# A characterization of some mixed volumes via the Brunn-Minkowski inequality

### E. Saorín Gómez

(Joint work with A. Colesanti and D. Hug)

Otto-von-Guericke Universität Magdeburg

Cortona, June 2011

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

•  $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$ 

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure
- + = Minkowski addition

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure
- + = Minkowski addition
- A valuation on  $\mathcal{K}^n$  with real values is a map  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$ , satisfying that, for  $K, L, K \cup L \in \mathcal{K}^n$ ,

 $\phi(K \cup L) + \phi(K \cap L) = \phi(K) + \phi(L).$ 

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure
- + = Minkowski addition
- A valuation on  $\mathcal{K}^n$  with real values is a map  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$ , satisfying that, for  $K, L, K \cup L \in \mathcal{K}^n$ ,

 $\phi(K \cup L) + \phi(K \cap L) = \phi(K) + \phi(L).$ 

 $\phi$  is homogeneous of degree *i* if for  $\lambda > 0$  it follows that

 $\phi(\lambda K) = \lambda^i \phi(K).$ 

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure
- + = Minkowski addition
- A valuation on  $\mathcal{K}^n$  with real values is a map  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$ , satisfying that, for  $K, L, K \cup L \in \mathcal{K}^n$ ,

 $\phi(K \cup L) + \phi(K \cap L) = \phi(K) + \phi(L).$ 

• Every  $K \in \mathcal{K}^n$  can be identified with its support function  $h_K(\cdot)$ .

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Notation

- $\mathcal{K}^n$  = convex bodies in  $\mathbb{R}^n$
- K = a convex body
- $\mathcal{H}^k = k$ -dimensional Hausdorff measure
- + = Minkowski addition
- A valuation on  $\mathcal{K}^n$  with real values is a map  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$ , satisfying that, for  $K, L, K \cup L \in \mathcal{K}^n$ ,

 $\phi(K \cup L) + \phi(K \cap L) = \phi(K) + \phi(L).$ 

• Every  $K \in \mathcal{K}^n$  can be identified with its support function  $h_{\mathcal{K}}(\cdot)$ .

$$h_{\mathcal{K}}:\mathbb{S}^{n-1}\longrightarrow\mathbb{R}$$
  
 $h_{\mathcal{K}}(u)=\supig\{\langle x,u
angle:x\in\mathcal{K}ig\}$ 

## Mixed volumes

#### Mixed volumes

Let  $K_1, K_2, \ldots, K_m \in \mathcal{K}^n$  and let  $\lambda_i \geq 0$  for  $i = 1, \ldots, m$ . The volume of the linear combination  $\sum_{i=1}^m \lambda_i K_i$  can be expressed as

$$\operatorname{V}\left(\sum_{i=1}^{m}\lambda_{i}K_{i}\right)=\sum_{i_{1}=1}^{m}\cdots\sum_{i_{n}=1}^{m}\lambda_{i_{1}}\ldots\lambda_{i_{n}}\operatorname{V}(K_{i_{1}},\ldots,K_{i_{n}}).$$

The coefficients  $V(K_{i_1}, \ldots, K_{i_n})$ , so defined, are called mixed volumes and they are symmetric in every index for any permutation.

## Mixed volumes

### Mixed volumes

Let  $K_1, K_2, \ldots, K_m \in \mathcal{K}^n$  and let  $\lambda_i \geq 0$  for  $i = 1, \ldots, m$ . The volume of the linear combination  $\sum_{i=1}^m \lambda_i K_i$  can be expressed as

$$\operatorname{V}\left(\sum_{i=1}^{m}\lambda_{i}K_{i}\right)=\sum_{i_{1}=1}^{m}\cdots\sum_{i_{n}=1}^{m}\lambda_{i_{1}}\ldots\lambda_{i_{n}}\operatorname{V}(K_{i_{1}},\ldots,K_{i_{n}}).$$

The coefficients  $V(K_{i_1}, \ldots, K_{i_n})$ , so defined, are called mixed volumes and they are symmetric in every index for any permutation.

