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Introduction

Let K be a convex body in R". u e S"1
The parallel section function Ak ,(t) is defined by

Ak u(t) = Vol,_1 (K N (ut + tu)),
for t € R.

Here, ut = {x € R": (x, u) = 0}.
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AK,u(O)
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Introduction

The inner section function my is defined by

= A t
() = max A ().

for u e S" L.
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Introduction

Remark: my(u) does not change under translations and reflections
in the origin.
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Introduction

Remark: my(u) does not change under translations and reflections
in the origin.

The inner section function and cross-section bodies were studied
by Meyer, Makai, Martini, Odor, Brehm,...
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Introduction

In 1969, V. Klee asked whether a convex body is uniquely
determined (up to translation and reflection in the origin) by its
inner section function.
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Introduction

In 1969, V. Klee asked whether a convex body is uniquely
determined (up to translation and reflection in the origin) by its
inner section function.

That is, given two convex bodies K and L such that
mg (u) = my(u), Yue St

is it true that K = &L + a?
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If K and L are origin-symmetric convex bodies, then the answer to
Klee's problem is affirmative (Funk, Lifshitz and Pogorelov,...).
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Introduction

If K and L are origin-symmetric convex bodies, then the answer to
Klee's problem is affirmative (Funk, Lifshitz and Pogorelov,...).

Indeed, by Brunn's theorem,

Vol,_1(KNut) = mk(u) = my(u) = Vol,_1(LNu™), Yue S"L
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If K and L are origin-symmetric convex bodies, then the answer to
Klee's problem is affirmative (Funk, Lifshitz and Pogorelov,...).

Indeed, by Brunn's theorem,
Vol,_1(KNut) = mk(u) = my(u) = Vol,_1(LNu™), Yue S"L

Thus, Yu e S" 1,

[ merde=[ o)
Sn=1nyt Sn—1nyl
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If K and L are origin-symmetric convex bodies, then the answer to
Klee's problem is affirmative (Funk, Lifshitz and Pogorelov,...).

Indeed, by Brunn's theorem,
Vol,_1(KNut) = mk(u) = my(u) = Vol,_1(LNu™), Yue S"L

Thus, Yu e S" 1,

[ merde=[ o)
Sn=1nyt Sn—1nyl

Denoting by R the spherical Radon transform, we have
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Introduction

If K and L are origin-symmetric convex bodies, then the answer to
Klee's problem is affirmative (Funk, Lifshitz and Pogorelov,...).

Indeed, by Brunn's theorem,
Vol,_1(KNut) = mk(u) = my(u) = Vol,_1(LNu™), Yue S"L
Thus, Yu € "1,
Lo eterds= [ e .
Denoting by R the spherical Radon transform, we have

Rop P =Rpl™ = pit=p" = K=L
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What about general convex bodies (not necessarily symmetric)?
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What about general convex bodies (not necessarily symmetric)?

It is well known that in R? the answer to Klee's problem is
negative.
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Introduction

What about general convex bodies (not necessarily symmetric)?

It is well known that in R? the answer to Klee's problem is
negative. Bodies of constant width provide counterexamples.
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Main result

There exist convex bodies K and L in R", n > 3, such that K is
not centrally symmetric, L is origin-symmetric, and mx = my.
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Define K by its radial function:

pr(x) = (X +e) ™3, xeR™\ {0},
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Define K by its radial function:

pr(x) = (X +e) ™3, xeR™\ {0},

or equivalently

pr(®) = (1+ccos® o),

where 0 < ¢ < 7 is the angle with the positive x,-axis.
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Define K by its radial function:

pr(x) = (X +e) ™3, xeR™\ {0},

or equivalently

pr(#) = (1 +ecos®¢) %,

where 0 < ¢ < 7 is the angle with the positive x,-axis.

One can check that

@ K is convex for small enough € > 0,
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Define K by its radial function:
pr(x) = (X +ex) 73 x e R"\ {0},
or equivalently

pr(#) = (1 +ecos®¢) %,

where 0 < ¢ < 7 is the angle with the positive x,-axis.

One can check that

@ K is convex for small enough € > 0,

@ K is not centrally symmetric.

V. Yaskin A problem of Klee on inner section functions of convex bodies



Since K is a body of revolution about the x,-axis, for any fixed
t € R, the function Ak ,(t), u € S""! is rotationally symmetric.
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Since K is a body of revolution about the x,-axis, for any fixed
t € R, the function Ak ,(t), u € S""! is rotationally symmetric.

