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Rank, Cactus Rank and Smoothable Rank

X ⊂ PN ,F ∈ PN .

Definition (Cactus Rank)

crX (F ) = min
r
{F ∈ 〈R〉:R is a subscheme of length r in X}.

Definition (Smoothable Rank)

srX (F ) = min
r
{F ∈ 〈R〉:R is a smoothable subscheme of length r in X}.

Definition (Rank)

rX (F ) = min
r
{F ∈ 〈R〉:R is smooth subscheme of length r in X}

= min
r
{F ∈ 〈R〉:R = {x1, . . . , xr}, xi ∈ X}.

crX (F ) ≤ srX (F ) ≤ rX (F ).
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Cactus Rank, Smoothable Rank and Border Rank

X ⊂ PN ,F ∈ PN .

Definition (Cactus Rank)

crX (F ) = min
r
{F ∈ 〈R〉:R is a subscheme of length r in X}.

Definition (Smoothable Rank)

srX (F ) = min
r
{F ∈ 〈R〉:R is a smoothable subscheme of length r in X}.

σr (X ) =
⋃
{〈R〉:R = {x1, . . . , xr}, xi ∈ X} ⊂ PN .

Definition (Border Rank)

rX (F ) = min
r
{F ∈ σr (X )} = min

r
{F ∈ lim

t→0
〈R(t)〉}.
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Differences Between Ranks

rX (F ) ≤ srX (F ) ≤ rX (F ).

crX (F ) ≤ srX (F ) ≤ rX (F ).

crX (F ) and rX (F ) are not comparable :

I crX (F ) < rX (F ): X ⊂ PN is a curve with a singularity p ∈ X such
that TpX = PN .

For a generic F ∈ PN , crX (F ) = 2 while rX (F ) ≤ srX (F ) could be
arbitraryly large if N � 0.

I crX (F ) = srX (F ) > rX (F ): X = PA× PB × PC ⊂ P(A⊗ B ⊗ C ).
F = a2⊗b1⊗c2 +a2⊗b2⊗c1 +a1⊗b1⊗c3 +a1⊗b3⊗c1 +a3⊗b1⊗c1.

rX (F ) = 3 while srX (F ) = crX (F ) = 4.

Higher border rank examples when rX (F ) < srX (F )?
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Polynomials: Tame and Wild

X = νd(PV ) ⊂ PNd , V ∼= Cn+1 and F ∈ SdV .

Definition

F is wild if sr(F ) > r(F ). Otherwise, we say F is tame.

Classical: F is tame if n = 1.

(Buczyńska, Buczyński) If r(F ) ≤ max{4, d + 1}, then F is tame.

Theorem (Buczyńska, Buczyński,2014)

For cubic polynomials, F is tame if n ≤ 3.
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First Example of a Wild Cubic

Example(Buczyńska, Buczyński,2014)

F = x0x
2
1 − x2(x1 + x4)2 + x3x

2
4 .

F is a wild cubic with r(F ) = 5 and cr(F ) = sr(F ) = 6.

F = lim
t→0

(
1

3
(x1 + tx0)3 − 1

3
((x1 + x4) + tx2)3 +

1

12
(2x4 − tx2)3

− 1

9
(x1 − x4)3 +

1

9
(x1 + 2x4)3).
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Polynomials of Vanishing Hessian

Definition

F ∈ SdV is a polynomial with vanishing Hessian if
Hess(F ) = det([ ∂F

∂xi∂xj
]) = 0.

Fact

F is a polynomial with vanishing Hessian if and only if { ∂F∂x0
, . . . , ∂F

∂xn
} are

algebraically dependent.

Wild Example: F = x0x
2
1 − x2(x1 + x4)2 + x3x

2
4 .

Question(Ottaviani)

F is a concise polynomial with vanishing Hessian.
Is there a relation between wild polynomials and concise polynomials with
vanishing Hessian?
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Vanishing Hessian and Wild Polynomials

F ∈ SdCn+1 is of minimal border rank if r(F ) = n + 1.

Theorem

Let d ≥ 3 and F ∈ SdV be a concise polynomial of minimal border rank.
Then:

Hess(F ) = 0 =⇒ F is wild.