• In particular, for any  $L \in \mathcal{K}^n$ ,  $\phi(\mathcal{K}) = V(L, \mathcal{K}[n-1])$  is a continuous, translation invariant, homogeneous of degree n-1 valuation.

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality assures the concavity of the *n*-th root of the volume on  $\mathcal{K}^n$ :

### Classical Brunn-Minkowski inequality

 $\mathrm{V}^{rac{1}{n}}:\mathcal{K}^{n}\longrightarrow\mathbb{R}$  is concave, i.e., for  $t\in[0,1]$  and  $\mathcal{K},L\in\mathcal{K}^{n}$ ,

$$\operatorname{V}((1-t)K+tL)^{rac{1}{n}} \geq (1-t)\operatorname{V}(K)^{rac{1}{n}}+t\operatorname{V}(L)^{rac{1}{n}}.$$

## Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality assures the concavity of the *n*-th root of the volume on  $\mathcal{K}^n$ :

### Classical Brunn-Minkowski inequality

 $\mathrm{V}^{rac{1}{n}}:\mathcal{K}^n\longrightarrow\mathbb{R}$  is concave, i.e., for  $t\in[0,1]$  and  $\mathcal{K},\mathcal{L}\in\mathcal{K}^n$ ,

$$\mathrm{V}ig((1-t)\mathcal{K}+t\mathcal{L}ig)^{rac{1}{n}}\geq (1-t)\mathrm{V}ig(\mathcal{K}ig)^{rac{1}{n}}+t\mathrm{V}ig(\mathcal{L}ig)^{rac{1}{n}}.$$

Mixed volumes satisfy a Brunn-Minkowski inequality too:

### Brunn-Minkowski inequality for mixed volumes

Let  $K_0, K_1, \cdots, K_n \in \mathcal{K}^n$ , and  $1 \le i \le n$ . For  $0 \le t \le 1$  the function

$$f(t) := \operatorname{V}((1-t)K_0 + tK_1[i], K_{i+1}, \dots, K_n)^{\frac{1}{i}}$$

is concave on [0, 1].

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

### Surface area measures

### Mixed surface area measure

Let  $K_2, \ldots, K_n \in \mathcal{K}^n$  be n-1 convex bodies. There exists a unique non-negative Borel measure  $S(K_2, \ldots, K_n; \cdot)$ , the *mixed surface area measure*, so that, for every convex body  $K_1$ ,

$$\mathrm{V}(K_1,K_2,\ldots,K_n)=\frac{1}{n}\int_{\mathbb{S}^{n-1}}h_{K_1}(u)\,d\mathrm{S}(K_2,\ldots,K_n;u).$$

## Surface area measures

### Mixed surface area measure

Let  $K_2, \ldots, K_n \in \mathcal{K}^n$  be n-1 convex bodies. There exists a unique non-negative Borel measure  $S(K_2, \ldots, K_n; \cdot)$ , the *mixed surface area measure*, so that, for every convex body  $K_1$ ,

$$\mathcal{V}(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_n) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{\mathcal{K}_1}(u) \, d\mathcal{S}(\mathcal{K}_2, \ldots, \mathcal{K}_n; u).$$

Surface area measure of order n-1

The surface area measure of order n - 1 of K is the mixed surface area measure  $S_{n-1}(K; \cdot) = S(K[n-1]; \cdot).$ 

### Surface area measures

### Mixed surface area measure

Let  $K_2, \ldots, K_n \in \mathcal{K}^n$  be n-1 convex bodies. There exists a unique non-negative Borel measure  $S(K_2, \ldots, K_n; \cdot)$ , the *mixed surface area measure*, so that, for every convex body  $K_1$ ,

$$\mathcal{V}(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_n) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{\mathcal{K}_1}(u) \, d\mathcal{S}(\mathcal{K}_2, \ldots, \mathcal{K}_n; u).$$

#### Surface area measure of order n-1

The surface area measure of order n-1 of K is the mixed surface area measure  $S_{n-1}(K; \cdot) = S(K[n-1]; \cdot).$ 



