Vanishing Hessian and Wild Polynomials

Hang Huang ${ }^{1}$ Mateusz Michałek ${ }^{2}$ Emanuele Ventura ${ }^{3}$

${ }^{1}$ Texas A\&M University
${ }^{2}$ Max Planck Institute
${ }^{3}$ University of Bern

May 27, 2020

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank - Wild cubic $=$ cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic $=$ cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Rank, Cactus Rank and Smoothable Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Rank, Cactus Rank and Smoothable Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\}
$$

Rank, Cactus Rank and Smoothable Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\}
$$

Definition (Smoothable Rank)

$$
\operatorname{sr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\}
$$

Rank, Cactus Rank and Smoothable Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\} .
$$

Definition (Smoothable Rank)

$$
\operatorname{sr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\}
$$

Definition (Rank)

$$
\begin{aligned}
\mathrm{r}_{X}(F) & =\min _{r}\{F \in\langle R\rangle: R \text { is smooth subscheme of length } r \text { in } X\} \\
& =\min _{r}\left\{F \in\langle R\rangle: R=\left\{x_{1}, \ldots, x_{r}\right\}, x_{i} \in X\right\}
\end{aligned}
$$

Rank, Cactus Rank and Smoothable Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\} .
$$

Definition (Smoothable Rank)

$$
\operatorname{sr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\}
$$

Definition (Rank)

$$
\begin{aligned}
\mathrm{r}_{X}(F) & =\min _{r}\{F \in\langle R\rangle: R \text { is smooth subscheme of length } r \text { in } X\} \\
& =\min _{r}\left\{F \in\langle R\rangle: R=\left\{x_{1}, \ldots, x_{r}\right\}, x_{i} \in X\right\}
\end{aligned}
$$

$$
\text { - } \operatorname{cr}_{x}(F) \leq \operatorname{sr}_{x}(F) \leq \operatorname{rr}_{x}(F) .
$$

Cactus Rank, Smoothable Rank and Border Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\} .
$$

Definition (Smoothable Rank)

$$
\operatorname{sr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\}
$$

Cactus Rank, Smoothable Rank and Border Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\}
$$

Definition (Smoothable Rank)

$$
\begin{aligned}
\operatorname{sr}_{X}(F) & =\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\} \\
& =\min _{r}\left\{F \in\left\langle\lim _{t \rightarrow 0} R(t)\right\rangle=\left\langle\lim _{t \rightarrow 0} x_{1}(t), \ldots, x_{r}(t)\right\rangle\right\}
\end{aligned}
$$

Cactus Rank, Smoothable Rank and Border Rank

- $X \subset \mathbb{P}^{N}, F \in \mathbb{P}^{N}$.

Definition (Cactus Rank)

$$
\operatorname{cr}_{X}(F)=\min _{r}\{F \in\langle R\rangle: R \text { is a subscheme of length } r \text { in } X\}
$$

Definition (Smoothable Rank)

$$
\begin{aligned}
\operatorname{sr}_{X}(F) & =\min _{r}\{F \in\langle R\rangle: R \text { is a smoothable subscheme of length } r \text { in } X\} \\
& =\min _{r}\left\{F \in\left\langle\lim _{t \rightarrow 0} R(t)\right\rangle=\left\langle\lim _{t \rightarrow 0} x_{1}(t), \ldots, x_{r}(t)\right\rangle\right\}
\end{aligned}
$$

$$
\text { - } \sigma_{r}(X)=\overline{\bigcup\left\{\langle R\rangle: R=\left\{x_{1}, \ldots, x_{r}\right\}, x_{i} \in X\right\}} \subset \mathbb{P}^{N} \text {. }
$$

Definition (Border Rank)

$$
\underline{\underline{r}}_{X}(F)=\min _{r}\left\{F \in \sigma_{r}(X)\right\}=\min _{r}\left\{F \in \lim _{t \rightarrow 0}\langle R(t)\rangle\right\} .
$$

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :
- $\operatorname{cr}_{X}(F)<\underline{\mathbf{r}}_{X}(F): X \subset \mathbb{P}^{N}$ is a curve with a singularity $p \in X$ such that $T_{p} X=\mathbb{P}^{N}$.

