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The problem

Consider a convex set E with |E | = 1.

Let `(E ) denote the shortest bisecting chord.

Which set maximizes `(E )?

Equivalently, we can fix `(E ) and try to minimize |E |.

The problem was set by Auerbach in the 1930’s.

First intuition: all the bisecting chords should have the same length!

Such sets are called Zindler sets.

This has a strong connection with the Ulam floating property.
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Something about Zindler sets (1/2)

First question: is there any Zindler set, besides the disk?
The first example is by Zindler (1921).

And what about convex Zindler sets?
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Something about Zindler sets (2/2)

What can we say about a convex Zindler set?

δ

α L(ε)

M(0)

R(ε)

a

b

β

ϕL

ϕR

a ≈ α , b ≈ β

=⇒ ϕL = ϕR

Then the velocity of the centre of the chord is in the direction of the chord
So we can describe the set with a function c : [0, 2π]→ R. One has

c(θ) = −c(θ + π)

∫ π

0
c(θ)(cos(θ), sin(θ)) dθ = 0 |c ′(θ)| ≤ 1 + c(θ)2
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Restating the problem

We have rewritten the problem as follows:
Among all functions c : [0, 2π]→ R for which

c(θ) = −c(θ + π)∫ π

0
c(θ)(cos(θ), sin(θ)) dθ = 0

|c ′(θ)| ≤ 1 + c(θ)2 ,

which one minimizes the area, which is

Area(c) = π −
∫ π

0
dθ

∫ θ

0
c(θ)c(ϕ) sin(θ − ϕ)dϕ ?
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Playing with Fourier series (1/2)

Let us look at the Fourier coefficients of c ,

An =

∫ 2π

0
c(θ) sin(nθ) , Bn =

∫ 2π

0
c(θ) cos(nθ) .

c(θ) = −c(θ + π) =⇒ there are only coefficients of odd order∫ π

0
c(θ)(cos(θ), sin(θ)) dθ = 0 =⇒ there are no coefficients of order 1

Minimizing the area means maximizing∑
n odd
n ≥ 3

A2
n + B2

n

n2 − 1

This implies that the disk is not optimal!
On the countrary, it is the biggest Zindler set!
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Playing with Fourier series (2/2)

So we want to have big Fourier coefficients, but still with |c ′| ≤ 1 + c2.
Which set maximizes A2

n + B2
n? For n = 35773

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

So one can understand that the term A2
3 + B2

3 is the most important.
Conjecture: the optimal function is c = ĉ above.
The resulting set is the one above (the Auerbach triangle).
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The resulting set is the one above (the Auerbach triangle).

A. Pratelli (Pavia) Solution to the Auerbach Conjecture Cortona, June 14 2011 7 / 10



Playing with Fourier series (2/2)

So we want to have big Fourier coefficients, but still with |c ′| ≤ 1 + c2.
Which set maximizes A2

n + B2
n? For n =

35773

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

0 0.5 1 1.5 2 2.5 3

-0.5

0.5

So one can understand that the term A2
3 + B2

3 is the most important.
Conjecture: the optimal function is c = ĉ above.
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The results

• The Auerbach triangle minimizes the area among Zindler sets of fixed
“bisecting length” (Fusco–P., 2010)

• The best convex set must be a Zindler set
(Esposito–Ferone–Kawohl–Nitsch–Trombetti, 2011)
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The general case

What can we say about the general (not necessarily convex) case?

• First (quite positive) point: an optimizer must trivially be Zindler.

• Second (quite negative) point: there is no immediate condition to
replace |c ′| ≤ 1 + c2.

• Third (very negative) point: it is no more true that the lowest Fourier
coefficients are the most important.

• Bad consequence: it is not even clear whether a minimizer exists!
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Some non-convex examples

Here is a non-convex object of area 2.542.452.41
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