Vanishing Hessian and Wild Polynomials

Hang Huang¹

Mateusz Michałek² Emanuele Ventura³

¹Texas A&M University

²Max Planck Institute

³University of Bern

May 27, 2020

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

2 Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - ${\ensuremath{\bullet}}$ Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

${f 3}$ Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - ${\ensuremath{\bullet}}$ Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_{3}$ Two Infinite Series of Wild Polynomials and Their border VSP

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_{3}$ Two Infinite Series of Wild Polynomials and Their border VSP

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $\operatorname{sr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}.$

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $\operatorname{sr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}.$

Definition (Rank)

 $r_X(F) = \min_r \{F \in \langle R \rangle : R \text{ is smooth subscheme of length } r \text{ in } X\}$ $= \min_r \{F \in \langle R \rangle : R = \{x_1, \dots, x_r\}, x_i \in X\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $\operatorname{sr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}.$

Definition (Rank)

 $\mathbf{r}_{X}(F) = \min_{r} \{F \in \langle R \rangle : R \text{ is smooth subscheme of length } r \text{ in } X \}$ $= \min_{r} \{F \in \langle R \rangle : R = \{x_{1}, \dots, x_{r}\}, x_{i} \in X \}.$

•
$$\operatorname{cr}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$$
.

・ロト ・ 同ト ・ ヨト ・ ヨト

Cactus Rank, Smoothable Rank and Border Rank

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $\operatorname{sr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}.$

Cactus Rank, Smoothable Rank and Border Rank

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $sr_X(F) = \min_r \{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}$ $= \min_r \{F \in \langle \lim_{t \to 0} R(t) \rangle = \langle \lim_{t \to 0} x_1(t), \dots, x_r(t) \rangle \}.$

Cactus Rank, Smoothable Rank and Border Rank

• $X \subset \mathbb{P}^N, F \in \mathbb{P}^N$.

Definition (Cactus Rank)

 $\operatorname{cr}_X(F) = \min\{F \in \langle R \rangle : R \text{ is a subscheme of length } r \text{ in } X\}.$

Definition (Smoothable Rank)

 $sr_X(F) = \min_r \{F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X\}$ $= \min_r \{F \in \langle \lim_{t \to 0} R(t) \rangle = \langle \lim_{t \to 0} x_1(t), \dots, x_r(t) \rangle \}.$

•
$$\sigma_r(X) = \overline{\bigcup\{\langle R \rangle : R = \{x_1, \ldots, x_r\}, x_i \in X\}} \subset \mathbb{P}^N.$$

Definition (Border Rank)

$$\underline{\mathbf{r}}_{X}(F) = \min_{r} \{F \in \sigma_{r}(X)\} = \min_{r} \{F \in \lim_{t \to 0} \langle R(t) \rangle \}.$$

•
$$\underline{\mathbf{r}}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F).$$

• $\operatorname{cr}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F).$

- $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :

- $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :
 - ▶ $\operatorname{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

- $\underline{\mathbf{r}}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :
 - ▶ $\operatorname{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

- $\underline{\mathbf{r}}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :
 - ► $\operatorname{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

 $\operatorname{cr}_X(F) = \operatorname{sr}_X(F) > \underline{\mathbf{r}}_X(F): \ X = \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C \subset \mathbb{P}(A \otimes B \otimes C).$ $F = a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1.$

- $\underline{\mathbf{r}}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :
 - ► $\operatorname{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

• $\operatorname{cr}_X(F) = \operatorname{sr}_X(F) > \underline{\mathbf{r}}_X(F)$: $X = \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C \subset \mathbb{P}(A \otimes B \otimes C)$. $F = a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1$. $\underline{\mathbf{r}}_X(F) = 3$ while $\operatorname{sr}_X(F) = \operatorname{cr}_X(F) = 4$.

- $\underline{\mathbf{r}}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \operatorname{r}_{X}(F)$.
- $\operatorname{cr}_X(F)$ and $\underline{\mathbf{r}}_X(F)$ are not comparable :
 - ► $\operatorname{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

- $\operatorname{cr}_X(F) = \operatorname{sr}_X(F) > \underline{\mathbf{r}}_X(F)$: $X = \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C \subset \mathbb{P}(A \otimes B \otimes C)$. $F = a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1$. $\underline{\mathbf{r}}_X(F) = 3$ while $\operatorname{sr}_X(F) = \operatorname{cr}_X(F) = 4$.
- Higher border rank examples when $\underline{\mathbf{r}}_X(F) < \operatorname{sr}_X(F)$?

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - \bullet Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_{3}$ Two Infinite Series of Wild Polynomials and Their border VSP

•
$$X = \nu_d(\mathbb{P}V) \subset \mathbb{P}^{N_d}$$
, $V \cong \mathbb{C}^{n+1}$ and $F \in S^d V$.

Image: A math a math

•
$$X = \nu_d(\mathbb{P}V) \subset \mathbb{P}^{N_d}$$
, $V \cong \mathbb{C}^{n+1}$ and $F \in S^d V$.