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :
- $\operatorname{cr}_{X}(F)<\underline{\mathbf{r}}_{X}(F): X \subset \mathbb{P}^{N}$ is a curve with a singularity $p \in X$ such that $T_{p} X=\mathbb{P}^{N}$.
For a generic $F \in \mathbb{P}^{N}, \operatorname{cr}_{X}(F)=2$ while $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F)$ could be arbitraryly large if $N \gg 0$.

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :
- $\operatorname{cr}_{X}(F)<\underline{\mathbf{r}}_{X}(F): X \subset \mathbb{P}^{N}$ is a curve with a singularity $p \in X$ such that $T_{p} X=\mathbb{P}^{N}$.
For a generic $F \in \mathbb{P}^{N}, \operatorname{cr}_{X}(F)=2$ while $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F)$ could be arbitraryly large if $N \gg 0$.
- $\operatorname{cr}_{X}(F)=\operatorname{sr}_{X}(F)>\underline{\mathbf{r}}_{X}(F): X=\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C \subset \mathbb{P}(A \otimes B \otimes C)$. $F=a_{2} \otimes b_{1} \otimes c_{2}+a_{2} \otimes b_{2} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{3}+a_{1} \otimes b_{3} \otimes c_{1}+a_{3} \otimes b_{1} \otimes c_{1}$.

Differences Between Ranks

- $\underline{r}_{x}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :
- $\operatorname{cr}_{X}(F)<\underline{\mathbf{r}}_{X}(F): X \subset \mathbb{P}^{N}$ is a curve with a singularity $p \in X$ such that $T_{p} X=\mathbb{P}^{N}$.
For a generic $F \in \mathbb{P}^{N}, \operatorname{cr}_{X}(F)=2$ while $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F)$ could be arbitraryly large if $N \gg 0$.
- $\operatorname{cr}_{X}(F)=\operatorname{sr}_{X}(F)>\underline{\mathbf{r}}_{X}(F): X=\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C \subset \mathbb{P}(A \otimes B \otimes C)$. $F=a_{2} \otimes b_{1} \otimes c_{2}+a_{2} \otimes b_{2} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{3}+a_{1} \otimes b_{3} \otimes c_{1}+a_{3} \otimes b_{1} \otimes c_{1}$. $\underline{\mathbf{r}}_{X}(F)=3$ while $\operatorname{sr}_{X}(F)=\operatorname{cr}_{X}(F)=4$.

Differences Between Ranks

- $\underline{r}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F) \leq \operatorname{sr}_{X}(F) \leq \mathrm{r}_{X}(F)$.
- $\operatorname{cr}_{X}(F)$ and $\underline{\mathbf{r}}_{X}(F)$ are not comparable :
- $\operatorname{cr}_{X}(F)<\underline{\mathbf{r}}_{X}(F): X \subset \mathbb{P}^{N}$ is a curve with a singularity $p \in X$ such that $T_{p} X=\mathbb{P}^{N}$.
For a generic $F \in \mathbb{P}^{N}, \operatorname{cr}_{X}(F)=2$ while $\underline{\mathbf{r}}_{X}(F) \leq \operatorname{sr}_{X}(F)$ could be arbitraryly large if $N \gg 0$.
- $\operatorname{cr}_{X}(F)=\operatorname{sr}_{X}(F)>\underline{\mathbf{r}}_{X}(F): X=\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C \subset \mathbb{P}(A \otimes B \otimes C)$. $F=a_{2} \otimes b_{1} \otimes c_{2}+a_{2} \otimes b_{2} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{3}+a_{1} \otimes b_{3} \otimes c_{1}+a_{3} \otimes b_{1} \otimes c_{1}$. $\underline{\mathbf{r}}_{x}(F)=3$ while $\operatorname{sr}_{X}(F)=\operatorname{cr}_{X}(F)=4$.
- Higher border rank examples when $\underline{\mathbf{r}}_{X}(F)<\operatorname{sr}_{X}(F)$?

