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Order-isomorphisms - Motivating results

I In recent years, various characterizations of dualities and
identities have been established, mainly for classes of convex
bodies and functions. We call a bijective mapping T : S → S

I Order reversing isomorphism if : x ≤ y ⇐⇒ Tx ≥ Ty
I Order preserving isomorphism if : x ≤ y ⇐⇒ Tx ≤ Ty

I Examples:
I Theorem (Böröczky-Schneider): On the class of convex bodies

(compact, containing the origin in the interior) K 7→ K◦ is
essentially the only inclusion reversing map.

I Theorem (Artstein-Milman): The Legendre transform is, up to
obvious linear modifications, the only involution on the class of
l.s.c convex functions which reverses the (point-wise) order.

I An earlier result: Gruber ; classification of the endomorphisms
of lattices of convex bodies. More similar results by Schneider,
Artstein-Milman,...



Some standard definitions

Cone: A nonempty subset K of a vector space which satisfies:

I K + K ⊂ K ,

I αK ⊂ K for all α ≥ 0,

I K ∩ (−K ) = {0}.
Clearly, every cone is a convex set.

Partially ordered vector space: A vector space X equipped with
an order relation compatible with the algebraic structure. Namely,
if x ≤ y then

I x + z ≤ y + z for each z ∈ X

I αx ≤ αy for all α ∈ R+

Given (X ,≤), X+ = {x ∈ X : x ≥ 0} is a cone

Given a cone K it induces a vector ordering: x ≤ y whenever
y − x ∈ K



Cone order-isomorphisms in Rn

I Let K ⊂ Rn be a closed non-degenerate cone.

What is the general form of the following order-isomorphisms:

I T : (Rn,≤K )→ (Rn,≤K )

I T : (K ,≤K )→ (K ,≤K )

I T : (int(K ),≤K )→ (int(K ),≤K )

I For which cones must such transformations be affine (linear) ?



Some History

I A.D Alexandrov-Ovchinnikova (’53), Zeeman (’64); if K is a
right-circular cone in R4, then all order isomorphisms are
affine, with a Lorentz transformation being the linear part.

I Rothaus (’66) has shown that for any non-angular closed
non-degenerate cone, all order-isomorphisms are affine (holds
both for a map defined on Rn or on the interior of K ).

I A cone K is non-angular if it has a compact base which does
not have isolated extreme points.



Basic examples

I Every linear transformation B for which BK = K is an
order-isomorphism

I Compositions and translations are allowed

I K = Rn
+, T (x) = (x3

1 , x
5
2 , ..., x

7
n )

I Our result: essentially there are no other options.



Main results

For any cone K , the general form of an order-isomorphism is
described as follows. The set A ⊂ Rn shall stand for either K ,
int(K ) or Rn.

Theorem
Let n ≥ 2. Let K ⊂ Rn be a closed non-degenerate cone. Let
T : (A,≤K )→ (A,≤K ) be an order-isomorphism. Then,
∃ bijective increasing functions f1, ..., fn : R→ R, and linearly
independent vectors v1, ..., vn ∈ K and w1, ...,wn ∈ K such that

T (
n∑

i=1

αivi ) =
n∑

i=1

fi (αi )wi

for α1v1 + · · ·+ αnvn ∈ A. If A = K or A = Rn , wi = T (vi ).



Main results - continued

An additional condition on the order inducing cone, forces the
order-isomorphism to be affine-linear;
We say that a set of m > n vectors in Rn is n-independent if each
n of them are linearly independent.

Theorem
Let n > 2. Let K ⊂ Rn be a closed cone. Assume K has at least
n + 1 n-independent extremal vectors. Let T : (A,≤K )→ (A,≤K )
be an order-isomorphism. Then, T is an affine transformation, i.e.,
∃v0 ∈ Rn ∃B ∈ GLn s.t

T (x) = v0 + Bx and BK = K

I Recall: a vector e ∈ K is said to be an extremal vector of K if
e = x + y with x , y ∈ K implies that x and y are linearly
dependent.



Remarks

I An order isomorphism is continuous

I Any three extremal vectors of a cone (that generate three
distinct extremal rays) are linearly independent. Hence, in R3,
for a cone with more than 3 extremal rays, an
order-isomorphism must be affine-linear.

I The same holds if we set two different orderings :
T : (A,≤K1)→ (A,≤K2).