Definition

F is wild if $sr(F) > \underline{\mathbf{r}}(F)$. Otherwise, we say F is tame.

•
$$X = \nu_d(\mathbb{P}V) \subset \mathbb{P}^{N_d}$$
, $V \cong \mathbb{C}^{n+1}$ and $F \in S^d V$.

Definition

F is wild if $sr(F) > \underline{\mathbf{r}}(F)$. Otherwise, we say F is tame.

- Classical: F is tame if n = 1.
- (Buczyńska, Buczyński) If $\underline{\mathbf{r}}(F) \leq \max\{4, d+1\}$, then F is tame.

•
$$X = \nu_d(\mathbb{P}V) \subset \mathbb{P}^{N_d}$$
, $V \cong \mathbb{C}^{n+1}$ and $F \in S^d V$.

Definition

F is wild if $sr(F) > \underline{\mathbf{r}}(F)$. Otherwise, we say *F* is *tame*.

- Classical: F is tame if n = 1.
- (Buczyńska, Buczyński) If $\underline{\mathbf{r}}(F) \leq \max\{4, d+1\}$, then F is tame.

Theorem (Buczyńska, Buczyński, 2014)

For cubic polynomials, F is tame if $n \leq 3$.

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - \bullet Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

3 ightarrow Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

Example(Buczyńska, Buczyński,2014)

$$F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2.$$

F is a wild cubic with $\underline{\mathbf{r}}(F) = 5$ and $\operatorname{cr}(F) = \operatorname{sr}(F) = 6$.

Example(Buczyńska, Buczyński,2014)

$$F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2.$$

F is a wild cubic with $\underline{\mathbf{r}}(F) = 5$ and $\operatorname{cr}(F) = \operatorname{sr}(F) = 6$.

$$F = \lim_{t \to 0} \left(\frac{1}{3} (x_1 + tx_0)^3 - \frac{1}{3} ((x_1 + x_4) + tx_2)^3 + \frac{1}{12} (2x_4 - tx_2)^3 - \frac{1}{9} (x_1 - x_4)^3 + \frac{1}{9} (x_1 + 2x_4)^3 \right).$$

May 27, 2020 11 / 31

Definition

 $F \in S^d V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F) = \det([\frac{\partial F}{\partial x_i \partial x_j}]) = 0.$

Definition

 $F \in S^d V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F) = \det([\frac{\partial F}{\partial x_i \partial x_j}]) = 0.$

Fact

F is a polynomial with vanishing Hessian if and only if $\{\frac{\partial F}{\partial x_0}, \ldots, \frac{\partial F}{\partial x_n}\}$ are algebraically dependent.

Definition

 $F \in S^d V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F) = \det([\frac{\partial F}{\partial x_i \partial x_j}]) = 0.$

Fact

F is a polynomial with vanishing Hessian if and only if $\{\frac{\partial F}{\partial x_0}, \ldots, \frac{\partial F}{\partial x_n}\}$ are algebraically dependent.

• Wild Example:
$$F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2$$
.

Definition

 $F \in S^d V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F) = \det([\frac{\partial F}{\partial x_i \partial x_j}]) = 0.$

Fact

F is a polynomial with vanishing Hessian if and only if $\{\frac{\partial F}{\partial x_0}, \ldots, \frac{\partial F}{\partial x_n}\}$ are algebraically dependent.

• Wild Example:
$$F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2$$
.

Question(Ottaviani)

F is a concise polynomial with vanishing Hessian. Is there a relation between wild polynomials and concise polynomials with vanishing Hessian?

May 27, 2020 12 / 31

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

2 Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - ${\ensuremath{\bullet}}$ Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_3$ Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

• $F \in S^d \mathbb{C}^{n+1}$ is of minimal border rank if $\underline{\mathbf{r}}(F) = n+1$.

• $F \in S^d \mathbb{C}^{n+1}$ is of minimal border rank if $\underline{\mathbf{r}}(F) = n+1$.

Theorem

Let $d \ge 3$ and $F \in S^d V$ be a concise polynomial of minimal border rank. Then:

$$\operatorname{Hess}(F) = 0 \implies F \text{ is wild.}$$

Further, for d = 3, one has the following equivalences:

 $\operatorname{Hess}(F) = 0 \quad \Longleftrightarrow \operatorname{cr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow \operatorname{sr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow F \text{ is wild.}$

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_3$ Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

Classical Apolarity

•
$$F \in S^d V, V = \langle x_0, \ldots, x_n \rangle, \mathbb{P}^n = \mathbb{P}(V^*).$$

•
$$S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$$

Image: A math a math
•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

•
$$S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$$

• Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.

- (日)

•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

•
$$S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$$

• Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.

•
$$\mathcal{I} \subset T$$
 is saturated if $(\mathcal{I}: \langle y_0, \dots, y_n \rangle^{\infty}) = \mathcal{I}.$

- (日)

•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

- $S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$
- Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.