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Polynomials: Tame and Wild

- $X=\nu_{d}(\mathbb{P} V) \subset \mathbb{P}^{N_{d}}, V \cong \mathbb{C}^{n+1}$ and $F \in S^{d} V$.

Polynomials: Tame and Wild

- $X=\nu_{d}(\mathbb{P} V) \subset \mathbb{P}^{N_{d}}, V \cong \mathbb{C}^{n+1}$ and $F \in S^{d} V$.

Definition
 F is wild if $\operatorname{sr}(F)>\underline{\mathbf{r}}(F)$. Otherwise, we say F is tame.

Polynomials: Tame and Wild

- $X=\nu_{d}(\mathbb{P} V) \subset \mathbb{P}^{N_{d}}, V \cong \mathbb{C}^{n+1}$ and $F \in S^{d} V$.

Definition

F is wild if $\operatorname{sr}(F)>\underline{\mathbf{r}}(F)$. Otherwise, we say F is tame.

- Classical: F is tame if $n=1$.
- (Buczyńska, Buczyński) If $\underline{\mathbf{r}}(F) \leq \max \{4, d+1\}$, then F is tame.

Polynomials: Tame and Wild

- $X=\nu_{d}(\mathbb{P} V) \subset \mathbb{P}^{N_{d}}, V \cong \mathbb{C}^{n+1}$ and $F \in S^{d} V$.

Definition

F is wild if $\operatorname{sr}(F)>\underline{\mathbf{r}}(F)$. Otherwise, we say F is tame.

- Classical: F is tame if $n=1$.
- (Buczyńska, Buczyński) If $\underline{r}(F) \leq \max \{4, d+1\}$, then F is tame.

Theorem (Buczyńska, Buczyński,2014)
For cubic polynomials, F is tame if $n \leq 3$.

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic $=$ cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

First Example of a Wild Cubic

Example(Buczyńska, Buczyński,2014)

$$
F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2} .
$$

F is a wild cubic with $\underline{\mathbf{r}}(F)=5$ and $\operatorname{cr}(F)=\operatorname{sr}(F)=6$.

First Example of a Wild Cubic

Example(Buczyńska, Buczyński,2014)

$$
F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2} .
$$

F is a wild cubic with $\underline{\mathbf{r}}(F)=5$ and $\operatorname{cr}(F)=\operatorname{sr}(F)=6$.

$$
\begin{aligned}
F=\lim _{t \rightarrow 0}\left(\frac{1}{3}\left(x_{1}+t x_{0}\right)^{3}-\frac{1}{3}\left(\left(x_{1}+x_{4}\right)\right.\right. & \left.+t x_{2}\right)^{3}+\frac{1}{12}\left(2 x_{4}-t x_{2}\right)^{3} \\
& \left.-\frac{1}{9}\left(x_{1}-x_{4}\right)^{3}+\frac{1}{9}\left(x_{1}+2 x_{4}\right)^{3}\right) .
\end{aligned}
$$

Polynomials of Vanishing Hessian

Definition

$F \in S^{d} V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F)=\operatorname{det}\left(\left[\frac{\partial F}{\partial x_{i} \partial x_{j}}\right]\right)=0$.

Polynomials of Vanishing Hessian

Definition

$F \in S^{d} V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F)=\operatorname{det}\left(\left[\frac{\partial F}{\partial x_{i} \partial x_{j}}\right]\right)=0$.

Fact

F is a polynomial with vanishing Hessian if and only if $\left\{\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\}$ are algebraically dependent.

Polynomials of Vanishing Hessian

Definition

$F \in S^{d} V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F)=\operatorname{det}\left(\left[\frac{\partial F}{\partial x_{i} \partial x_{j}}\right]\right)=0$.

Fact

F is a polynomial with vanishing Hessian if and only if $\left\{\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\}$ are algebraically dependent.

- Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

Polynomials of Vanishing Hessian

Definition

$F \in S^{d} V$ is a polynomial with vanishing Hessian if $\operatorname{Hess}(F)=\operatorname{det}\left(\left[\frac{\partial F}{\partial x_{i} \partial x_{j}}\right]\right)=0$.