Therefore we can write Ak ,(t) = Ak, 4(t), ¢ € S
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(i) For each ¢ € S*, the parallel section function Ak, ,(t) has a
maximum at a unique point t = t.(¢).
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(i) For each ¢ € S*, the parallel section function Ak, ,(t) has a
maximum at a unique point t = t.(¢).

Thus, we have

mi (¢) = Ak, 4(t=(9))-
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(ii) For all € small enough we have

t-(¢) = Te(9)e,

where T.(¢) € C*°(SY).
(iii) For k =0,1,..., there is a constant cj(k, n) such that
¢)‘ < C]_ k n

s

for all ¢ € S*.
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Proof

Lemma
mk € C°(S"~1) and there is a rotationally symmetric function
g- € C°(S™ 1) such that

mi(u) = fin-1 + g(u)e/(n — 1),

for all u € S""1. Here, r,_1 = |BJ Y.
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Proof

Lemma

mk € C°(S"~1) and there is a rotationally symmetric function
g- € C°(S™ 1) such that

mi (u) = Kn-1 + ge(v)e/(n = 1),

for all u € S""1. Here, r,_1 = |BJ Y.
Moreover, there is a constant c(k, n) such that

‘d"ge(@

W‘ < C2(k7 ”)7

for all ¢ € ST.
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We have
(n— 1)(R‘1mK)(u) =1+ (R_lga)(u)e,

for u € S"1 where R is the spherical Radon transform.
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Define a new body L by

p(u) = ((n = (R mi)(u)) /",

for all u e S"1.
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Define a new body L by

p(u) = ((n = (R mi)(u)) /",

for all u € S"1.
If we show that L is an origin-symmetric convex body (for small
enough ¢), then we are done, since

mi(w) = Vol 1(L 1 ) = 2 (Rof™)(u)

= (R(R™*mx))(u) = mk (u),

for all u e S" 1.
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By Lemma,

pr(u) = (1+ (R71g)(w)e) "™
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By Lemma,

pr(u) = (1+ (R71g)(w)e) "™

We will use Fourier transform techniques of Koldobsky. Extend g.
to a homogeneous of degree —1 function on R"\ {o}. Then,

(R78)(0) = rylel®)

for u e S" L.
Hence,

)= (1 gwe)

for all u e S" L.
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The Fourier transform g. can be computed.
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The Fourier transform g. can be computed.

Define
Geu(z) = (1 = 22)(n=3)/2 / g-(zu++1—2z2v)dv,
Sn—inyl
for -1 <z<1.
Then, for k =0,1,..., there are constants c3(k, n) such that

1GY(0)] < e3(k, n),

for u e S" L.
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If nis even, then g:(u) = (—1)("_2)/27TG6(,’L_2)(0)-
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If nis even, then g.(u) = (—1)(”_2)/2WG€(Z_2)(0).
If nis odd, then g:(u) = (—1)(""V/2(n —2)I(I.(u) + X-(u)), where

1 n—2
la(u):/ IZ\_"“( B )
-1

GLu(0)
Zg(u)—22{m.k—O,...,n—3,keven .
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For both n even and odd, g is bounded on S"~! uniformly in ¢.
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For both n even and odd, g is bounded on S"~! uniformly in ¢.
We see that

1/(n—1)
T
pr.(u) = <1 + W&(u)e) > 0,

for all u € $"1, and hence L. is an origin-symmetric star body.
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Convexity of L.:
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Convexity of L.:
Recall,
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Convexity of L.:
Recall,

) = (1+ ) ) e

It suffices to prove that the first and second partial derivatives of
g on S"7! are bounded, uniformly in ¢.
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Convexity of L.:
Recall,

) = (1+ ) ) e

It suffices to prove that the first and second partial derivatives of
g on S"7! are bounded, uniformly in ¢.

Here we use the relation between the Fourier transform and
differentiation, and formulas for the Fourier transform similar to
those above.
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Convexity of L.:
Recall,

) = (1+ ) ) e

It suffices to prove that the first and second partial derivatives of
g on S"7! are bounded, uniformly in ¢.

Here we use the relation between the Fourier transform and
differentiation, and formulas for the Fourier transform similar to
those above.

Q.E.D.
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Other open problems

Klee also asked whether a convex body in R”, n > 3, whose inner
section function is constant, must be a ball.
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Other open problems

Klee also asked whether a convex body in R”, n > 3, whose inner
section function is constant, must be a ball.

Bonnesen's question: does a convex body in R"”, n > 3, have to be
a ball if both its inner section function and its brightness function
are constant?
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THANK YOU!!!
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