### Surface area measures

#### Mixed surface area measure

Let  $K_2, \ldots, K_n \in \mathcal{K}^n$  be n-1 convex bodies. There exists a unique non-negative Borel measure  $S(K_2, \ldots, K_n; \cdot)$ , the *mixed surface area measure*, so that, for every convex body  $K_1$ ,

$$\mathcal{V}(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_n) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_{\mathcal{K}_1}(u) \, d\mathcal{S}(\mathcal{K}_2, \ldots, \mathcal{K}_n; u).$$

#### Surface area measure of order n-1

The surface area measure of order n - 1 of K is the mixed surface area measure  $S_{n-1}(K; \cdot) = S(K[n-1]; \cdot).$ 

In particular for  $L, K \in \mathcal{K}^n$ :

$$\operatorname{V}(L, K[n-1]) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L(u) \, d\operatorname{S}_{n-1}(K; u)$$

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u).$$

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u).$$

The functional  ${\mathcal F}$  is

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u).$$

The functional  ${\mathcal F}$  is

• continuous

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathrm{S}_{n-1}(K;u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u).$$

The functional  $\mathcal F$  is

- continuous
- translation invariant

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u).$$

The functional  ${\mathcal F}$  is

- continuous
- translation invariant
- homogeneous of degree n-1

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## The functional $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathrm{S}_{n-1}(K; u)$

For  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  and  $K \in \mathcal{K}^n$  we consider the functional  $\mathcal{F} : \mathcal{K}^n \mapsto \mathbb{R}$ 

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u).$$

### The functional ${\mathcal F}$ is

- continuous
- translation invariant
- homogeneous of degree n-1
- a valuation

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## McMullen's theorem

### McMullen 1980

 $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  is a continuous, translation invariant and (n-1)-homogeneous valuation if and only if there is  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  with

$$\phi(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$$

## McMullen's theorem

### McMullen 1980

 $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  is a continuous, translation invariant and (n-1)-homogeneous valuation if and only if there is  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  with

$$\phi(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$$

## McMullen's theorem

### McMullen 1980

 $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  is a continuous, translation invariant and (n-1)-homogeneous valuation if and only if there is  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  with

$$\phi(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$$

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u) = V(nL, K[n-1])$$

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

### McMullen's theorem

### If f is the support function of $L \in \mathcal{K}^n$ , then

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u) = \mathbf{V}(nL, K[n-1])$$

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

### McMullen's theorem

### If f is the support function of $L \in \mathcal{K}^n$ , then

•  $\mathcal{F}$  is non-negative.

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u) = V(nL, K[n-1])$$

## McMullen's theorem

### If f is the support function of $L \in \mathcal{K}^n$ , then

•  ${\mathcal F}$  is non-negative.

 $\bullet \,\, \mathcal{F}$  satisfies the Brunn-Minkowski inequality

$$\mathcal{F}\left((1-t)\mathcal{K}+t\mathcal{L}
ight)^{rac{1}{n-1}}\geq (1-t)\mathcal{F}(\mathcal{K})^{rac{1}{n-1}}+t\mathcal{F}(\mathcal{L})^{rac{1}{n-1}}$$

$$\mathcal{F}(\mathcal{K}) = \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(\mathcal{K}; u) = V(nL, \mathcal{K}[n-1])$$

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

Assume that the functional

$$\mathcal{F} = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

with  $f \in \mathcal{C}(\mathbb{S}^{n-1})$ 

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

Assume that the functional

$$\mathcal{F} = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

with  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  satisfies  $\mathcal{F} \ge 0$  and

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

Assume that the functional

$$\mathcal{F} = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

with  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  satisfies  $\mathcal{F} \ge 0$  and

$$\mathcal{F}((1-t)\mathcal{K}+t\mathcal{L})^{rac{1}{n-1}}\geq (1-t)\mathcal{F}^{rac{1}{n-1}}(\mathcal{K})+t\mathcal{F}^{rac{1}{n-1}}(\mathcal{L})$$

for every  $K, L \in \mathcal{K}^n$ .