Fact

F is a polynomial with vanishing Hessian if and only if $\left\{\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\}$ are algebraically dependent.

- Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

Question(Ottaviani)

F is a concise polynomial with vanishing Hessian.
Is there a relation between wild polynomials and concise polynomials with vanishing Hessian?

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank - Wild cubic $=$ cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Vanishing Hessian and Wild Polynomials

- $F \in S^{d} \mathbb{C}^{n+1}$ is of minimal border rank if $\underline{\mathbf{r}}(F)=n+1$.

Vanishing Hessian and Wild Polynomials

- $F \in S^{d} \mathbb{C}^{n+1}$ is of minimal border rank if $\underline{\mathbf{r}}(F)=n+1$.

Theorem

Let $d \geq 3$ and $F \in S^{d} V$ be a concise polynomial of minimal border rank. Then:

$$
\operatorname{Hess}(F)=0 \Longrightarrow F \text { is wild. }
$$

Further, for $d=3$, one has the following equivalences:

$$
\operatorname{Hess}(F)=0 \Longleftrightarrow \operatorname{cr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow \operatorname{sr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow F \text { is wild. }
$$

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.
- $\mathcal{I} \subset T$ is saturated if $\left(\mathcal{I}:\left\langle y_{0}, \ldots, y_{n}\right\rangle^{\infty}\right)=\mathcal{I}$.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.
- $\mathcal{I} \subset T$ is saturated if $\left(\mathcal{I}:\left\langle y_{0}, \ldots, y_{n}\right\rangle^{\infty}\right)=\mathcal{I}$.

Apolarity(Rank)

$\mathrm{r}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\mathrm{HF}(T / I, d)=r$ for $d \gg 0$ defining a smooth scheme.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.
- $\mathcal{I} \subset T$ is saturated if $\left(\mathcal{I}:\left\langle y_{0}, \ldots, y_{n}\right\rangle^{\infty}\right)=\mathcal{I}$.

Apolarity(Rank)

$\mathrm{r}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / I, d)=r$ for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)
$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ defining a smooth scheme.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.
- $\mathcal{I} \subset T$ is saturated if $\left(\mathcal{I}:\left\langle y_{0}, \ldots, y_{n}\right\rangle^{\infty}\right)=\mathcal{I}$.

Apolarity(Rank)

$\mathrm{r}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / I, d)=r$ for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)
$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ defining a smoothable scheme.

Classical Apolarity

- $F \in S^{d} V, V=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathbb{P}^{n}=\mathbb{P}\left(V^{*}\right)$.
- $S=\operatorname{Sym}^{\bullet} V \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], T=\operatorname{Sym}^{\bullet} V^{*}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$.
- Apolar ideal: $\operatorname{Ann}(F)=\{h \in T \mid h \circ F=0\}$.
- $\mathcal{I} \subset T$ is saturated if $\left(\mathcal{I}:\left\langle y_{0}, \ldots, y_{n}\right\rangle^{\infty}\right)=\mathcal{I}$.

Apolarity(Rank)

$\mathrm{r}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / I, d)=r$ for $d \gg 0$ defining a smooth scheme.

Apolarity(Smoothable Rank)

$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ defining a smoothable scheme.

Apolarity(Cactus Rank)

$\operatorname{cr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$.

Border Apolarity and Wild Polynomials

```
Apolarity(Cactus Rank)
cr}(F)\leqr\Longleftrightarrow\exists\mathrm{ a saturated homogeneous ideal I }\subset\operatorname{Ann}(F)\mathrm{ with
HF}(T/\mathcal{I},d)=r\mathrm{ for }d>>0
```


Apolarity(Smoothable Rank)

$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ defining a smoothable scheme.