Further, for d = 3, one has the following equivalences:

Hess(F ) = 0 ⇐⇒ cr(F ) > r(F ) ⇐⇒ sr(F ) > r(F ) ⇐⇒ F is wild.
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Classical Apolarity

F ∈ SdV , V = 〈x0, . . . , xn〉, Pn = P(V ∗).
S = Sym•V ∼= C[x0, . . . , xn], T = Sym•V ∗ = C[y0, . . . , yn].

Apolar ideal: Ann(F ) = {h ∈ T | h ◦ F = 0} .
I ⊂ T is saturated if (I: 〈y0, . . . , yn〉∞) = I.

Apolarity(Rank)

r(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I , d) = r for d � 0 defining a smooth scheme.

Apolarity(Smoothable Rank)

sr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0 defining a smooth scheme.

Apolarity(Cactus Rank)

cr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0.
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Border Apolarity and Wild Polynomials

Apolarity(Cactus Rank)

cr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0.

Apolarity(Smoothable Rank)

sr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0 defining a smoothable scheme.

Border Apolarity(Border Rank)(Buczyńska, Buczyński,2019)

r(F ) ≤ r ⇐⇒ ∃ a homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = min{r , dimSdV ∗} s.t. I is a flat limit of saturated ideals
defining r distinct points.

Wild ⇐⇒ All ideals realizing border rank are not saturated.
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r(F ) ≤ r ⇐⇒ ∃ a homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = min{r , dimSdV ∗} s.t. I is a flat limit of saturated ideals
defining r distinct points.

Wild ⇐⇒ All ideals realizing border rank are not saturated.

Hang Huang, Mateusz Micha lek, Emanuele Ventura ( Texas A&M University, Max Planck Institute, University of Bern)Vanishing Hessian and Wild Polynomials May 27, 2020 17 / 31



Border Apolarity and Wild Polynomials

Apolarity(Cactus Rank)

cr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0.

Apolarity(Smoothable Rank)

sr(F ) ≤ r ⇐⇒ ∃ a saturated homogeneous ideal I ⊂ Ann(F ) with
HF(T/I, d) = r for d � 0 s.t. I is a flat limit of saturated ideals defining
r distinct points.

Border Apolarity(Border Rank)(Buczyńska, Buczyński,2019)
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Concise Polynomials of Minimal Border Rank

Wild Example: F = x0x
2
1 − x2(x1 + x4)2 + x3x

2
4 .

I = 〈Ann(F )2〉 =
〈(y0, y2, y3)2, y0y4, y1y3,−y1y2 + y2y4, y0y1 + y1y2 + y3y4〉.
I 6= Isat since y0 ∈ Isat\I.

Claim: No J ⊂ Ann(F ) with degJ = r(F ) = 5 are saturated.

I dim(Sym•V ∗/J )2 ≥ dim(Sym•V ∗/Ann(F ))2 = 5.
I dim(Sym•V ∗/J )2 ≤ degJ = 5 = (Sym•V ∗/Ann(F ))2 if J is

saturated.
I J2 = Ann(F )2 ⇒ I ⊂ J ⇒ Isat ⊂ J sat = J ⇒ J contains

y0 /∈ Ann(F ) while Ann(F )1 = ∅.
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Concise Polynomials of Minimal Border Rank

Theorem (Part I)

Let d ≥ 3 and F ∈ SdV be a concise polynomial of minimal border rank.
Then:

Hess(F ) = 0 =⇒ F is wild.

Claim

Let I = 〈Ann(F )d−1〉. F is a concise polynomial with vanishing Hessian
then Isat contains a linear form.
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Concise Polynomials of Minimal Border Rank

Claim

Let I = 〈Ann(F )d−1〉. F is a concise polynomial with vanishing Hessian
then Isat contains a linear form.

Lemma

R ⊂ Pn is a scheme defined by the saturated ideal J such that 〈R〉 = Pn.
Then (Jd)⊥ is spanned by (n + 1) algebraically independent forms.

Proof.

Let J = Isat. Isat contains no linear form ⇒ 〈R〉 = Pn ⇒ (Isatd−1)⊥

contains (n + 1) algebraically independent forms.

(Isatd−1)⊥ ⊂ (Id−1)⊥ = 〈 ∂F
∂x0

, . . . ,
∂F

∂xn
〉.

{ ∂F∂x0
, . . . , ∂F

∂xn
} are algebraically independent ⇒ Hess(F ) 6= 0.
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Vanishing Hessian and Wild Cubics

Theorem (Part II)

Let F ∈ S3Cn+1 be a concise cubic of minimal border rank. Then:

Hess(F ) 6= 0 =⇒ cr(F ) ≤ n + 1 ⇐⇒ F is not wild.

