A characterization of some mixed volumes via the Brunn-Minkowski inequality

E. Saorín Gómez

(Joint work with A. Colesanti and D. Hug)

Otto-von-Guericke Universität Magdeburg
Cortona, June 2011

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure
- $+=$ Minkowski addition

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure
- $+=$ Minkowski addition
- A valuation on \mathcal{K}^{n} with real values is a map $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$, satisfying that, for $K, L, K \cup L \in \mathcal{K}^{n}$,

$$
\phi(K \cup L)+\phi(K \cap L)=\phi(K)+\phi(L) .
$$

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure
- $+=$ Minkowski addition
- A valuation on \mathcal{K}^{n} with real values is a map $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$, satisfying that, for $K, L, K \cup L \in \mathcal{K}^{n}$,

$$
\phi(K \cup L)+\phi(K \cap L)=\phi(K)+\phi(L) .
$$

ϕ is homogeneous of degree i if for $\lambda>0$ it follows that

$$
\phi(\lambda K)=\lambda^{i} \phi(K) .
$$

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure
- $+=$ Minkowski addition
- A valuation on \mathcal{K}^{n} with real values is a map $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$, satisfying that, for $K, L, K \cup L \in \mathcal{K}^{n}$,

$$
\phi(K \cup L)+\phi(K \cap L)=\phi(K)+\phi(L) .
$$

- Every $K \in \mathcal{K}^{n}$ can be identified with its support function $h_{K}(\cdot)$.

Notation

- $\mathcal{K}^{n}=$ convex bodies in \mathbb{R}^{n}
- $K=$ a convex body
- $\mathcal{H}^{k}=k$-dimensional Hausdorff measure
- $+=$ Minkowski addition
- A valuation on \mathcal{K}^{n} with real values is a map $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$, satisfying that, for $K, L, K \cup L \in \mathcal{K}^{n}$,

$$
\phi(K \cup L)+\phi(K \cap L)=\phi(K)+\phi(L) .
$$

- Every $K \in \mathcal{K}^{n}$ can be identified with its support function $h_{K}(\cdot)$.

$$
\begin{gathered}
h_{K}: \mathbb{S}^{n-1} \longrightarrow \mathbb{R} \\
h_{K}(u)=\sup \{\langle x, u\rangle: x \in K\}
\end{gathered}
$$

Mixed volumes

Mixed volumes

Let $K_{1}, K_{2}, \ldots, K_{m} \in \mathcal{K}^{n}$ and let $\lambda_{i} \geq 0$ for $i=1, \ldots, m$. The volume of the linear combination $\sum_{i=1}^{m} \lambda_{i} K_{i}$ can be expressed as

$$
\mathrm{V}\left(\sum_{i=1}^{m} \lambda_{i} K_{i}\right)=\sum_{i_{1}=1}^{m} \ldots \sum_{i_{n}=1}^{m} \lambda_{i_{1}} \ldots \lambda_{i_{n}} \mathrm{~V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)
$$

The coefficients $\mathrm{V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$, so defined, are called mixed volumes and they are symmetric in every index for any permutation.

Mixed volumes

Mixed volumes

Let $K_{1}, K_{2}, \ldots, K_{m} \in \mathcal{K}^{n}$ and let $\lambda_{i} \geq 0$ for $i=1, \ldots, m$. The volume of the linear combination $\sum_{i=1}^{m} \lambda_{i} K_{i}$ can be expressed as

$$
\mathrm{V}\left(\sum_{i=1}^{m} \lambda_{i} K_{i}\right)=\sum_{i_{1}=1}^{m} \cdots \sum_{i_{n}=1}^{m} \lambda_{i_{1}} \ldots \lambda_{i_{n}} \mathrm{~V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)
$$

The coefficients $\mathrm{V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$, so defined, are called mixed volumes and they are symmetric in every index for any permutation.

- In particular, for any $L \in \mathcal{K}^{n}, \phi(K)=\mathrm{V}(L, K[n-1])$ is a continuous, translation invariant, homogeneous of degree $n-1$ valuation.

Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality assures the concavity of the n-th root of the volume on \mathcal{K}^{n} :

Classical Brunn-Minkowski inequality

$\mathrm{V}^{\frac{1}{n}}: \mathcal{K}^{n} \longrightarrow \mathbb{R}$ is concave, i.e., for $t \in[0,1]$ and $K, L \in \mathcal{K}^{n}$,

$$
\mathrm{V}((1-t) K+t L)^{\frac{1}{n}} \geq(1-t) \mathrm{V}(K)^{\frac{1}{n}}+t \mathrm{~V}(L)^{\frac{1}{n}}
$$

Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality assures the concavity of the n-th root of the volume on \mathcal{K}^{n} :

Classical Brunn-Minkowski inequality

$\mathrm{V}^{\frac{1}{n}}: \mathcal{K}^{n} \longrightarrow \mathbb{R}$ is concave, i.e., for $t \in[0,1]$ and $K, L \in \mathcal{K}^{n}$,

$$
\mathrm{V}((1-t) K+t L)^{\frac{1}{n}} \geq(1-t) \mathrm{V}(K)^{\frac{1}{n}}+t \mathrm{~V}(L)^{\frac{1}{n}}
$$

Mixed volumes satisfy a Brunn-Minkowski inequality too:

Brunn-Minkowski inequality for mixed volumes

Let $K_{0}, K_{1}, \cdots, K_{n} \in \mathcal{K}^{n}$, and $1 \leq i \leq n$. For $0 \leq t \leq 1$ the function

$$
f(t):=\mathrm{V}\left((1-t) K_{0}+t K_{1}[i], K_{i+1}, \ldots, K_{n}\right)^{\frac{1}{i}}
$$

is concave on $[0,1]$.

Surface area measures

Mixed surface area measure

Let $K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ be $n-1$ convex bodies. There exists a unique non-negative Borel measure $\mathrm{S}\left(K_{2}, \ldots, K_{n} ; \cdot\right)$, the mixed surface area measure, so that, for every convex body K_{1},

$$
\mathrm{V}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n} \int_{\mathbb{S}^{n}-1} h_{K_{1}}(u) d \mathrm{~S}\left(K_{2}, \ldots, K_{n} ; u\right) .
$$

Surface area measures

Mixed surface area measure

Let $K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ be $n-1$ convex bodies. There exists a unique non-negative Borel measure $\mathrm{S}\left(K_{2}, \ldots, K_{n} ; \cdot\right)$, the mixed surface area measure, so that, for every convex body K_{1},

$$
\mathrm{V}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{K_{1}}(u) d \mathrm{~S}\left(K_{2}, \ldots, K_{n} ; u\right)
$$

Surface area measure of order $n-1$

The surface area measure of order $n-1$ of K is the mixed surface area measure

$$
S_{n-1}(K ; \cdot)=S(K[n-1] ; \cdot)
$$

Surface area measures

Mixed surface area measure

Let $K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ be $n-1$ convex bodies. There exists a unique non-negative Borel measure $\mathrm{S}\left(K_{2}, \ldots, K_{n} ; \cdot\right)$, the mixed surface area measure, so that, for every convex body K_{1},

$$
\mathrm{V}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{K_{1}}(u) d \mathrm{~S}\left(K_{2}, \ldots, K_{n} ; u\right)
$$

Surface area measure of order $n-1$

The surface area measure of order $n-1$ of K is the mixed surface area measure

$$
S_{n-1}(K ; \cdot)=S(K[n-1] ; \cdot)
$$

Surface area measures

Mixed surface area measure

Let $K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ be $n-1$ convex bodies. There exists a unique non-negative Borel measure $\mathrm{S}\left(K_{2}, \ldots, K_{n} ; \cdot\right)$, the mixed surface area measure, so that, for every convex body K_{1},

$$
\mathrm{V}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{K_{1}}(u) d \mathrm{~S}\left(K_{2}, \ldots, K_{n} ; u\right)
$$

Surface area measure of order $n-1$

The surface area measure of order $n-1$ of K is the mixed surface area measure

$$
S_{n-1}(K ; \cdot)=S(K[n-1] ; \cdot)
$$

In particular for $L, K \in \mathcal{K}^{n}$:

$$
\mathrm{V}(L, K[n-1])=\frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{L}(u) d \mathrm{~S}_{n-1}(K ; u)
$$

Preliminaries

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u) .
$$

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d S_{n-1}(K ; u) .
$$

The functional \mathcal{F} is

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u) .
$$

The functional \mathcal{F} is

- continuous

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u) .
$$

The functional \mathcal{F} is

- continuous
- translation invariant

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d S_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d S_{n-1}(K ; u) .
$$

The functional \mathcal{F} is

- continuous
- translation invariant
- homogeneous of degree $n-1$

The functional $\mathcal{F}(K)=\int_{\mathbb{S}_{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)$