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

Assume that the functional

$$\mathcal{F} = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

with  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  satisfies  $\mathcal{F} \ge 0$  and

$$\mathcal{F}((1-t)\mathcal{K}+t\mathcal{L})^{rac{1}{n-1}}\geq (1-t)\mathcal{F}^{rac{1}{n-1}}(\mathcal{K})+t\mathcal{F}^{rac{1}{n-1}}(\mathcal{L})$$

for every  $K, L \in \mathcal{K}^n$ .

• Can we say anything about f?

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

Assume that the functional

$$\mathcal{F} = \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

with  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  satisfies  $\mathcal{F} \ge 0$  and

$$\mathcal{F}((1-t)\mathcal{K}+t\mathcal{L})^{rac{1}{n-1}}\geq (1-t)\mathcal{F}^{rac{1}{n-1}}(\mathcal{K})+t\mathcal{F}^{rac{1}{n-1}}(\mathcal{L})$$

for every  $K, L \in \mathcal{K}^n$ .

- Can we say anything about f?
- In particular, does it follow that f is a support function and in consequence that F is the mixed volume V(nL, K[n − 1])?

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

## A natural question

### Case n = 2

For every  $f \in \mathcal{C}(\mathbb{S}^1)$  the functional

$$\mathcal{F}(K) = \int_{\mathbb{S}^1} f(u) d\mathrm{S}_1(K; u)$$

is linear and in this case the Brunn-Minkowski inequality for  ${\mathcal F}$  becomes an equality.

- Can we say anything about f?
- In particular, does it follow that f is a support function and in consequence that  $\mathcal{F}$  is the mixed volume V(nL, K[n-1])?

Convex bodies in  $\mathbb{R}^n$ Brunn-Minkowski inequality Problem

# A natural question

#### Case n = 2

For every  $f \in \mathcal{C}(\mathbb{S}^1)$  the functional

$$\mathcal{F}(K) = \int_{\mathbb{S}^1} f(u) d\mathrm{S}_1(K; u)$$

is linear and in this case the Brunn-Minkowski inequality for  ${\mathcal F}$  becomes an equality.

#### Problem: $n \ge 3$

$$f \in \mathcal{C}(\mathbb{S}^{n-1})$$
,  $\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) d\mathrm{S}_{n-1}(K; u)$  and  $\mathcal{F} \ge 0$ . If

$$\mathcal{F}((1-t)\mathcal{K}+t\mathcal{L})^{rac{1}{n-1}} \geq (1-t)\mathcal{F}(\mathcal{K})^{rac{1}{n-1}}+t\mathcal{F}(\mathcal{L})^{rac{1}{n-1}}$$

for every  $K, L \in \mathcal{K}^n$ : Is f the support function of a convex body?

The symmetric case The non-symmetric case

#### The symmetric case

#### Positive answer

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  even.

## The symmetric case

#### Positive answer

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  even. If the functional  $\mathcal{F}$ 

$$\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) dS_{n-1}(K; u)$$

is non-negative

## The symmetric case

#### Positive answer

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  even. If the functional  $\mathcal{F}$ 

$$\mathcal{F}: \mathcal{K} \mapsto \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(\mathcal{K}; u)$$

is non-negative and satisfies a Brunn-Minkowski type inequality,

Brunn-Minkowski type inequality for  ${\cal F}$ 

$$\mathcal{F}((1-t)\mathcal{K}+t\mathcal{L})^{rac{1}{n-1}}\geq (1-t)\mathcal{F}(\mathcal{K})^{rac{1}{n-1}}+t\mathcal{F}(\mathcal{L})^{rac{1}{n-1}}$$

for every  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$ 

## The symmetric case

#### Positive answer

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1})$  even. If the functional  $\mathcal{F}$ 

$$\mathcal{F}: \mathcal{K} \mapsto \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(\mathcal{K}; u)$$

is non-negative and satisfies a Brunn-Minkowski type inequality, then there exists a convex body L, whose support function is f, i.e.,  $f = h_L$  and

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} h_L(u) dS_{n-1}(K; u) = nV(L, K[n-1]).$$

• If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

 $\mathcal{F}((1-t)K + tL) \geq \min\{\mathcal{F}(K), \mathcal{F}(L)\}$ 

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$  is used, then

• If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$\mathcal{F}((1-t)K + tL) \geq \min\{\mathcal{F}(K), \mathcal{F}(L)\}$$

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$  is used, then we can remove the assumption  $\mathcal{F} \ge 0$ .

