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1. The body Mk(K)

For k = 1, ..., d, the k-th mean section body Mk(K) of a con-
vex body K ⊂ Rd was introduced in Goodey-W. 1992 as the
Minkowski average of all intersections of K with k-dimensional
(affine) flats.

In terms of support functions

h(Mk(K), ·) =
∫
A(d,k)

h(K ∩ E, ·)µk(dE).

(A(d, k) affine Grassmannian with invariant measure µk)

Whereas Md(K) = K (trivial) and M1(K) is always a ball (not
trivial but easy), the case 2 ≤ k ≤ d − 1 raises the interesting
question, whether Mk(K) determines K uniquely.
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The mean section body arises, e.g., in the kinematic formula for
(centred) support functions,

∫
Gd
h∗(K ∩ gM, ·)µ(dg) =

d∑
k=1

h∗(Mk(K), ·)Vk(M).

The mean section body was also motivated by the (analogously
defined) mean projection body Pk(K), considered first by
Schneider 1977.

Since Pk : K 7→ Pk(K) is an intertwining linear operator, har-
monic analysis could be used to investigate the injectivity of Pk
(Spriestersbach, Goodey et al., Kiderlen...). However, the
picture is still incomplete (3 < k < d/2).
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In our case, the operator Mk : K 7→ Mk(K) is intertwining but

not linear!

For k = 2 (i.e. planar sections), uniqueness was proved in

Goodey-W. (1992). As it was shown, up to a linear function,

h(M2(K), u) = cd

∫
Sd−1

α(x, u)sinα(x, u)Sd−1(K, du).

(α(x, u) angle between x and u; Sj(K, ·) jth area measure of K)

This shows that h(M2(K), ·) = M̃2Sd−1(K, ·), were M̃2 is a con-

tinuous, linear and intertwining operator (mapping measures to

functions and given by the non-symmetric sine transform). There-

fore, also here spherical harmonics could be used to show unique-

ness (up to translations).
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The translational restriction was later removed by Goodey

(1998), where it was also shown that, for 3 ≤ k ≤ d − 1 and

centrally symmetric bodies K, the mean section body Mk(K)

determines K, in case dimK ≥ d− k + 2.

For centrally symmetric K,

h(Mk(K), ·) = cdkRd+1−k,1Vd+1−k(K|·),

a Radon transform of a projection function, hence arguments

from harmonic analysis on Grassmannians could be used.

However, the general case (3 ≤ k ≤ d− 1 and arbitrary body K)

remained open.
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2. Results

Theorem 1. For 2 ≤ k ≤ d, a convex body K of dimension

dimK ≥ d + 2 − k is uniquely determined by the mean section

body Mk(K).

A major ingredient of the proof is the following symmetry rela-

tion.

Theorem 2. For convex bodies K,L and k ∈ {2, ..., d}, we have∫
Sd−1

h(Mk(K), u)Sd+1−k(L, du) =
∫
Sd−1

h(Mk(L), u)Sd+1−k(K, du).
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3. Proofs

The proof of Theorem 2 uses the following formula for poly-

topes K:

h(Mk(K), u) = c(d, k)
∑

F∈Fd+1−k(K)

γ(F,K;−u)|〈F, u〉|Vd+1−k(F )

(Fj(K) set of j-dimensional faces, γ(F,K;−u) common outer angle, |〈F, u〉|
length of the projection of u onto aff (F ))

as well as the representation of area measures of polytopes L:

Sd+1−k(L,A) =
∑

G∈Fd+1−k(L)

Vd+1−k(G)
∫
n(L,G)

1A(u)ωG⊥k−2(du).

(n(L,G) spherical image of L at G, ωG
⊥

k−2 spherical Lebesgue measure in G⊥)
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Proof of Theorem 1, for k ≥ 3 (sketch):

• Given Mk(K), we know the integrals

∫
Sd−1

h(Mk(K), u)Sd+1−k(L, du)

=
∫
Sd−1

h(Mk(L), u)Sd+1−k(K, du)

for all bodies L (by Theorem 2).
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• Choose H ∈ G(d, d + 2 − k) and a convex body L ⊂ H. Then

almost all intersections H ∩E,E ∈ A(d, k), are 2-dimensional and

the image of µk under E 7→ H ∩E is (proportional to) µH2 . Hence

h(Mk(L), u) =
∫
A(d,k)

h(L ∩ E, u)µk(dE)

= cd,k

∫
A(H,2)

h(L ∩ E′, u)µH2 (dE′)

= cd,k[π∗H,1h(MH
2 (L), ·)](u), u ∈ Sd−1,

where MH
2 (L) is the mean section body of L of order 2 in H and

π∗H,1 is a lifting operator considered in Goodey-Kiderlen-W.

(2011).
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• Hence, we know all integrals

∫
Sd−1

[π∗H,1h(MH
2 (L), ·)](u)Sd+1−k(K, du)

=
∫
Sd−1∩H

h(MH
2 (L), u)[πH,1Sd+1−k(K, ·)](du),

for all bodies L ⊂ H and all H ∈ G(d, d+ 2− j). Here, πH,1 is the

adjoint projection operator (Goodey-Kiderlen-W. (2011)).
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• Since

L 7→MH
2 (L)

is injective (for bodies in H), the support functions

{h(MH
2 (L), ·), L ⊂ H}

span a dense subspace of Co(Sd−1∩H) (the continuous functions

with centroid at o).
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• Since πH,1Sd+1−k(K, ·) annihilates linear functions, the integrals

∫
Sd−1∩H

h(MH
2 (L), u)[πH,1Sd+1−k(K, ·)](du),

for all L ⊂ H determine the measure πH,1Sd+1−k(K, ·) (H ∈
G(d, d+ 2− j)).
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• Therefore, we know all projections πH,1Sd+1−k(K, ·), for H ∈
G(d, d+ 2− j).

By Corollary 3.4 in Goodey-Kiderlen-W. (1998), the measure

Sd+1−k(K, ·) is determined.
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• Since dimK ≥ d + 2 − k, Minkowski’s uniqueness result shows

that K is determined (up to a translation t).

• Since Mk(K) = Mk(K + t) = Mk(K) + ad,kVd−k(K)t, we obtain

t = 0.
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