For $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ and $K \in \mathcal{K}^{n}$ we consider the functional $\mathcal{F}: \mathcal{K}^{n} \mapsto \mathbb{R}$

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u) .
$$

The functional \mathcal{F} is

- continuous
- translation invariant
- homogeneous of degree $n-1$
- a valuation

McMullen's theorem

McMullen 1980

$\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ is a continuous, translation invariant and
($n-1$)-homogeneous valuation if and only if there is $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ with

$$
\phi(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

McMullen's theorem

McMullen 1980

$\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ is a continuous, translation invariant and
($n-1$)-homogeneous valuation if and only if there is $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ with

$$
\phi(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

If f is the support function of $L \in \mathcal{K}^{n}$, then \mathcal{F} is the mixed volume

McMullen's theorem

McMullen 1980

$\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ is a continuous, translation invariant and
($n-1$)-homogeneous valuation if and only if there is $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ with

$$
\phi(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

If f is the support function of $L \in \mathcal{K}^{n}$, then \mathcal{F} is the mixed volume

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)=\mathrm{V}(n L, K[n-1])
$$

McMullen's theorem

If f is the support function of $L \in \mathcal{K}^{n}$, then

If f is the support function of $L \in \mathcal{K}^{n}$, then \mathcal{F} is the mixed volume

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)=\mathrm{V}(n L, K[n-1])
$$

McMullen's theorem

If f is the support function of $L \in \mathcal{K}^{n}$, then

- \mathcal{F} is non-negative.

If f is the support function of $L \in \mathcal{K}^{n}$, then \mathcal{F} is the mixed volume

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)=\mathrm{V}(n L, K[n-1])
$$

McMullen's theorem

If f is the support function of $L \in \mathcal{K}^{n}$, then

- \mathcal{F} is non-negative.
- \mathcal{F} satisfies the Brunn-Minkowski inequality

$$
\mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}(K)^{\frac{1}{n-1}}+t \mathcal{F}(L)^{\frac{1}{n-1}}
$$

If f is the support function of $L \in \mathcal{K}^{n}$, then \mathcal{F} is the mixed volume

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)=\mathrm{V}(n L, K[n-1])
$$

A natural question

Assume that the functional

$$
\mathcal{F}=\int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

with $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$

A natural question

Assume that the functional

$$
\mathcal{F}=\int_{\mathbb{S}^{n}-1} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

with $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ satisfies $\mathcal{F} \geq 0$ and

A natural question

Assume that the functional

$$
\mathcal{F}=\int_{\mathbb{S}^{n}-1} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

with $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ satisfies $\mathcal{F} \geq 0$ and

$$
\mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}^{\frac{1}{n-1}}(K)+t \mathcal{F}^{\frac{1}{n-1}}(L)
$$

for every $K, L \in \mathcal{K}^{n}$.

A natural question

Assume that the functional

$$
\mathcal{F}=\int_{\mathbb{S}^{n}-1} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

with $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ satisfies $\mathcal{F} \geq 0$ and

$$
\mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}^{\frac{1}{n-1}}(K)+t \mathcal{F}^{\frac{1}{n-1}}(L)
$$

for every $K, L \in \mathcal{K}^{n}$.

- Can we say anything about f ?

A natural question

Assume that the functional

$$
\mathcal{F}=\int_{\mathbb{S}^{n}-1} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

with $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ satisfies $\mathcal{F} \geq 0$ and

$$
\mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}^{\frac{1}{n-1}}(K)+t \mathcal{F}^{\frac{1}{n^{-1}}}(L)
$$

for every $K, L \in \mathcal{K}^{n}$.

- Can we say anything about f ?
- In particular, does it follow that f is a support function and in consequence that \mathcal{F} is the mixed volume $\mathrm{V}(n L, K[n-1])$?

A natural question

Case $n=2$
For every $f \in \mathcal{C}\left(\mathbb{S}^{1}\right)$ the functional

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{1}} f(u) d \mathrm{~S}_{1}(K ; u)
$$

is linear and in this case the Brunn-Minkowski inequality for \mathcal{F} becomes an equality.

- Can we say anything about f ?
- In particular, does it follow that f is a support function and in consequence that \mathcal{F} is the mixed volume $\mathrm{V}(n L, K[n-1])$?

A natural question

Case $n=2$
For every $f \in \mathcal{C}\left(\mathbb{S}^{1}\right)$ the functional

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{1}} f(u) d \mathrm{~S}_{1}(K ; u)
$$

is linear and in this case the Brunn-Minkowski inequality for \mathcal{F} becomes an equality.