Border Apolarity and Wild Polynomials

```
Apolarity(Cactus Rank)
cr}(F)\leqr\Longleftrightarrow\exists\mathrm{ a saturated homogeneous ideal }\mathcal{I}\subsetAnn(F)\mathrm{ with
HF}(T/\mathcal{I},d)=r\mathrm{ for d >0.
```


Apolarity(Smoothable Rank)

$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Border Apolarity and Wild Polynomials

```
Apolarity(Cactus Rank)
cr}(F)\leqr\Longleftrightarrow\exists\mathrm{ a saturated homogeneous ideal I }\subset\operatorname{Ann}(F)\mathrm{ with
HF}(T/\mathcal{I},d)=r\mathrm{ for }d>>0
```


Apolarity(Smoothable Rank)

$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Border Apolarity(Border Rank)(Buczyńska, Buczyński, 2019)

 $\underline{\mathbf{r}}(F) \leq r \Longleftrightarrow \exists$ a homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=\min \left\{r, \operatorname{dim} S^{d} V^{*}\right\}$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.
Border Apolarity and Wild Polynomials

```
Apolarity(Cactus Rank)
cr}(F)\leqr\Longleftrightarrow\exists\mathrm{ a saturated homogeneous ideal I }\subset\operatorname{Ann}(F)\mathrm{ with
HF}(T/\mathcal{I},d)=r\mathrm{ for }d>>0
```


Apolarity(Smoothable Rank)

$\operatorname{sr}(F) \leq r \Longleftrightarrow \exists$ a saturated homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=r$ for $d \gg 0$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Border Apolarity(Border Rank)(Buczyńska, Buczyński, 2019)

$\underline{\mathbf{r}}(F) \leq r \Longleftrightarrow \exists$ a homogeneous ideal $\mathcal{I} \subset \operatorname{Ann}(F)$ with $\operatorname{HF}(T / \mathcal{I}, d)=\min \left\{r, \operatorname{dim} S^{d} V^{*}\right\}$ s.t. \mathcal{I} is a flat limit of saturated ideals defining r distinct points.

Wild \Longleftrightarrow All ideals realizing border rank are not saturated.

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.
- $\mathcal{I} \neq \mathcal{I}^{\text {sat }}$ since $y_{0} \in \mathcal{I}^{\text {sat }} \backslash \mathcal{I}$.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.
- $\mathcal{I} \neq \mathcal{I}^{\text {sat }}$ since $y_{0} \in \mathcal{I}^{\text {sat }} \backslash \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with $\operatorname{deg} \mathcal{J}=\underline{\mathbf{r}}(F)=5$ are saturated.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.
- $\mathcal{I} \neq \mathcal{I}^{\text {sat }}$ since $y_{0} \in \mathcal{I}^{\text {sat }} \backslash \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with $\operatorname{deg} \mathcal{J}=\underline{\mathbf{r}}(F)=5$ are saturated.
- $\operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \mathcal{J}\right)_{2} \geq \operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \operatorname{Ann}(F)\right)_{2}=5$.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.
- $\mathcal{I} \neq \mathcal{I}^{\text {sat }}$ since $y_{0} \in \mathcal{I}^{\text {sat }} \backslash \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with $\operatorname{deg} \mathcal{J}=\underline{\mathbf{r}}(F)=5$ are saturated.
- $\operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \mathcal{J}\right)_{2} \geq \operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \operatorname{Ann}(F)\right)_{2}=5$.
- $\operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \mathcal{J}\right)_{2} \leq \operatorname{deg} \mathcal{J}=5=\left(\operatorname{Sym}^{\bullet} V^{*} / \operatorname{Ann}(F)\right)_{2}$ if \mathcal{J} is saturated.

Concise Polynomials of Minimal Border Rank

Wild Example: $F=x_{0} x_{1}^{2}-x_{2}\left(x_{1}+x_{4}\right)^{2}+x_{3} x_{4}^{2}$.