• If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$\mathcal{F}((1-t)K + tL) \geq \min\{\mathcal{F}(K), \mathcal{F}(L)\}$$

for all  $K,L\in \mathcal{K}^n$  and  $t\in [0,1]$  is used, then we can remove the assumption  $\mathcal{F}\geq 0.$ 

• f even implies  $\mathcal{F}(K) = \mathcal{F}(-K)$ .

• If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$\mathcal{F}((1-t)K + tL) \geq \min\{\mathcal{F}(K), \mathcal{F}(L)\}$$

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$  is used, then we can remove the assumption  $\mathcal{F} \ge 0$ .

• f even implies  $\mathcal{F}(K) = \mathcal{F}(-K)$ . The other way round, if  $\mathcal{F}$  is symmetric, then

$$f = \overline{f} + \Lambda$$

where  $\overline{f}$  is even and  $\Lambda$  is the restriction to  $\mathbb{S}^{n-1}$  of a linear function.

• If instead of the standard form of the Brunn-Minkowski inequality, the weaker form

$$\mathcal{F}((1-t)K + tL) \geq \min\{\mathcal{F}(K), \mathcal{F}(L)\}$$

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$  is used, then we can remove the assumption  $\mathcal{F} \geq 0$ .

• f even implies  $\mathcal{F}(K) = \mathcal{F}(-K)$ . The other way round, if  $\mathcal{F}$  is symmetric, then

$$f = \overline{f} + \Lambda$$

where  $\overline{f}$  is even and  $\Lambda$  is the restriction to  $\mathbb{S}^{n-1}$  of a linear function. Since

$$\int_{\mathbb{S}^{n-1}} \Lambda(u) d\mathbf{S}_{n-1}(K; u) = 0, \text{ for every } K \in \mathcal{K}^n,$$

if  $\mathcal{F}$  is symmetric, f may be assumed to be even.

The symmetric case The non-symmetric case

#### The symmetric case

#### Corollary

Let  $n \geq 3$  and  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  be a continuous, translation invariant, (n-1)-homogeneous and symmetric valuation.

The symmetric case The non-symmetric case

#### The symmetric case

#### Corollary

Let  $n \ge 3$  and  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  be a continuous, translation invariant, (n-1)-homogeneous and symmetric valuation. If

$$\phi((1-t)K+tL) \geq \min\{\phi(K), \phi(L)\},\$$

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$ ,

The symmetric case The non-symmetric case

#### The symmetric case

#### Corollary

Let  $n \ge 3$  and  $\phi : \mathcal{K}^n \mapsto \mathbb{R}$  be a continuous, translation invariant, (n-1)-homogeneous and symmetric valuation. If

$$\phi\left((1-t)K+tL\right)\geq\min\{\phi(K),\phi(L)\},\$$

for all  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$ , then there exists  $L \in \mathcal{K}^n$  such that

 $\phi(K) = n \mathcal{V}(L, K[n-1]).$ 

The symmetric case The non-symmetric case

#### The non-symmetric case

#### Positive answer for regular f

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1}) \cap W^{2,2}(\mathbb{S}^{n-1})$ .