Problem: $n \geq 3$

$$
\begin{aligned}
& f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right), \mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) d S_{n-1}(K ; u) \text { and } \mathcal{F} \geq 0 \text {. If } \\
& \qquad \mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}(K)^{\frac{1}{n-1}}+t \mathcal{F}(L)^{\frac{1}{n-1}}
\end{aligned}
$$

for every $K, L \in \mathcal{K}^{n}$: Is f the support function of a convex body?

The symmetric case

Positive answer

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ even.

The symmetric case

Positive answer

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ even. If the functional \mathcal{F}

$$
\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

is non-negative

The symmetric case

Positive answer

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ even. If the functional \mathcal{F}

$$
\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

is non-negative and satisfies a Brunn-Minkowski type inequality,

Brunn-Minkowski type inequality for \mathcal{F}

$$
\mathcal{F}((1-t) K+t L)^{\frac{1}{n-1}} \geq(1-t) \mathcal{F}(K)^{\frac{1}{n-1}}+t \mathcal{F}(L)^{\frac{1}{n-1}}
$$

for every $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$

The symmetric case

Positive answer

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$ even. If the functional \mathcal{F}

$$
\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) d \mathrm{~S}_{n-1}(K ; u)
$$

is non-negative and satisfies a Brunn-Minkowski type inequality, then there exists a convex body L, whose support function is f, i.e., $f=h_{L}$ and

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} h_{L}(u) d \mathrm{~S}_{n-1}(K ; u)=n \mathrm{~V}(L, K[n-1])
$$

Remarks to the symmetric case

- If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$ is used, then

Remarks to the symmetric case

- If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$ is used, then we can remove the assumption $\mathcal{F} \geq 0$.

Remarks to the symmetric case

- If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$ is used, then we can remove the assumption $\mathcal{F} \geq 0$.

- f even implies $\mathcal{F}(K)=\mathcal{F}(-K)$.

Remarks to the symmetric case

- If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$ is used, then we can remove the assumption $\mathcal{F} \geq 0$.

- f even implies $\mathcal{F}(K)=\mathcal{F}(-K)$. The other way round, if \mathcal{F} is symmetric, then

$$
f=\bar{f}+\Lambda
$$

where \bar{f} is even and Λ is the restriction to \mathbb{S}^{n-1} of a linear function.

Remarks to the symmetric case

- If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$ is used, then we can remove the assumption $\mathcal{F} \geq 0$.

- f even implies $\mathcal{F}(K)=\mathcal{F}(-K)$. The other way round, if \mathcal{F} is symmetric, then

$$
f=\bar{f}+\Lambda
$$

where \bar{f} is even and Λ is the restriction to \mathbb{S}^{n-1} of a linear function. Since

$$
\int_{\mathbb{S}^{n-1}} \Lambda(u) d \mathrm{~S}_{n-1}(K ; u)=0, \text { for every } K \in \mathcal{K}^{n}
$$

if \mathcal{F} is symmetric, f may be assumed to be even.

The symmetric case

Corollary
Let $n \geq 3$ and $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ be a continuous, translation invariant, ($n-1$)-homogeneous and symmetric valuation.

The symmetric case

Corollary

Let $n \geq 3$ and $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ be a continuous, translation invariant, ($n-1$)-homogeneous and symmetric valuation. If

$$
\phi((1-t) K+t L) \geq \min \{\phi(K), \phi(L)\},
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$,

The symmetric case

Corollary

Let $n \geq 3$ and $\phi: \mathcal{K}^{n} \mapsto \mathbb{R}$ be a continuous, translation invariant, ($n-1$)-homogeneous and symmetric valuation. If

$$
\phi((1-t) K+t L) \geq \min \{\phi(K), \phi(L)\},
$$

for all $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$, then there exists $L \in \mathcal{K}^{n}$ such that

$$
\phi(K)=n V(L, K[n-1]) .
$$

The non-symmetric case

Positive answer for regular f

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right)$.

The non-symmetric case

Positive answer for regular f

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right)$. If the functional

$$
\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n}-1} f(u) d S_{n-1}(K ; u)
$$

satisfies the Brunn-Minkowski inequality

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$, then

The non-symmetric case

Positive answer for regular f

Let $n \geq 3$ and $f \in \mathcal{C}\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right)$. If the functional

$$
\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n}-1} f(u) d S_{n-1}(K ; u)
$$

satisfies the Brunn-Minkowski inequality

$$
\mathcal{F}((1-t) K+t L) \geq \min \{\mathcal{F}(K), \mathcal{F}(L)\}
$$

for $K, L \in \mathcal{K}^{n}$ and $t \in[0,1]$, then there exists a convex body $L \in \mathcal{K}^{n}$ such that f is the support function of L.