•
$$\mathcal{I} \subset T$$
 is saturated if $(\mathcal{I}: \langle y_0, \ldots, y_n \rangle^{\infty}) = \mathcal{I}.$

Apolarity(Rank)

 $r(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset Ann(F)$ with HF(T/I, d) = r for $d \gg 0$ defining a smooth scheme.

•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

•
$$S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$$

• Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.

•
$$\mathcal{I} \subset T$$
 is saturated if $(\mathcal{I}: \langle y_0, \ldots, y_n \rangle^{\infty}) = \mathcal{I}.$

Apolarity(Rank)

 $r(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset Ann(F)$ with HF(T/I, d) = r for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ defining a smooth scheme.

•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

•
$$S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$$

• Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.

•
$$\mathcal{I} \subset T$$
 is saturated if $(\mathcal{I}: \langle y_0, \dots, y_n \rangle^{\infty}) = \mathcal{I}.$

Apolarity(Rank)

 $r(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset Ann(F)$ with HF(T/I, d) = r for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ defining a smoothable scheme.

•
$$F \in S^d V$$
, $V = \langle x_0, \ldots, x_n \rangle$, $\mathbb{P}^n = \mathbb{P}(V^*)$.

- $S = \operatorname{Sym}^{\bullet} V \cong \mathbb{C}[x_0, \ldots, x_n], \ T = \operatorname{Sym}^{\bullet} V^* = \mathbb{C}[y_0, \ldots, y_n].$
- Apolar ideal: Ann $(F) = \{h \in T \mid h \circ F = 0\}$.
- $\mathcal{I} \subset T$ is saturated if $(\mathcal{I}: \langle y_0, \ldots, y_n \rangle^{\infty}) = \mathcal{I}.$

Apolarity(Rank)

 $r(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset Ann(F)$ with HF(T/I, d) = r for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ defining a smoothable scheme.

Apolarity(Cactus Rank)

 $\operatorname{cr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$.

Apolarity(Cactus Rank)

 $\operatorname{cr}(F) \leq r \iff \exists \text{ a saturated homogeneous ideal } \mathcal{I} \subset \operatorname{Ann}(F) \text{ with } \operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r \text{ for } d \gg 0.$

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ defining a smoothable scheme.

Apolarity(Cactus Rank)

 $\operatorname{cr}(F) \leq r \iff \exists \text{ a saturated homogeneous ideal } \mathcal{I} \subset \operatorname{Ann}(F) \text{ with } \operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r \text{ for } d \gg 0.$

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Apolarity(Cactus Rank)

 $\operatorname{cr}(F) \leq r \iff \exists \text{ a saturated homogeneous ideal } \mathcal{I} \subset \operatorname{Ann}(F) \text{ with } \operatorname{HF}(\mathcal{I}/\mathcal{I}, d) = r \text{ for } d \gg 0.$

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Border Apolarity(Border Rank)(Buczyńska, Buczyński,2019)

 $\underline{\mathbf{r}}(F) \leq r \iff \exists$ a homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = \min\{r, \dim S^d V^*\}$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Apolarity(Cactus Rank)

 $\operatorname{cr}(F) \leq r \iff \exists \text{ a saturated homogeneous ideal } \mathcal{I} \subset \operatorname{Ann}(F) \text{ with } \operatorname{HF}(\mathcal{I}/\mathcal{I}, d) = r \text{ for } d \gg 0.$

Apolarity(Smoothable Rank)

 $\operatorname{sr}(F) \leq r \iff \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Border Apolarity(Border Rank)(Buczyńska, Buczyński, 2019)

 $\underline{\mathbf{r}}(F) \leq r \iff \exists$ a homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(\mathcal{T}/\mathcal{I}, d) = \min\{r, \dim S^d V^*\}$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Wild \iff All ideals realizing border rank are not saturated.

Outline

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

2 Vanishing Hessian Implies Wild

Apolarity and border apolarity

• Concise polynomials of minimal border rank

- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_3$ Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

•
$$\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0y_4, y_1y_3, -y_1y_2 + y_2y_4, y_0y_1 + y_1y_2 + y_3y_4 \rangle.$$

- $\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0 y_4, y_1 y_3, -y_1 y_2 + y_2 y_4, y_0 y_1 + y_1 y_2 + y_3 y_4 \rangle.$
- $\mathcal{I} \neq \mathcal{I}^{sat}$ since $y_0 \in \mathcal{I}^{sat} \setminus \mathcal{I}$.

- $\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0y_4, y_1y_3, -y_1y_2 + y_2y_4, y_0y_1 + y_1y_2 + y_3y_4 \rangle.$
- $\mathcal{I} \neq \mathcal{I}^{sat}$ since $y_0 \in \mathcal{I}^{sat} \setminus \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with deg $\mathcal{J} = \underline{\mathbf{r}}(F) = 5$ are saturated.

Wild Example: $F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2$.

• $\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0y_4, y_1y_3, -y_1y_2 + y_2y_4, y_0y_1 + y_1y_2 + y_3y_4 \rangle.$

•
$$\mathcal{I} \neq \mathcal{I}^{sat}$$
 since $y_0 \in \mathcal{I}^{sat} \setminus \mathcal{I}$.

- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with deg $\mathcal{J} = \underline{\mathbf{r}}(F) = 5$ are saturated.
 - dim $(\operatorname{Sym}^{\bullet} V^*/\mathcal{J})_2 \ge \dim(\operatorname{Sym}^{\bullet} V^*/\operatorname{Ann}(F))_2 = 5.$

- $\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0y_4, y_1y_3, -y_1y_2 + y_2y_4, y_0y_1 + y_1y_2 + y_3y_4 \rangle.$
- $\mathcal{I} \neq \mathcal{I}^{sat}$ since $y_0 \in \mathcal{I}^{sat} \setminus \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with deg $\mathcal{J} = \underline{\mathbf{r}}(F) = 5$ are saturated.
 - dim $(\operatorname{Sym}^{\bullet} V^*/\mathcal{J})_2 \ge \dim(\operatorname{Sym}^{\bullet} V^*/\operatorname{Ann}(F))_2 = 5.$
 - ▶ dim $(\text{Sym}^{\bullet}V^*/\mathcal{J})_2 \leq \deg \mathcal{J} = 5 = (\text{Sym}^{\bullet}V^*/\text{Ann}(F))_2$ if \mathcal{J} is saturated.

Wild Example: $F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2$.

• $\mathcal{I} = \langle \operatorname{Ann}(F)_2 \rangle = \langle (y_0, y_2, y_3)^2, y_0y_4, y_1y_3, -y_1y_2 + y_2y_4, y_0y_1 + y_1y_2 + y_3y_4 \rangle.$

•
$$\mathcal{I} \neq \mathcal{I}^{\mathsf{sat}}$$
 since $y_0 \in \mathcal{I}^{\mathsf{sat}} \setminus \mathcal{I}$.

• Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with deg $\mathcal{J} = \underline{\mathbf{r}}(F) = 5$ are saturated.

- dim $(\operatorname{Sym}^{\bullet} V^*/\mathcal{J})_2 \ge \dim(\operatorname{Sym}^{\bullet} V^*/\operatorname{Ann}(F))_2 = 5.$
- dim(Sym[•]V^{*}/J)₂ ≤ deg J = 5 = (Sym[•]V^{*}/Ann(F))₂ if J is saturated.
- $\mathcal{J}_2 = \operatorname{Ann}(F)_2 \Rightarrow \mathcal{I} \subset \mathcal{J} \Rightarrow \mathcal{I}^{\operatorname{sat}} \subset \mathcal{J}^{\operatorname{sat}} = \mathcal{J} \Rightarrow \mathcal{J} \text{ contains}$ $y_0 \notin \operatorname{Ann}(F) \text{ while } \operatorname{Ann}(F)_1 = \emptyset.$

Theorem (Part I)

Let $d \ge 3$ and $F \in S^d V$ be a concise polynomial of minimal border rank. Then:

 $\operatorname{Hess}(F) = 0 \implies F \text{ is wild.}$

Theorem (Part I)

Let $d \ge 3$ and $F \in S^d V$ be a concise polynomial of minimal border rank. Then:

$$\operatorname{Hess}(F) = 0 \implies F \text{ is wild.}$$

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Lemma

 $R \subset \mathbb{P}^n$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R \rangle = \mathbb{P}^n$. Then $(\mathcal{J}_d)^{\perp}$ is spanned by (n+1) algebraically independent forms.

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Lemma

 $R \subset \mathbb{P}^n$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R \rangle = \mathbb{P}^n$. Then $(\mathcal{J}_d)^{\perp}$ is spanned by (n+1) algebraically independent forms.

Proof.

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Lemma

 $R \subset \mathbb{P}^n$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R \rangle = \mathbb{P}^n$. Then $(\mathcal{J}_d)^{\perp}$ is spanned by (n+1) algebraically independent forms.

Proof.

Let $\mathcal{J} = \mathcal{I}^{\text{sat}}$. \mathcal{I}^{sat} contains no linear form $\Rightarrow \langle R \rangle = \mathbb{P}^n \Rightarrow (\mathcal{I}_{d-1}^{\text{sat}})^{\perp}$ contains (n+1) algebraically independent forms.

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Lemma

 $R \subset \mathbb{P}^n$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R \rangle = \mathbb{P}^n$. Then $(\mathcal{J}_d)^{\perp}$ is spanned by (n+1) algebraically independent forms.

Proof.

Let $\mathcal{J} = \mathcal{I}^{\text{sat}}$. \mathcal{I}^{sat} contains no linear form $\Rightarrow \langle R \rangle = \mathbb{P}^n \Rightarrow (\mathcal{I}_{d-1}^{\text{sat}})^{\perp}$ contains (n+1) algebraically independent forms.

$$(\mathcal{I}_{d-1}^{\mathrm{sat}})^{\perp} \subset (\mathcal{I}_{d-1})^{\perp} = \langle \frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n} \rangle.$$

Claim

Let $\mathcal{I} = \langle \operatorname{Ann}(F)_{d-1} \rangle$. *F* is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\operatorname{sat}}$ contains a linear form.

