Ω̄,

w(p) = sup
x∈Ω̄

{
−
βn− c(x, p)

n2 − 1
+ z(x)

}
, p ∈ T̄ .

then (R1, R2) = (z(x), w(p)) is called a two-lens system of type A.

Notes. (0) Note the use of c(x,p), provided by ROPL β = const!!

(1) Since c(|x− p|) is convex, type A =⇒ R1 is concave and R2 is convex;

(2) Switching inf and sup, systems of type B are defined. The type B may be neither

convex nor concave.
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Transfer of energy and weak solutions for type A (& B)

For a two-lens (z(x), w(p)) of type A, the refractor map, possibly multi-
valued, is defined by:

P (x) =

{
p ∈ T̄ | z(x) =

βn− c(x, p)

n2 − 1
+ w(p)

}
, x ∈ Ω̄ and

P−1(p) =

{
x ∈ Ω̄ | w(p) = −

βn− c(x, p)

n2 − 1
+ z(x)

}
, p ∈ T̄ .
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2. For input intensity I(x), x ∈ Ω̄, the function

G(z, w, τ) :=
∫
P−1(τ)

I(x)dx, τ ⊂ T̄

is the energy transfer function.

Now, we define ( WEAK) solutions.

Let L(p), p ∈ T̄ , be the prescribed output intensity. A two-lens system
(z, w) of type A is a weak solution of type A of the two-lens problem if the
map P : Ω̄→ T̄ is onto and

G(z, w, τ) =
∫
τ
L(p)dp ∀τ ⊂ T̄
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Part III. Finding Weak Solutions with Calculus
of Variations
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The designer chooses n, l, d > 0 such that β := l − nd 6= 0.
Consider the two-lens case when n > 1 and β < 0.

Define the set of admissible functions:

AdmA =

{
(z, w) ∈ C(Ω̄)× C(T̄ ) s. t. for all (x, p) ∈ Ω̄× T̄

ROPL :=
√
|x− p|2 + |w(p)− z(x)|2 − n[w(p)− z(x)] ≤ β

}
.

It is easier to work with an equivalent form:

AdmA =

{
(z, w) ∈ C(Ω̄)× C(T̄ ) s. t. for all (x, p) ∈ Ω̄× T̄

w(p)− z(x) ≥ −
1

n2 − 1

[
nβ − c(x, p)

]}
.

On a two-lens system of type A we have equality for x, p when p = P (x).
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Theorem. Assume
∫
Ω̄ I(x)dx =

∫
T̄ L(p)dp 6= 0.

The Fermat-like minimization problem

F(z, w) :=
∫
T̄
w(p)L(p)dp−

∫
Ω̄
z(x)I(x)dx 7−→ min on AdmA

admits a unique minimizing pair (zmin[concave], wmin[convex]) which is
a weak solution of type A of the two-lens problem. It is given by

zmin(x) = inf
p∈T̄

{
βn− c(x, p)

n2 − 1
+ wmin(p)

}
,

wmin(p) = sup
x∈Ω̄

{
−
βn− c(x, p)

n2 − 1
+ zmin(x)

}
.

In addition,
z ∈ Lip(Ω̄), w ∈ Lip(T̄ ), |∇z|, |∇w| < 1/

√
n2 − 1 and a.e. in Ω̄

P (x) = x−
β∇z(x)

M(z(x))
: Ω̄→ T̄

(
M(z) :=

√
1 + (1− n2)|∇z|2

)
.
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Notes. (i) The solution that we found is NOT an approximate solution
optimizing some merit function!!! The pair (zmin, wmin is the exact
solution of the two-lens problem.

(ii) zmin is concave and wmin is convex which is useful for fabrication.

(iii) The Fermat-like functional F(z, w) is the mean horizontal distance
between the lenses with the average weighted by intensities.

(iv) The refractor maps are “built-in” into the constraints (AdmA).

(v) The problem F 7−→ min on AdmA is a linear programming problem.
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Notes. (1) Solutions of type B (not necessarily convex/concave!) are ob-
tained when n > 1, β < 0, and AdmB defined with ≥ β.

(2) The same approach applies to the case β > 0, 0 < n < 1 and
generates single lenses of type C (convex/concave) and type D (may be
neither convex nor concave).

(3) When β > 0 and 0 < n < 1, J. Rubinstein and G. Wolansky obtained,
in a very different way, single lens designs using their weighted least ac-
tion concept. Their design generates lenses which are neither convex nor
concave (type D in our terminology) but can be manufactured by a convex
tool.
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Part IV. TEST DESIGN
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Two-lens optical system for reshaping the irradiance distribution of a laser
beam
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Irradiance distributions for mask illumination

Our source functions generally have 4-fold symmetry

Field shown is ~ 12 mm square

“aasource” “lvsource”

John Hoffnagle   16 May 2008

Is it feasible to generate these patterns by reflective or
refractive laser beam shaping?

Input can be assumed to be uniform rectangular distribution
with dimensions ~ 3 mm x 6 mm

Input and out are collimated, propagate in same direction
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Lens 1 Lens 2

Grids: 198× 198 square grids over Ω̄ and over T̄ .
About 40,000 grid points on each set.
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Lenses 1 and 2 (times 100)



Two-lens systems Test design
30

Philosophy of applying geometry and calculus of
variations to mirror/lens design:

1. Recognize the quadric(s) (or other functions) suitable for the problem
(These usually solve the problem if one of the intensities is a sum of
Dirac masses)

2. Describe the mirrors/lenses/surfaces by expressions for lower and up-
per envelopes of such quadrics (This also defines convex/non-convex
solutions, the admissible functions and the needed functional!)

3. Formulate a Fermat-like functional to be maximized or minimized on
the appropriate class of admissible functions. This problem is usu-
ally easier to study and solve numerically than the original nonlinear
PDE’s.
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The End


