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1. The body Mk(K)

For k =1,...,d, the k-th mean section body M, (K) of a con-
vex body K c R? was introduced in Goodey-W. 1992 as the
Minkowski average of all intersections of K with k-dimensional

(affine) flats.

In terms of support functions

h(M(K), ) = /A iy PO OV B Y (dE).

(A(d, k) affine Grassmannian with invariant measure uy)

Whereas My (K) = K (trivial) and M;(K) is always a ball (not
trivial but easy), the case 2 < k < d — 1 raises the interesting

question, whether M, (K) determines K uniquely.



The mean section body arises, e.g., in the kinematic formula for
(centred) support functions,

d

[, B N gM, u(dg) = 30 B (MR(K), IVi(M),
d k=1

The mean section body was also motivated by the (analogously
defined) mean projection body P,(K), considered first by
Schneider 1977.

Since P, : K — P,(K) is an intertwining linear operator, har-
monic analysis could be used to investigate the injectivity of Py
(Spriestersbach, Goodey et al., Kiderlen...). However, the
picture is still incomplete (3 < k < d/2).



In our case, the operator M, : K — M;(K) is intertwining but
not linear!

For k = 2 (i.e. planar sections), uniqueness was proved in
Goodey-W. (1992). As it was shown, up to a linear function,

h(M>(K),u) = ¢y /Sd_l a(z,uw)sina(x,u)Sy_1 (K, du).

(a(x,u) angle between x and u; S;(K,-) jth area measure of K)

This shows that h(Mo(K),-) = M>S,;_1(K,-), were M, is a con-
tinuous, linear and intertwining operator (mapping measures to
functions and given by the non-symmetric sine transform). There-
fore, also here spherical harmonics could be used to show unique-
ness (up to translations).



The translational restriction was later removed by Goodey
(1998), where it was also shown that, for 3 < k < d -1 and
centrally symmetric bodies K, the mean section body M. (K)
determines K, in case dimK >d — k + 2.

For centrally symmetric K,

h(ME(K), ) = capRa+1—k,1Va+1-k(K]),

a Radon transform of a projection function, hence arguments
from harmonic analysis on Grassmannians could be used.

However, the general case (3 <k <d-—1 and arbitrary body K)
remained open.



2. Results

Theorem 1. For 2 < k < d, a convex body K of dimension
dmK > d+ 2 — k is uniquely determined by the mean section
body Mk(K)

A major ingredient of the proof is the following symmetry rela-
tion.

Theorem 2. For convex bodies K,L and k € {2,...,d}, we have

/Sd_lh(Mk(K),u)Sd+1_k(L,du) = /Sd_lh(Mk(L),u)Sd_l_l_k(K, du).



3. Proofs

The proof of Theorem 2 uses the following formula for poly-
topes K:

h(M(K),u) = c(d, k) > Y(F, K —uw) [(Fyu) Vg1 (F)
FeFgi1-1(K)

(F;(K) set of j-dimensional faces, v(F, K; —u) common outer angle, |(F,u)]
length of the projection of u onto aff (F))

as well as the representation of area measures of polytopes L:

Sa+1-k(L, A) = > Vd—l—l—k(G)/(L & 14 (w)w S (du).
GeFgy1-k(L) T

(n(L,G) spherical image of L at G, w,fiQ spherical Lebesgue measure in G)
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Proof of Theorem 1, for k > 3 (sketch):

e Given M (K), we know the integrals

/Sd—l h(Mk(K), U)Sd_|_1_k(L, du)

e Gi-1 h(Mk(L), U)Sd+1—l{:(K7 dU)

for all bodies L (by Theorem 2).



e Choose H € G(d,d+ 2 — k) and a convex body L C H. Then
almost all intersections HNE,E € A(d, k), are 2-dimensional and
the image of u, under E— HNE is (proportional to) ug. Hence

h(My, (L), u) = /A iy M0 B W) (AE)

— h(LNE w)ubl (dE'
i [ 3y 3y BN E W (B

= cqplmip 1 h(ME (L), )] (w), we S

where MQH(L) is the mean section body of L of order 2 in H and
W?{l is a lifting operator considered in Goodey-Kiderlen-W.
(2011).



e Hence, we know all integrals

/Sd—l [W?J,lh(MQH(L% ] (uw)Sg41_x (K, du)

il . h(M3 (L), w) [ g 1Sq41 -1 (K, )] (du),

for all bodies L C H and all H € G(d,d+2—j). Here, my 1 is the
adjoint projection operator (Goodey-Kiderlen-W. (2011)).



e Since

L — MY (L)

is injective (for bodies in H), the support functions

{h(ME(L),), L C H}

span a dense subspace of C,(S9~1NH) (the continuous functions
with centroid at o).
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e Since my 15441, (K, -) annihilates linear functions, the integrals

/SdlmH h(M3' (L), w)[wg1Sg41- (K, )] (du),

for all L C H determine the measure 7wy 1S34+1-x(K,:) (H €
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e T herefore, we know all projections wH,15d+1_k(K,-), for H €
G(d,d+2 — j).

By Corollary 3.4 in Goodey-Kiderlen-W. (1998), the measure
Sa+1- (K, ) is determined.
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e Since dmK >d+ 2 — k, Minkowski’s uniqgueness result shows
that K is determined (up to a translation t).

e Since M(K) = Mp(K +t) = Mp(K) + aq Vg—r(K)t, we obtain
t=20.
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