Lemma

 $R \subset \mathbb{P}^n$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R \rangle = \mathbb{P}^n$. Then $(\mathcal{J}_d)^{\perp}$ is spanned by (n+1) algebraically independent forms.

Proof.

Let $\mathcal{J} = \mathcal{I}^{\text{sat}}$. \mathcal{I}^{sat} contains no linear form $\Rightarrow \langle R \rangle = \mathbb{P}^n \Rightarrow (\mathcal{I}_{d-1}^{\text{sat}})^{\perp}$ contains (n+1) algebraically independent forms.

$$(\mathcal{I}_{d-1}^{\mathrm{sat}})^{\perp} \subset (\mathcal{I}_{d-1})^{\perp} = \langle \frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n} \rangle.$$

 $\{\frac{\partial F}{\partial x_0}, \ldots, \frac{\partial F}{\partial x_n}\}$ are algebraically independent $\Rightarrow \operatorname{Hess}(F) \neq 0$.

Outline

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

2 Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_3$ Two Infinite Series of Wild Polynomials and Their border VSP

Vanishing Hessian and Wild Cubics

Theorem (Part II) Let $F \in S^3 \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then: $\operatorname{Hess}(F) \neq 0 \implies \operatorname{cr}(F) \leq n+1 \iff F$ is not wild.

In particular:

 $\operatorname{Hess}(F) = 0 \quad \Longleftrightarrow \operatorname{cr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow \operatorname{sr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow F \text{ is wild.}$

Vanishing Hessian and Wild Cubics

Theorem (Part II) Let $F \in S^3 \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then: $\operatorname{Hess}(F) \neq 0 \implies \operatorname{cr}(F) \leq n+1 \iff F \text{ is not wild.}$

In particular:

$$\operatorname{Hess}(F) = 0 \quad \Longleftrightarrow \operatorname{cr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow \operatorname{sr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow F \text{ is wild.}$$

Sketch.

< 回 ト < 三 ト <

Vanishing Hessian and Wild Cubics

Theorem (Part II) Let $F \in S^3 \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then: $\operatorname{Hess}(F) \neq 0 \implies \operatorname{cr}(F) \leq n+1 \iff F \text{ is not wild.}$

In particular:

$$\operatorname{Hess}(F) = 0 \quad \Longleftrightarrow \operatorname{cr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow \operatorname{sr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow F \text{ is wild.}$$

Sketch.

 $\operatorname{Hess}(F) \neq 0 \Leftrightarrow T_F$ is the structure tensor of a (n+1)-dimensional smoothable algebra A.

- 4 個 ト 4 ヨ ト 4 ヨ

Theorem (Part II) Let $F \in S^3 \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then: $\operatorname{Hess}(F) \neq 0 \implies \operatorname{cr}(F) \leq n+1 \iff F$ is not wild.

In particular:

$$\operatorname{Hess}(F) = 0 \quad \Longleftrightarrow \operatorname{cr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow \operatorname{sr}(F) > \underline{\mathbf{r}}(F) \quad \Longleftrightarrow F \text{ is wild.}$$

Sketch.

 $\operatorname{Hess}(F) \neq 0 \Leftrightarrow T_F$ is the structure tensor of a (n+1)-dimensional smoothable algebra A. We can use A to construct a scheme of length (n+1) that spans F.

Outline

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

2 Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

$_3$ Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

$$F = v_0 u_0^3 u_1 + v_1 u_0 u_1^3 + v_0^3 v_1^2 \in S^5 \mathbb{C}^4$$

$$F = v_0 u_0^3 u_1 + v_1 u_0 u_1^3 + v_0^3 v_1^2 \in S^5 \mathbb{C}^4$$

• $\operatorname{Hess}(F) \neq 0.$

$$\mathit{F} = \mathit{v}_{0}\mathit{u}_{0}^{3}\mathit{u}_{1} + \mathit{v}_{1}\mathit{u}_{0}\mathit{u}_{1}^{3} + \mathit{v}_{0}^{3}\mathit{v}_{1}^{2} \in \mathit{S}^{5}\mathbb{C}^{4}$$

• $\operatorname{Hess}(F) \neq 0$.

• $HF(T/Ann(F)) = 1 \ 4 \ 10 \ 10 \ 4 \ 1 \ 0 \ \dots$

Hang Huang, Mateusz Michałek, Emanuele V Vanishing Hessian and Wild Polynomials

$$F = v_0 u_0^3 u_1 + v_1 u_0 u_1^3 + v_0^3 v_1^2 \in S^5 \mathbb{C}^4$$

- $\operatorname{Hess}(F) \neq 0.$
- $\operatorname{HF}(T/\operatorname{Ann}(F)) = 1 \ 4 \ 10 \ 10 \ 4 \ 1 \ 0 \ \ldots$
- $\underline{\mathbf{r}}(v_0u_0^3u_1+v_1u_0u_1^3) \leq 7$ and $\underline{\mathbf{r}}(v_0^3v_1^2)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.
A Wild Polynomial with Non-vanishing Hessian

