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Preliminaries
Some answers

Ideas behind the proof

Convex bodies in Rn

Brunn-Minkowski inequality
Problem

Notation

Kn = convex bodies in Rn

K = a convex body

Hk = k-dimensional Hausdorff measure

+ = Minkowski addition

A valuation on Kn with real values is a map φ : Kn 7→ R, satisfying
that, for K , L,K ∪ L ∈ Kn,

φ(K ∪ L) + φ(K ∩ L) = φ(K ) + φ(L).

Every K ∈ Kn can be identified with its support function hK (·).
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Kn = convex bodies in Rn

K = a convex body

Hk = k-dimensional Hausdorff measure

+ = Minkowski addition

A valuation on Kn with real values is a map φ : Kn 7→ R, satisfying
that, for K , L,K ∪ L ∈ Kn,

φ(K ∪ L) + φ(K ∩ L) = φ(K ) + φ(L).

Every K ∈ Kn can be identified with its support function hK (·).

φ is homogeneous of degree i if for λ > 0 it follows that

φ(λK ) = λiφ(K ).
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Brunn-Minkowski inequality
Problem

Notation

Kn = convex bodies in Rn

K = a convex body

Hk = k-dimensional Hausdorff measure

+ = Minkowski addition

A valuation on Kn with real values is a map φ : Kn 7→ R, satisfying
that, for K , L,K ∪ L ∈ Kn,

φ(K ∪ L) + φ(K ∩ L) = φ(K ) + φ(L).

Every K ∈ Kn can be identified with its support function hK (·).

hK : Sn−1 −→ R

hK (u) = sup
{
〈x , u〉 : x ∈ K

}
E. Saoŕın Gómez A characterization of some mixed volumes via Brunn-Minkowski



Preliminaries
Some answers

Ideas behind the proof

Convex bodies in Rn

Brunn-Minkowski inequality
Problem

Mixed volumes

Mixed volumes

Let K1,K2, . . . ,Km ∈ Kn and let λi ≥ 0 for i = 1, . . . ,m. The volume of
the linear combination

∑m
i=1 λiKi can be expressed as

V

(
m∑

i=1

λiKi

)
=

m∑
i1=1

· · ·
m∑

in=1

λi1 . . . λinV(Ki1 , . . . ,Kin).

The coefficients V(Ki1 , . . . ,Kin), so defined, are called mixed volumes and
they are symmetric in every index for any permutation.

In particular, for any L ∈ Kn, φ(K ) = V(L,K [n− 1]) is a continuous,
translation invariant, homogeneous of degree n − 1 valuation.
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Convex bodies in Rn

Brunn-Minkowski inequality
Problem

Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality assures the concavity of the
n-th root of the volume on Kn:

Classical Brunn-Minkowski inequality

V
1
n : Kn −→ R is concave, i.e., for t ∈ [0, 1] and K , L ∈ Kn,

V
(
(1− t)K + tL

) 1
n ≥ (1− t)V(K )

1
n + tV(L)

1
n .

Mixed volumes satisfy a Brunn-Minkowski inequality too:

Brunn-Minkowski inequality for mixed volumes

Let K0,K1, · · · ,Kn ∈ Kn, and 1 ≤ i ≤ n. For 0 ≤ t ≤ 1 the function

f (t) := V((1− t)K0 + tK1[i ],Ki+1, . . . ,Kn)
1
i

is concave on [0, 1].
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Convex bodies in Rn

Brunn-Minkowski inequality
Problem

Surface area measures

Mixed surface area measure

Let K2, . . . ,Kn ∈ Kn be n − 1 convex bodies. There exists a unique
non-negative Borel measure S(K2, . . . ,Kn; ·), the mixed surface area
measure, so that, for every convex body K1,

V(K1,K2, . . . ,Kn) =
1

n

∫
Sn−1

hK1(u) dS(K2, . . . ,Kn; u).

Surface area measure of order n − 1

The surface area measure of order n − 1 of K is the mixed surface area
measure

Sn−1(K ; ·) = S
(
K [n − 1]; ·

)
.