Ideas of the proof

If K is of class C_{+}^{2}, then
K is of class C_{+}^{2}
if ∂K is of class C^{2} and the Gauß
curvature is positive.

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.
- $d \mathrm{~S}_{n-1}(K ; u)=\operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)$.

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.
- $d \mathrm{~S}_{n-1}(K ; u)=\operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)$.
- the functional \mathcal{F} may be written as follows:

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) \operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)
$$

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.
- $d \mathrm{~S}_{n-1}(K ; u)=\operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)$.
- the functional \mathcal{F} may be written as follows:

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) \operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)
$$

Let $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $\epsilon \in \mathbb{R},|\epsilon|$ small enough. Then

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.
- $d \mathrm{~S}_{n-1}(K ; u)=\operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)$.
- the functional \mathcal{F} may be written as follows:

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) \operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)
$$

Let $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $\epsilon \in \mathbb{R},|\epsilon|$ small enough. Then

- $h_{K}+\epsilon \varphi$ is the support function of some $K_{\epsilon} \in \mathcal{K}^{n}$ of class C_{+}^{2}.

Ideas of the proof

If K is of class C_{+}^{2}, then

- its support function h_{K} is of class C^{2} and $\left(\left(h_{K}\right)_{i j}+\delta_{i j} h_{K}\right)>0$.
- $d \mathrm{~S}_{n-1}(K ; u)=\operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)$.
- the functional \mathcal{F} may be written as follows:

$$
\mathcal{F}(K)=\int_{\mathbb{S}^{n-1}} f(u) \operatorname{det}\left(\left(h_{K}\right)_{i j}(u)+\delta_{i j} h_{K}(u)\right) d \mathcal{H}^{n-1}(u)
$$

Let $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $\epsilon \in \mathbb{R},|\epsilon|$ small enough. Then

- $h_{K}+\epsilon \varphi$ is the support function of some $K_{\epsilon} \in \mathcal{K}^{n}$ of class C_{+}^{2}.
- \mathcal{F} can be defined on $(-\epsilon, \epsilon)$ as:

$$
g(\lambda):=\mathcal{F}\left(K_{\lambda}\right) \text { for every } \lambda \in(-\epsilon, \epsilon)
$$

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

- $g(\lambda)^{\frac{1}{n-1}}=\mathcal{F}\left(K_{\lambda}\right)^{\frac{1}{n-1}}$ is concave.

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

- $g(\lambda)^{\frac{1}{n-1}}=\mathcal{F}\left(K_{\lambda}\right)^{\frac{1}{n-1}}$ is concave.
- $\left.\frac{d}{d \lambda^{2}}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right) \leq 0$.

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

- $g(\lambda)^{\frac{1}{n-1}}=\mathcal{F}\left(K_{\lambda}\right)^{\frac{1}{n-1}}$ is concave.
- $\left.\frac{d}{d \lambda^{2}}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right) \leq 0$.
- $(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2}$.

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=
$$

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

- $g(\lambda)^{\frac{1}{n-1}}=\mathcal{F}\left(K_{\lambda}\right)^{\frac{1}{n-1}}$ is concave.
- $\left.\frac{d}{d \lambda^{2}}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right) \leq 0$.
- $(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2}$.
K_{λ} is of class C_{+}^{2} and is the convex body whose support function is $h_{K}+\lambda \varphi$.

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=
$$

Ideas behind the proof

We can now combine convex bodies of class C_{+}^{2} and the functional defined as a real function of one variable to get that:
If \mathcal{F} satisfies the Brunn-Minkowski inequality, then

- $g(\lambda)^{\frac{1}{n-1}}=\mathcal{F}\left(K_{\lambda}\right)^{\frac{1}{n-1}}$ is concave.
- $\left.\frac{d}{d \lambda^{2}}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right) \leq 0$.
- $(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2}$.