$$F = v_0 u_0^3 u_1 + v_1 u_0 u_1^3 + v_0^3 v_1^2 \in S^5 \mathbb{C}^4$$

- $\operatorname{Hess}(F) \neq 0.$
- $\operatorname{HF}(T/\operatorname{Ann}(F)) = 1 \ 4 \ 10 \ 10 \ 4 \ 1 \ 0 \ \ldots$
- $\underline{\mathbf{r}}(v_0u_0^3u_1+v_1u_0u_1^3) \leq 7$ and $\underline{\mathbf{r}}(v_0^3v_1^2)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.
- $\underline{\mathbf{r}}(F) = 10.$

A Wild Polynomial with Non-vanishing Hessian

$$\mathit{F} = \mathit{v}_{0}\mathit{u}_{0}^{3}\mathit{u}_{1} + \mathit{v}_{1}\mathit{u}_{0}\mathit{u}_{1}^{3} + \mathit{v}_{0}^{3}\mathit{v}_{1}^{2} \in \mathit{S}^{5}\mathbb{C}^{4}$$

- $\operatorname{Hess}(F) \neq 0.$
- $\operatorname{HF}(T/\operatorname{Ann}(F)) = 1 \ 4 \ 10 \ 10 \ 4 \ 1 \ 0 \ \ldots$
- $\underline{\mathbf{r}}(v_0u_0^3u_1+v_1u_0u_1^3) \leq 7 \text{ and } \underline{\mathbf{r}}(v_0^3v_1^2)=3. \text{ So } \underline{\mathbf{r}}(F) \leq 10.$
- $\underline{\mathbf{r}}(F) = 10.$
- $\mathcal{I} = \operatorname{Ann}(F)_{\leq 3}$ is not saturated. This shows $\operatorname{sr}(F) \ge \operatorname{cr}(F) > 10$.

A Wild Polynomial with Non-vanishing Hessian

$$F = v_0 u_0^3 u_1 + v_1 u_0 u_1^3 + v_0^3 v_1^2 \in S^5 \mathbb{C}^4$$

- $\operatorname{Hess}(F) \neq 0.$
- $\operatorname{HF}(T/\operatorname{Ann}(F)) = 1 \ 4 \ 10 \ 10 \ 4 \ 1 \ 0 \ \ldots$
- $\underline{\mathbf{r}}(v_0u_0^3u_1+v_1u_0u_1^3) \leq 7 \text{ and } \underline{\mathbf{r}}(v_0^3v_1^2)=3. \text{ So } \underline{\mathbf{r}}(F) \leq 10.$
- $\underline{\mathbf{r}}(F) = 10.$
- $\mathcal{I} = \operatorname{Ann}(F)_{\leq 3}$ is not saturated. This shows $\operatorname{sr}(F) \geq \operatorname{cr}(F) > 10$.
- *F* is a wild polynomial with non-vanishing Hessian not of minimal border rank.

Outline

Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic

Vanishing Hessian Implies Wild

- Apolarity and border apolarity
- Concise polynomials of minimal border rank
 - Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian

3 ightarrow Two Infinite Series of Wild Polynomials and Their border ${ m VSP}$

•
$$F \in S^d V$$
, $V \cong \mathbb{C}^{n+1}$, $T = \operatorname{Sym}^{\bullet} V^*$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$F \in S^d V$$
, $V \cong \mathbb{C}^{n+1}$, $T = \operatorname{Sym}^{\bullet} V^*$.

Variety of Sums of Powers

VSP(F, r)

$$= \{ \{\ell_1, \ldots, \ell_r\} \in \operatorname{Hilb}_r(\mathbb{P}^n) : \exists \lambda_i \in \mathbb{C} \text{ s.t. } F = \lambda_1 \ell_1^d + \lambda_2 \ell_2^d + \ldots \lambda_r \ell_r^d \}.$$

•
$$F \in S^d V$$
, $V \cong \mathbb{C}^{n+1}$, $T = \operatorname{Sym}^{\bullet} V^*$.

• $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T/\mathcal{I}, d) = h_r(d) = \min\{r, \dim S^d V^*\}, \text{ for } d \ge 0.$

•
$$F \in S^d V$$
, $V \cong \mathbb{C}^{n+1}$, $T = \operatorname{Sym}^{\bullet} V^*$.

Variety of Sums of Powers

VSP(F, r)

$$=\overline{\{\{\ell_1,\ldots,\ell_r\}\in \mathrm{Hilb}_r(\mathbb{P}^n):\exists\lambda_i\in\mathbb{C} \text{ s.t. } F=\lambda_1\ell_1^d+\lambda_2\ell_2^d+\ldots\lambda_r\ell_r^d\}}.$$

- $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T/\mathcal{I}, d) = h_r(d) = \min\{r, \dim S^d V^*\}, \text{ for } d \ge 0.$
- Slip_{r,ℙⁿ} ⊂ Hilb^{h_r,ℙⁿ}: irreducible component containing the radical ideals of r distinct points with a generic Hilbert function.