An application

Let us go back to the context of convex bodies; Let En denote the
class of all compact ellipsoids centered at the origin and let En

0

denote its subclass consisting of all non-degenerate ellipsoids.

Theorem
Let T : En

0 → En
0 or T : En → En be an order-isomorphism (with

respect to inclusion). Then, T is induced by a linear point-map on
Rn.

Corollary

Let T : En
0 → En

0 be an order-reversing isomorphism. Then, there
exists a linear transformation G ∈ GLn such that T (E) = GE◦, for
all E ∈ En

0 .



Application - continued

I Trying the usual method from previous (mentioned) works,
one encounters difficulties. For example: the class En

0 , ordered
by inclusion, does not satisfy lattice requirements. Namely
there is no maximal object which is the “smallest” greater
than some two given ellipsoids (and similarly minimum does
not exist).

I Observation: Let Dn denote the standard Euclidean unit ball
in Rn. For each ellipsoid E , let A be the unique symmetric
positive definite matrix for which E = ADn and denote
E = EA. Then, EA ⊂ EB ⇐⇒ A ≤ B. Proof:

EA ⊂ EB ⇐⇒ ||B−1A||op ≤ 1 ⇐⇒ ||(B−1A)∗||op ≤ 1

⇐⇒ ||AB−1||op ≤ 1 ⇐⇒ A ≤ B



Application - continued

I By setting T (EA) = EF (A), we get a bijective map F on

I the cone of symmetric positive semi-definite, denoted by Cn
(T : E n → E n),

I all symmetric positive definite matrices, A = int(Cn)
(T : E n

0 → E n
0 ).

I So F is an order-isomorphism with the ordering induced by
Cn, which is a good cone (its extreml vectors are of the form
v ⊗ v). By our main results: F is linear. But, we are not done
yet!

I Theorem (Hue Geometry Group, Vietnam 2010): a bijective
linear map F : A → A is of the form A 7→ UAU∗.

So, If I is fixed (T fixes Dn, w.l.o.g), then I = UU∗ and:
T (EA) = EF (A) = EUAU∗ = UAU∗Dn = UADn = UEA.



Ingredients of the proof

I Extremal lines and their translates are mapped to translations
of extremal lines. The reason is the following characterization:

v ∈ K is extremal ⇐⇒ 0 ≤ x , y ≤ v implies that x , y are
comparable.

I Further investigation yields: parallel lines (rays) in extremal
directions are mapped to parallel lines (rays). This is due to a
characterization of doubly ruled surfaces;



Doubly ruled mappings

Proposition

Let n ≥ 3. Let F : R2
+ → Rn be injective. Assume that F maps

each ray parallel either to the X -axis or the Y -axis onto a ray, and
that the end-point is mapped to the endpoint. That is, for any
x0 ∈ R+, F (x0,R+) is a ray emanating from F (x0, 0) and for any
y0 ∈ R+, F (R+, y0) is a ray emanating from F (0, y0). Then each
three rays parallel either to the X -axis or to the Y -axis are mapped
to three rays which are parallel to one plane.

I In general, the image of such F is contained in a doubly ruled
surface, which is known to be a subset of either a plane, a
one-sheeted hyperboloid or a hyperbolic paraboloid. In our
case (injective map; full rays) the second possibility is ruled
out.

I For F : R2 → Rn - the general form is given; up to linear
modifications: F (x , y) = (f (x), g(y), c · f (x)g(y)), c ∈ {0, 1}.



F (x , y) = (x , y , xy)



A fundamental theorem of affine geometry

I The fundamental theorem of affine geometry (many versions):
a bijective mapping which maps lines to lines must be affine.

I A need for a F.T.A.G for finite number of directions, with a
parallelism condition (for a map on a cone and on Rn).

Theorem
Let n ≥ 2. Let K1 and K2 be two closed non-degenerate cones in
Rn and let v1, ..., vn ∈ K1 be linearly independent vectors. Let
F : K1 → K2 be injective. Assume that for all x ∈ K1 and i ≤ n,
F ((x + spvi ) ∩ K1) = (F (x) + spF (vi )) ∩ K2. Then, ∃ bijective
functions f1, ..., fn : R→ R so that for x = a1v1 + · · ·+ anvn ∈ K1,

F (x) =
n∑

i=1

fi (ai )F (vi )

I Adding another generic direction, for which F maps parallel
lines to parallel lines yields that F is affine-additive.