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(\left(h_{K}+\lambda \varphi\right)_{i j}+\delta_{i j}\left(h_{K}+\lambda \varphi\right)\right) d \mathcal{H}^{n-1}
$$

Ideas behind the proof

- We can use the formula for g to compute $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ explicitly. Then, we plug them in (*).

$$
\begin{equation*}
\text { - }(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2} \tag{*}
\end{equation*}
$$

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=\int_{\mathbb{S}^{n}-1} f \operatorname{det}\left(\left(h_{K}+\lambda \varphi\right)_{i j}+\delta_{i j}\left(h_{K}+\lambda \varphi\right)\right) d \mathcal{H}^{n-1}
$$

Ideas behind the proof

- We can use the formula for g to compute $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ explicitly. Then, we plug them in (*).
- (*) becomes a functional inequality involving f, h_{K} and φ.

$$
\begin{equation*}
\text { - }(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2} \tag{*}
\end{equation*}
$$

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=\int_{\mathbb{S}^{n}-1} f \operatorname{det}\left(\left(h_{K}+\lambda \varphi\right)_{i j}+\delta_{i j}\left(h_{K}+\lambda \varphi\right)\right) d \mathcal{H}^{n-1}
$$

Ideas behind the proof

- We can use the formula for g to compute $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ explicitly. Then, we plug them in (*).
- (*) becomes a functional inequality involving f, h_{K} and φ.
- This functional inequality holds for all h_{K} and φ satisfying the mentioned conditions.

$$
\begin{equation*}
\text { - }(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2} \tag{*}
\end{equation*}
$$

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(\left(h_{K}+\lambda \varphi\right)_{i j}+\delta_{i j}\left(h_{K}+\lambda \varphi\right)\right) d \mathcal{H}^{n-1}
$$

Ideas behind the proof

- We can use the formula for g to compute $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ explicitly. Then, we plug them in (*).
- (*) becomes a functional inequality involving f, h_{K} and φ.
- This functional inequality holds for all h_{K} and φ satisfying the mentioned conditions.
- This provides a strong condition on f from which it follows that it is the support function of a convex body $L \in \mathcal{K}^{n}$.

$$
\begin{equation*}
\text { - }(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2} \tag{*}
\end{equation*}
$$

Explicit formula for g

$$
g(\lambda)=\mathcal{F}\left(K_{\lambda}\right)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(\left(h_{K}+\lambda \varphi\right)_{i j}+\delta_{i j}\left(h_{K}+\lambda \varphi\right)\right) d \mathcal{H}^{n-1}
$$

The case $n=3, f$ smooth and even

- $f \in \mathcal{C}^{2}\left(\mathbb{S}^{2}\right)$ and $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$

The case $n=3, f$ smooth and even

- $f \in \mathcal{C}^{2}\left(\mathbb{S}^{2}\right)$ and $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$
- Choosing K to be the unit ball, i.e., $h_{K} \equiv 1$, the inequality ($*$) becomes

$$
\int_{\mathbb{S}^{2}} f \operatorname{det}\left(\varphi_{i j}+\delta_{i j} \varphi\right) d \mathcal{H}^{2} \leq 0
$$

$$
\text { (*) } \quad(n-1) g(0) g^{\prime \prime}(0) \leq(n-2) g^{\prime}(0)^{2}
$$

The case $n=3, f$ smooth and even

- $f \in \mathcal{C}^{2}\left(\mathbb{S}^{2}\right)$ and $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$
- Choosing K to be the unit ball, i.e., $h_{K} \equiv 1$, the inequality ($*$) becomes

$$
\int_{\mathbb{S}^{2}} f \operatorname{det}\left(\varphi_{i j}+\delta_{i j} \varphi\right) d \mathcal{H}^{2} \leq 0
$$

- Since it holds for every $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$, it follows that

$$
\left(f_{i j}+\delta_{i j} f\right) \geq 0
$$

The case $n=3, f$ smooth and even

- $f \in \mathcal{C}^{2}\left(\mathbb{S}^{2}\right)$ and $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$
- Choosing K to be the unit ball, i.e., $h_{K} \equiv 1$, the inequality ($*$) becomes

$$
\int_{\mathbb{S}^{2}} f \operatorname{det}\left(\varphi_{i j}+\delta_{i j} \varphi\right) d \mathcal{H}^{2} \leq 0
$$

- Since it holds for every $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{2}\right)$, it follows that

$$
\left(f_{i j}+\delta_{i j} f\right) \geq 0
$$

- This implies that f is a support function.

A characterization of some mixed volumes via the Brunn-Minkowski inequality

E. Saorín Gómez

(Joint work with A. Colesanti and D. Hug)

Otto-von-Guericke Universität Magdeburg
Cortona, June 2011