•
$$F \in S^d V$$
, $V \cong \mathbb{C}^{n+1}$, $T = \operatorname{Sym}^{\bullet} V^*$.

Variety of Sums of Powers

VSP(F, r)

 $=\overline{\{\{\ell_1,\ldots,\ell_r\}\in \mathrm{Hilb}_r(\mathbb{P}^n):\exists\lambda_i\in\mathbb{C} \text{ s.t. } F=\lambda_1\ell_1^d+\lambda_2\ell_2^d+\ldots\lambda_r\ell_r^d\}}.$

- $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T/\mathcal{I}, d) = h_r(d) = \min\{r, \dim S^d V^*\}, \text{ for } d \ge 0.$
- Slip_{r,ℙⁿ} ⊂ Hilb^{h_r,ℙⁿ}: irreducible component containing the radical ideals of r distinct points with a generic Hilbert function.

Border Variety of Sums of Powers(Buczyńska, Buczyński,2019) $\underline{\text{VSP}}(F, r) = \left\{ \mathcal{I} \in \text{Slip}_{r,\mathbb{P}^n} \mid \mathcal{I} \subset \text{Ann}(F) \subset T \right\}.$

Wild Polynomials of Higher Degree and Their \underline{VSP}

$$G_d = v_0 u_1^{d-1} + v_1 u_0 u_1^{d-2} + \ldots + v_{d-1} u_0^{d-1} = \sum_{i=0}^{d-1} v_i u_0^i u_1^{d-1-i}.$$

Wild Polynomials of Higher Degree and Their $\underline{\text{VSP}}$

$$G_d = v_0 u_1^{d-1} + v_1 u_0 u_1^{d-2} + \ldots + v_{d-1} u_0^{d-1} = \sum_{i=0}^{d-1} v_i u_0^i u_1^{d-1-i}.$$

• G_d are concise polynomials and $\underline{\mathbf{r}}(G_d) = d + 2$.

Wild Polynomials of Higher Degree and Their \underline{VSP}

$$G_d = v_0 u_1^{d-1} + v_1 u_0 u_1^{d-2} + \ldots + v_{d-1} u_0^{d-1} = \sum_{i=0}^{d-1} v_i u_0^i u_1^{d-1-i}.$$

- G_d are concise polynomials and $\underline{\mathbf{r}}(G_d) = d + 2$.
- $\operatorname{Hess}(G_d) = 0.$

Wild Polynomials of Higher Degree and Their $\underline{\text{VSP}}$

$$G_d = v_0 u_1^{d-1} + v_1 u_0 u_1^{d-2} + \ldots + v_{d-1} u_0^{d-1} = \sum_{i=0}^{d-1} v_i u_0^i u_1^{d-1-i}.$$

- G_d are concise polynomials and $\underline{\mathbf{r}}(G_d) = d + 2$.
- $\operatorname{Hess}(G_d) = 0.$
- G_d is an infinite series of wild polynomials of degree d.

Wild Polynomials of Higher Degree and Their $\underline{\text{VSP}}$

$$G_d = v_0 u_1^{d-1} + v_1 u_0 u_1^{d-2} + \ldots + v_{d-1} u_0^{d-1} = \sum_{i=0}^{d-1} v_i u_0^i u_1^{d-1-i}.$$

- G_d are concise polynomials and $\underline{\mathbf{r}}(G_d) = d + 2$.
- $\operatorname{Hess}(G_d) = 0.$
- G_d is an infinite series of wild polynomials of degree d.

Proposition

 $\underline{\mathrm{VSP}}(G_d, d+2) \text{ is isomorphic to the projective space} \\ \mathbb{P}^{d+2} \cong \mathbb{P}(S^{d+2}\mathbb{C}^2) \cong S^{d+2}\mathbb{P}^1.$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

- n = 3k + 1.
- F_n are concise polynomials and $\underline{\mathbf{r}}(F_n) = n + 1$.

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

- n = 3k + 1.
- F_n are concise polynomials and $\underline{\mathbf{r}}(F_n) = n + 1$.
- $\operatorname{Hess}(F_n) = 0.$

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

- n = 3k + 1.
- F_n are concise polynomials and $\underline{\mathbf{r}}(F_n) = n + 1$.
- $\operatorname{Hess}(F_n) = 0.$
- F_n is an infinite series of wild cubics.

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

- n = 3k + 1.
- F_n are concise polynomials and $\underline{\mathbf{r}}(F_n) = n + 1$.
- $\operatorname{Hess}(F_n) = 0.$
- F_n is an infinite series of wild cubics.