The symmetric case The non-symmetric case

## The non-symmetric case

#### Positive answer for regular f

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1}) \cap W^{2,2}(\mathbb{S}^{n-1})$ . If the functional

$$\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

satisfies the Brunn-Minkowski inequality

$$\mathcal{F}((1-t)K+tL) \geq \min\{\mathcal{F}(K),\mathcal{F}(L)\}$$

for  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$ , then

The symmetric case The non-symmetric case

#### The non-symmetric case

#### Positive answer for regular f

Let  $n \geq 3$  and  $f \in \mathcal{C}(\mathbb{S}^{n-1}) \cap W^{2,2}(\mathbb{S}^{n-1})$ . If the functional

$$\mathcal{F}: K \mapsto \int_{\mathbb{S}^{n-1}} f(u) d\mathbf{S}_{n-1}(K; u)$$

satisfies the Brunn-Minkowski inequality

$$\mathcal{F}\left((1-t)\mathcal{K}+t\mathcal{L}
ight)\geq\min\{\mathcal{F}(\mathcal{K}),\mathcal{F}(\mathcal{L})\}$$

for  $K, L \in \mathcal{K}^n$  and  $t \in [0, 1]$ , then there exists a convex body  $L \in \mathcal{K}^n$  such that f is the support function of L.

If K is of class  $C_{+}^{2}$ , then

K is of class  $C_{+}^{2}$ 

if  $\partial K$  is of class  $C^2$  and the Gauß curvature is positive.

If K is of class  $C_{+}^{2}$ , then

• its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .

If K is of class  $C_{+}^{2}$ , then

- its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .
- $dS_{n-1}(K; u) = det((h_K)_{ij}(u) + \delta_{ij}h_K(u))d\mathcal{H}^{n-1}(u).$

If K is of class  $C_{+}^{2}$ , then

- its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .
- $dS_{n-1}(K; u) = det((h_K)_{ij}(u) + \delta_{ij}h_K(u))d\mathcal{H}^{n-1}(u).$
- $\bullet$  the functional  ${\mathcal F}$  may be written as follows:

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) \det((h_{\mathcal{K}})_{ij}(u) + \delta_{ij}h_{\mathcal{K}}(u)) d\mathcal{H}^{n-1}(u)$$

If K is of class  $C_{+}^{2}$ , then

• its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .

• 
$$dS_{n-1}(K; u) = det((h_K)_{ij}(u) + \delta_{ij}h_K(u))d\mathcal{H}^{n-1}(u).$$

 $\bullet$  the functional  ${\mathcal F}$  may be written as follows:

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) \det((h_{\mathcal{K}})_{ij}(u) + \delta_{ij}h_{\mathcal{K}}(u)) d\mathcal{H}^{n-1}(u).$$

Let  $\varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{n-1})$  and  $\epsilon \in \mathbb{R}$ ,  $|\epsilon|$  small enough. Then

If K is of class  $C_{+}^{2}$ , then

• its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .

• 
$$dS_{n-1}(K; u) = det((h_K)_{ij}(u) + \delta_{ij}h_K(u))d\mathcal{H}^{n-1}(u).$$

 $\bullet$  the functional  ${\mathcal F}$  may be written as follows:

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) \det((h_{\mathcal{K}})_{ij}(u) + \delta_{ij}h_{\mathcal{K}}(u)) d\mathcal{H}^{n-1}(u).$$

Let  $\varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{n-1})$  and  $\epsilon \in \mathbb{R}$ ,  $|\epsilon|$  small enough. Then

h<sub>K</sub> + εφ is the support function of some K<sub>ε</sub> ∈ K<sup>n</sup> of class C<sup>2</sup><sub>+</sub>.

If K is of class  $C_{+}^{2}$ , then

• its support function  $h_K$  is of class  $C^2$  and  $((h_K)_{ij} + \delta_{ij}h_K) > 0$ .

• 
$$dS_{n-1}(K; u) = det((h_K)_{ij}(u) + \delta_{ij}h_K(u))d\mathcal{H}^{n-1}(u).$$

 $\bullet$  the functional  ${\mathcal F}$  may be written as follows:

$$\mathcal{F}(K) = \int_{\mathbb{S}^{n-1}} f(u) \det((h_{\mathcal{K}})_{ij}(u) + \delta_{ij}h_{\mathcal{K}}(u)) d\mathcal{H}^{n-1}(u).$$

Let  $\varphi \in \mathcal{C}^{\infty}(\mathbb{S}^{n-1})$  and  $\epsilon \in \mathbb{R}$ ,  $|\epsilon|$  small enough. Then

•  $h_{\mathcal{K}} + \epsilon \varphi$  is the support function of some  $\mathcal{K}_{\epsilon} \in \mathcal{K}^n$  of class  $\mathcal{C}^2_+$ .