In particular for L,K ∈ Kn:

V(L,K [n − 1]) =
1

n

∫
Sn−1

hL(u) dSn−1(K ; u)
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Convex bodies in Rn

Brunn-Minkowski inequality
Problem

The functional F(K ) =
∫

Sn−1 f (u)dSn−1(K ; u)

For f ∈ C(Sn−1) and K ∈ Kn we consider the functional F : Kn 7→ R

F(K ) =

∫
Sn−1

f (u)dSn−1(K ; u).

The functional F is

continuous

translation invariant

homogeneous of degree n − 1

a valuation
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E. Saoŕın Gómez A characterization of some mixed volumes via Brunn-Minkowski



Preliminaries
Some answers

Ideas behind the proof

Convex bodies in Rn

Brunn-Minkowski inequality
Problem

The functional F(K ) =
∫

Sn−1 f (u)dSn−1(K ; u)

For f ∈ C(Sn−1) and K ∈ Kn we consider the functional F : Kn 7→ R

F(K ) =

∫
Sn−1

f (u)dSn−1(K ; u).

The functional F is

continuous

translation invariant

homogeneous of degree n − 1

a valuation
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Convex bodies in Rn

Brunn-Minkowski inequality
Problem

McMullen’s theorem

McMullen 1980

φ : Kn 7→ R is a continuous, translation invariant and
(n − 1)-homogeneous valuation if and only if there is f ∈ C(Sn−1) with

φ(K ) =

∫
Sn−1

f (u)dSn−1(K ; u)

If f is the support function of L ∈ Kn, then F is the mixed volume

F(K ) =

∫
Sn−1

f (u)dSn−1(K ; u) = V(nL,K [n − 1])
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E. Saoŕın Gómez A characterization of some mixed volumes via Brunn-Minkowski



Preliminaries
Some answers

Ideas behind the proof

Convex bodies in Rn

Brunn-Minkowski inequality
Problem

McMullen’s theorem

McMullen 1980

φ : Kn 7→ R is a continuous, translation invariant and
(n − 1)-homogeneous valuation if and only if there is f ∈ C(Sn−1) with

φ(K ) =

∫
Sn−1

f (u)dSn−1(K ; u)

If f is the support function of L ∈ Kn, then F is the mixed volume
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∫
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f (u)dSn−1(K ; u) = V(nL,K [n − 1])

If f is the support function of L ∈ Kn, then

F is non-negative.

F satisfies the Brunn-Minkowski inequality

F ((1− t)K + tL)
1

n−1 ≥ (1− t)F(K )
1

n−1 + tF(L)
1

n−1
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Convex bodies in Rn

Brunn-Minkowski inequality
Problem

A natural question

Assume that the functional

F =

∫
Sn−1

f (u)dSn−1(K ; u)

with f ∈ C(Sn−1)

satisfies F ≥ 0 and

F ((1− t)K + tL)
1

n−1 ≥ (1− t)F
1

n−1 (K ) + tF
1

n−1 (L)

for every K , L ∈ Kn.

In particular, does it follow that f is a support function and in
consequence that F is the mixed volume V(nL,K [n − 1])?
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for every K , L ∈ Kn.

Can we say anything about f ?

In particular, does it follow that f is a support function and in
consequence that F is the mixed volume V(nL,K [n − 1])?

Case n = 2

For every f ∈ C(S1) the functional

F(K ) =

∫
S1

f (u)dS1(K ; u)

is linear and in this case the Brunn-Minkowski inequality for F becomes
an equality.
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Remarks to the symmetric case

If instead of the standard form of the Brunn-Minkowski inequality,
the weaker form

F((1− t)K + tL) ≥ min{F(K ),F(L)}

for all K , L ∈ Kn and t ∈ [0, 1] is used, then

we can remove the
assumption F ≥ 0.

f even implies F(K ) = F(−K ).