Proposition

When
$$k = 1$$
, $\underline{\text{VSP}}(F_4, 5) = \underline{\text{VSP}}(G_3, 5) \cong \mathbb{P}^4$.

$$F_n = x_0 x_1^2 + x_1 x_2 x_4 + x_3 x_4^2 + x_4 x_5 x_7 + x_6 x_7^2 + x_8 x_7 x_{10} + x_9 x_{10}^2 + \dots + x_{n-4} x_{n-3}^2 + x_{n-3} x_{n-2} x_n + x_{n-1} x_n^2.$$

- n = 3k + 1.
- F_n are concise polynomials and $\underline{\mathbf{r}}(F_n) = n + 1$.
- $\operatorname{Hess}(F_n) = 0.$
- F_n is an infinite series of wild cubics.

Proposition

When k = 1, $\underline{\text{VSP}}(F_4, 5) = \underline{\text{VSP}}(G_3, 5) \cong \mathbb{P}^4$. When $k \ge 3 \Leftrightarrow n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proposition

When $n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proposition

When $n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proof Sketch

Hang Huang, Mateusz Michałek, Emanuele 🗸 Vanishing Hessian and Wild Polynomials

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proposition

When $n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle$ is a chain of \mathbb{P}^1 's. Let C_k be this chain of \mathbb{P}^1 's.

Proposition

When $n \ge 10$, $\underline{VSP}(F_n, n+1)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle$ is a chain of \mathbb{P}^1 's. Let C_k be this chain of \mathbb{P}^1 's.

Proposition

When $n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle$ is a chain of \mathbb{P}^1 's. Let C_k be this chain of \mathbb{P}^1 's. $\mathcal{J} \in \underline{\operatorname{VSP}}(F_n, n+1) \Rightarrow$ $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle \subseteq \mathcal{J}$. \mathcal{J} defines a length (n+1) scheme supported on C_k .

(I) < (II) <

Proposition

When $n \ge 10$, $\underline{VSP}(F_n, n+1)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle$ is a chain of \mathbb{P}^1 's. Let C_k be this chain of \mathbb{P}^1 's. $\mathcal{J} \in \underline{\operatorname{VSP}}(F_n, n+1) \Rightarrow$ $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle \subseteq \mathcal{J}$. \mathcal{J} defines a length (n+1) scheme supported on C_k .

Figure: $\mathcal{J}(R) \in \underline{\mathrm{VSP}}(F_{13}, 14)$ and $R \subseteq C_4$

(I) < (II) <

$$\psi_n: \underline{\mathrm{VSP}}(F_n, n+1) \to \mathrm{Hilb}_{n+1}(C_k),$$

Proposition

When $n \ge 10$, $\underline{\text{VSP}}(F_n, n+1)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle$ is a chain of \mathbb{P}^1 's. Let C_k be this chain of \mathbb{P}^1 's. $\mathcal{J} \in \underline{\operatorname{VSP}}(F_n, n+1) \Rightarrow$ $\mathcal{I} = \langle \operatorname{Ann}(F_n)_2 \rangle \subseteq \mathcal{J}$. \mathcal{J} defines a length (n+1) scheme supported on C_k .

Figure: $\mathcal{J}(R) \in \underline{\mathrm{VSP}}(F_{13}, 14)$ and $R \subseteq C_4$

< □ > < □ > < □ > < □ > < □ > < □ >

$$\psi_n: \underline{\mathrm{VSP}}(F_n, n+1) \to \mathrm{Hilb}_{n+1}(C_k),$$

 $\operatorname{Im}(\psi_n)$ is reducible.

F is a concise polynomial of degree *d* > 3 and of minimal border rank, *F* is wild ⇒ Hess(*F*) = 0?

- *F* is a concise polynomial of degree *d* > 3 and of minimal border rank, *F* is wild ⇒ Hess(*F*) = 0?
- Is $\underline{\text{VSP}}(F_7, 8)$ irreducible?

- *F* is a concise polynomial of degree *d* > 3 and of minimal border rank, *F* is wild ⇒ Hess(*F*) = 0?
- Is $\underline{\text{VSP}}(F_7, 8)$ irreducible?
- What is the dimension of $\underline{\text{VSP}}(F_7, 8)$?

- *F* is a concise polynomial of degree *d* > 3 and of minimal border rank, *F* is wild ⇒ Hess(*F*) = 0?
- Is <u>VSP</u>(*F*₇, 8) irreducible?
- What is the dimension of $\underline{\text{VSP}}(F_7, 8)$?
- Further description of $\underline{\text{VSP}}(F_n, n+1)$?
- F is a concise polynomial of degree d > 3 and of minimal border rank, F is wild ⇒ Hess(F) = 0?
- Is <u>VSP</u>(*F*₇, 8) irreducible?
- What is the dimension of $\underline{\text{VSP}}(F_7, 8)$?
- Further description of $\underline{\text{VSP}}(F_n, n+1)$?
- What about wild polynomials of higher border rank?

- F is a concise polynomial of degree d > 3 and of minimal border rank, F is wild ⇒ Hess(F) = 0?
- Is <u>VSP</u>(*F*₇, 8) irreducible?
- What is the dimension of $\underline{\text{VSP}}(F_7, 8)$?
- Further description of $\underline{\text{VSP}}(F_n, n+1)$?
- What about wild polynomials of higher border rank?

• . . .