• 
$$\mathcal{F}$$
 can be defined on  $(-\epsilon,\epsilon)$  as:

$$g(\lambda) := \mathcal{F}(K_{\lambda})$$
 for every  $\lambda \in (-\epsilon, \epsilon)$ .

We can now combine convex bodies of class  $C_+^2$  and the functional defined as a real function of one variable to get that:

We can now combine convex bodies of class  $C_+^2$  and the functional defined as a real function of one variable to get that:

If  ${\mathcal F}$  satisfies the Brunn-Minkowski inequality, then

We can now combine convex bodies of class  $C^2_+$  and the functional defined as a real function of one variable to get that:

If  ${\mathcal F}$  satisfies the Brunn-Minkowski inequality, then

• 
$$g(\lambda)^{\frac{1}{n-1}} = \mathcal{F}(K_{\lambda})^{\frac{1}{n-1}}$$
 is concave.

We can now combine convex bodies of class  $C_+^2$  and the functional defined as a real function of one variable to get that:

If  ${\mathcal F}$  satisfies the Brunn-Minkowski inequality, then

• 
$$g(\lambda)^{\frac{1}{n-1}} = \mathcal{F}(K_{\lambda})^{\frac{1}{n-1}}$$
 is concave.

• 
$$\left.\frac{d}{d\lambda^2}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right)\leq 0.$$

We can now combine convex bodies of class  $C^2_+$  and the functional defined as a real function of one variable to get that:

If  ${\mathcal F}$  satisfies the Brunn-Minkowski inequality, then

• 
$$g(\lambda)^{\frac{1}{n-1}} = \mathcal{F}(K_{\lambda})^{\frac{1}{n-1}}$$
 is concave.

• 
$$\left.\frac{d}{d\lambda^2}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right)\leq 0.$$

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) =$$

We can now combine convex bodies of class  $C_+^2$  and the functional defined as a real function of one variable to get that:

If  $\mathcal F$  satisfies the Brunn-Minkowski inequality, then

• 
$$g(\lambda)^{\frac{1}{n-1}} = \mathcal{F}(K_{\lambda})^{\frac{1}{n-1}}$$
 is concave.

• 
$$\left.\frac{d}{d\lambda^2}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right)\leq 0.$$

 $K_{\lambda}$  is of class  $C_{+}^{2}$  and is the convex body whose support function is  $h_{K} + \lambda \varphi$ .

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) =$$

We can now combine convex bodies of class  $C^2_+$  and the functional defined as a real function of one variable to get that:

If  $\mathcal F$  satisfies the Brunn-Minkowski inequality, then

• 
$$g(\lambda)^{\frac{1}{n-1}} = \mathcal{F}(K_{\lambda})^{\frac{1}{n-1}}$$
 is concave.

• 
$$\left.\frac{d}{d\lambda^2}\right|_{\lambda=0}\left(g^{\frac{1}{n-1}}\right)\leq 0.$$

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) = \int_{\mathbb{S}^{n-1}} f \det\left((h_{K} + \lambda \varphi)_{ij} + \delta_{ij}(h_{K} + \lambda \varphi)\right) d\mathcal{H}^{n-1}$$

• We can use the formula for g to compute g(0), g'(0) and g''(0) explicitly. Then, we plug them in (\*).

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) = \int_{\mathbb{S}^{n-1}} f \det\left((h_{K} + \lambda \varphi)_{ij} + \delta_{ij}(h_{K} + \lambda \varphi)\right) d\mathcal{H}^{n-1}$$

- We can use the formula for g to compute g(0), g'(0) and g''(0) explicitly. Then, we plug them in (\*).
- (\*) becomes a functional inequality involving  $f, h_K$  and  $\varphi$ .