The other way round, if F is
symmetric, then

f = f + Λ

where f is even and Λ is the restriction to Sn−1 of a linear function.
Since ∫

Sn−1

Λ(u)dSn−1(K ; u) = 0, for every K ∈ Kn,

if F is symmetric, f may be assumed to be even.
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The symmetric case

Corollary

Let n ≥ 3 and φ : Kn 7→ R be a continuous, translation invariant,
(n − 1)-homogeneous and symmetric valuation.

If

φ ((1− t)K + tL) ≥ min{φ(K ), φ(L)},

for all K , L ∈ Kn and t ∈ [0, 1], then there exists L ∈ Kn such that

φ(K ) = nV(L,K [n − 1]).
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The non-symmetric case

Positive answer for regular f

Let n ≥ 3 and f ∈ C(Sn−1) ∩W 2,2(Sn−1).

If the functional

F : K 7→
∫

Sn−1

f (u)dSn−1(K ; u)

satisfies the Brunn-Minkowski inequality

F ((1− t)K + tL) ≥ min{F(K ),F(L)}

for K , L ∈ Kn and t ∈ [0, 1], then there exists a convex body L ∈ Kn such
that f is the support function of L.
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Ideas of the proof

If K is of class C 2
+, then

its support function hK is of class C 2 and ((hK )ij + δijhK ) > 0.

the functional F may be written as follows:

Let ϕ ∈ C∞(Sn−1) and ε ∈ R, |ε| small enough. Then

hK + εϕ is the support function of some Kε ∈ Kn of class C 2
+.

F can be defined on (−ε, ε) as:

g(λ) := F(Kλ) for every λ ∈ (−ε, ε).

K is of class C 2
+

if ∂K is of class C 2 and the Gauß
curvature is positive.
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Ideas behind the proof

We can now combine convex bodies of class C 2
+ and the functional

defined as a real function of one variable to get that:

If F satisfies the Brunn-Minkowski inequality, then

g(λ)
1

n−1 = F(Kλ)
1

n−1 is concave.

d

dλ2

∣∣∣∣
λ=0

(
g

1
n−1

)
≤ 0.

(n − 1)g(0)g ′′(0) ≤ (n − 2)g ′(0)2. (∗)

Explicit formula for g

g(λ) = F(Kλ) =

∫
Sn−1

f det ((hK + λϕ)ij + δij(hK + λϕ)) dHn−1

E. Saoŕın Gómez A characterization of some mixed volumes via Brunn-Minkowski



Preliminaries
Some answers

Ideas behind the proof
The case n = 3 for f smooth and even

Ideas behind the proof

We can now combine convex bodies of class C 2
+ and the functional

defined as a real function of one variable to get that:

If F satisfies the Brunn-Minkowski inequality, then

g(λ)
1

n−1 = F(Kλ)
1

n−1 is concave.

d

dλ2

∣∣∣∣
λ=0

(
g

1
n−1

)
≤ 0.

(n − 1)g(0)g ′′(0) ≤ (n − 2)g ′(0)2. (∗)

Explicit formula for g

g(λ) = F(Kλ) =

∫
Sn−1

f det ((hK + λϕ)ij + δij(hK + λϕ)) dHn−1
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Kλ is of class C 2
+ and is the

convex body whose support
function is hK + λϕ.
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Explicit formula for g

g(λ) = F(Kλ) =

∫
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f det ((hK + λϕ)ij + δij(hK + λϕ)) dHn−1

We can use the formula for g to compute g(0), g ′(0) and g ′′(0)
explicitly. Then, we plug them in (∗).

(∗) becomes a functional inequality involving f , hK and ϕ.

This functional inequality holds for all hK and ϕ satisfying the
mentioned conditions.

This provides a strong condition on f from which it follows that it is
the support function of a convex body L ∈ Kn.
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The case n = 3, f smooth and even

f ∈ C2(S2) and ϕ ∈ C∞(S2)

Choosing K to be the unit ball, i.e., hK ≡ 1, the inequality (∗)
becomes ∫

S2

f det (ϕij + δijϕ) dH2 ≤ 0

Since it holds for every ϕ ∈ C∞(S2), it follows that

(fij + δij f ) ≥ 0

This implies that f is a support function.
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