In particular:

Hess(F ) = 0 ⇐⇒ cr(F ) > r(F ) ⇐⇒ sr(F ) > r(F ) ⇐⇒ F is wild.

Sketch.

Hess(F ) 6= 0 ⇔ TF is the structure tensor of a (n + 1)-dimensional
smoothable algebra A.
We can use A to construct a scheme of length (n + 1) that spans F .
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A Wild Polynomial with Non-vanishing Hessian

F = v0u
3
0u1 + v1u0u

3
1 + v3

0 v
2
1 ∈ S5C4

Hess(F ) 6= 0.

HF(T/Ann(F )) = 1 4 10 10 4 1 0 . . ..

r(v0u
3
0u1 + v1u0u

3
1) ≤ 7 and r(v3

0 v
2
1 ) = 3. So r(F ) ≤ 10.

r(F ) = 10.

I = Ann(F )≤3 is not saturated. This shows sr(F ) ≥ cr(F ) > 10.

F is a wild polynomial with non-vanishing Hessian not of minimal
border rank.
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VSP and Border VSP

F ∈ SdV , V ∼= Cn+1, T = Sym•V ∗.

Variety of Sums of Powers

VSP(F , r)

= {{`1, . . . , `r} ∈ Hilbr (Pn):∃λi ∈ C s.t. F = λ1`d1 + λ2`d2 + . . . λr `dr }.

I ⊂ T with Hilbert polynomial r has a generic Hilbert function if:
HF(T/I, d) = hr (d) = min{r , dimSdV ∗}, for d ≥ 0.

Slipr ,Pn ⊂ Hilbhr ,P
n

T : irreducible component containing the radical
ideals of r distinct points with a generic Hilbert function.

Border Variety of Sums of Powers(Buczyńska, Buczyński,2019)

VSP(F , r) =
{
I ∈ Slipr ,Pn | I ⊂ Ann(F ) ⊂ T

}
.
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Wild Polynomials of Higher Degree and Their VSP

Gd = v0u
d−1
1 + v1u0u

d−2
1 + . . . vd−1u

d−1
0 =

d−1∑
i=0

viu
i
0u

d−1−i
1 .

Gd are concise polynomials and r(Gd) = d + 2.

Hess(Gd) = 0.

Gd is an infinite series of wild polynomials of degree d .

Proposition

VSP(Gd , d + 2) is isomorphic to the projective space
Pd+2 ∼= P(Sd+2C2) ∼= Sd+2P1.
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An Infinite Series of Wild Cubics and Their VSP

Fn = x0x
2
1 + x1x2x4 + x3x

2
4 + x4x5x7 + x6x

2
7 + x8x7x10

+ x9x
2
10 + · · ·+ xn−4x

2
n−3 + xn−3xn−2xn + xn−1x

2
n .

n = 3k + 1.

Fn are concise polynomials and r(Fn) = n + 1.

Hess(Fn) = 0.

Fn is an infinite series of wild cubics.

Proposition

When k = 1, VSP(F4, 5) = VSP(G3, 5) ∼= P4.

When k ≥ 3⇔ n ≥ 10, VSP(Fn, n + 1) are reducible.
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An Infinite Series of Wild Cubics and Their VSP

Proposition

When n ≥ 10, VSP(Fn, n + 1) are reducible.

Proof Sketch

Projective scheme defined by
I = 〈Ann(Fn)2〉 is a chain of
P1’s. Let Ck be this chain of
P1’s. J ∈ VSP(Fn, n + 1)⇒
I = 〈Ann(Fn)2〉 ⊆ J . J defines
a length (n + 1) scheme
supported on Ck .

P(〈x1, x4〉)

P(〈x4, x7〉) P(〈x7, x10〉)

P(〈x10, x13〉)

Figure: J (R) ∈ VSP(F13, 14) and R ⊆ C4

ψn : VSP(Fn, n + 1)→ Hilbn+1(Ck),

Im(ψn) is reducible.
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Further Questions

F is a concise polynomial of degree d > 3 and of minimal border
rank, F is wild ⇒ Hess(F ) = 0?

Is VSP(F7, 8) irreducible?

What is the dimension of VSP(F7, 8)?

Further description of VSP(Fn, n + 1)?

What about wild polynomials of higher border rank?

. . .
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