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) = \int_{\mathbb{S}^{n-1}} f \det\left((h_{K} + \lambda \varphi)_{ij} + \delta_{ij}(h_{K} + \lambda \varphi)\right) d\mathcal{H}^{n-1}$$

- We can use the formula for g to compute g(0), g'(0) and g''(0) explicitly. Then, we plug them in (\*).
- (\*) becomes a functional inequality involving  $f, h_K$  and  $\varphi$ .
- This functional inequality holds for all  $h_K$  and  $\varphi$  satisfying the mentioned conditions.

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) = \int_{\mathbb{S}^{n-1}} f \det\left((h_{K} + \lambda \varphi)_{ij} + \delta_{ij}(h_{K} + \lambda \varphi)\right) d\mathcal{H}^{n-1}$$

- We can use the formula for g to compute g(0), g'(0) and g''(0) explicitly. Then, we plug them in (\*).
- (\*) becomes a functional inequality involving  $f, h_K$  and  $\varphi$ .
- This functional inequality holds for all  $h_K$  and  $\varphi$  satisfying the mentioned conditions.
- This provides a strong condition on f from which it follows that it is the support function of a convex body  $L \in \mathcal{K}^n$ .

• 
$$(n-1)g(0)g''(0) \le (n-2)g'(0)^2$$
. (\*)

$$g(\lambda) = \mathcal{F}(K_{\lambda}) = \int_{\mathbb{S}^{n-1}} f \det\left((h_{\mathcal{K}} + \lambda \varphi)_{ij} + \delta_{ij}(h_{\mathcal{K}} + \lambda \varphi)\right) d\mathcal{H}^{n-1}$$

The case n = 3 for f smooth and even

## The case n = 3, f smooth and even

•  $f \in \mathcal{C}^2(\mathbb{S}^2)$  and  $\varphi \in \mathcal{C}^\infty(\mathbb{S}^2)$ 

# The case n = 3, f smooth and even

- $f \in \mathcal{C}^2(\mathbb{S}^2)$  and  $\varphi \in \mathcal{C}^\infty(\mathbb{S}^2)$
- Choosing K to be the unit ball, i.e.,  $h_K \equiv 1$ , the inequality (\*) becomes

$$\int_{\mathbb{S}^2} f \det \left( arphi_{ij} + \delta_{ij} arphi 
ight) d\mathcal{H}^2 \leq 0$$

 $(*) \quad (n-1)g(0)g''(0) \leq (n-2)g'(0)^2$ 

# The case n = 3, f smooth and even

• 
$$f \in \mathcal{C}^2(\mathbb{S}^2)$$
 and  $\varphi \in \mathcal{C}^\infty(\mathbb{S}^2)$ 

• Choosing K to be the unit ball, i.e.,  $h_K \equiv 1$ , the inequality (\*) becomes

$$\int_{\mathbb{S}^2} f \det \left( arphi_{ij} + \delta_{ij} arphi 
ight) d\mathcal{H}^2 \leq 0$$

• Since it holds for every  $\varphi \in \mathcal{C}^{\infty}(\mathbb{S}^2)$ , it follows that

 $(f_{ij}+\delta_{ij}f)\geq 0$ 

# The case n = 3, f smooth and even

• 
$$f\in \mathcal{C}^2(\mathbb{S}^2)$$
 and  $arphi\in \mathcal{C}^\infty(\mathbb{S}^2)$ 

• Choosing K to be the unit ball, i.e.,  $h_K \equiv 1$ , the inequality (\*) becomes

$$\int_{\mathbb{S}^2} f \det \left( arphi_{ij} + \delta_{ij} arphi 
ight) d\mathcal{H}^2 \leq 0$$

• Since it holds for every  $\varphi \in \mathcal{C}^\infty(\mathbb{S}^2)$ , it follows that

$$(f_{ij}+\delta_{ij}f)\geq 0$$

• This implies that f is a support function.

# A characterization of some mixed volumes via the Brunn-Minkowski inequality

#### E. Saorín Gómez

(Joint work with A. Colesanti and D. Hug)

Otto-von-Guericke Universität Magdeburg

Cortona, June 2011