- $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{2}\right\rangle=$ $\left\langle\left(y_{0}, y_{2}, y_{3}\right)^{2}, y_{0} y_{4}, y_{1} y_{3},-y_{1} y_{2}+y_{2} y_{4}, y_{0} y_{1}+y_{1} y_{2}+y_{3} y_{4}\right\rangle$.
- $\mathcal{I} \neq \mathcal{I}^{\text {sat }}$ since $y_{0} \in \mathcal{I}^{\text {sat }} \backslash \mathcal{I}$.
- Claim: No $\mathcal{J} \subset \operatorname{Ann}(F)$ with $\operatorname{deg} \mathcal{J}=\underline{\mathbf{r}}(F)=5$ are saturated.
- $\operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \mathcal{J}\right)_{2} \geq \operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \operatorname{Ann}(F)\right)_{2}=5$.
- $\operatorname{dim}\left(\operatorname{Sym}^{\bullet} V^{*} / \mathcal{J}\right)_{2} \leq \operatorname{deg} \mathcal{J}=5=\left(\operatorname{Sym}^{\bullet} V^{*} / \operatorname{Ann}(F)\right)_{2}$ if \mathcal{J} is saturated.
- $\mathcal{J}_{2}=\operatorname{Ann}(F)_{2} \Rightarrow \mathcal{I} \subset \mathcal{J} \Rightarrow \mathcal{I}^{\text {sat }} \subset \mathcal{J}^{\text {sat }}=\mathcal{J} \Rightarrow \mathcal{J}$ contains $y_{0} \notin \operatorname{Ann}(F)$ while $\operatorname{Ann}(F)_{1}=\emptyset$.

Concise Polynomials of Minimal Border Rank

Theorem (Part I)

Let $d \geq 3$ and $F \in S^{d} V$ be a concise polynomial of minimal border rank. Then:

$$
\operatorname{Hess}(F)=0 \quad \Longrightarrow \quad F \text { is wild. }
$$

Concise Polynomials of Minimal Border Rank

Theorem (Part I)
Let $d \geq 3$ and $F \in S^{d} V$ be a concise polynomial of minimal border rank. Then:

$$
\operatorname{Hess}(F)=0 \Longrightarrow F \text { is wild. }
$$

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Concise Polynomials of Minimal Border Rank

> Claim
> Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Concise Polynomials of Minimal Border Rank

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Lemma

$R \subset \mathbb{P}^{n}$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R\rangle=\mathbb{P}^{n}$. Then $\left(\mathcal{J}_{d}\right)^{\perp}$ is spanned by $(n+1)$ algebraically independent forms.

Concise Polynomials of Minimal Border Rank

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Lemma

$R \subset \mathbb{P}^{n}$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R\rangle=\mathbb{P}^{n}$. Then $\left(\mathcal{J}_{d}\right)^{\perp}$ is spanned by $(n+1)$ algebraically independent forms.

Proof.

Concise Polynomials of Minimal Border Rank

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Lemma

$R \subset \mathbb{P}^{n}$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R\rangle=\mathbb{P}^{n}$. Then $\left(\mathcal{J}_{d}\right)^{\perp}$ is spanned by $(n+1)$ algebraically independent forms.

Proof.

Let $\mathcal{J}=\mathcal{I}^{\text {sat }} . \mathcal{I}^{\text {sat }}$ contains no linear form $\Rightarrow\langle R\rangle=\mathbb{P}^{n} \Rightarrow\left(\mathcal{I}_{d-1}^{\text {sat }}\right)^{\perp}$ contains ($n+1$) algebraically independent forms.

Concise Polynomials of Minimal Border Rank

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Lemma

$R \subset \mathbb{P}^{n}$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R\rangle=\mathbb{P}^{n}$. Then $\left(\mathcal{J}_{d}\right)^{\perp}$ is spanned by $(n+1)$ algebraically independent forms.

Proof.

Let $\mathcal{J}=\mathcal{I}^{\text {sat }} . \mathcal{I}^{\text {sat }}$ contains no linear form $\Rightarrow\langle R\rangle=\mathbb{P}^{n} \Rightarrow\left(\mathcal{I}_{d-1}^{\text {sat }}\right)^{\perp}$ contains ($n+1$) algebraically independent forms.

$$
\left(\mathcal{I}_{d-1}^{\text {sat }}\right)^{\perp} \subset\left(\mathcal{I}_{d-1}\right)^{\perp}=\left\langle\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\rangle
$$

Concise Polynomials of Minimal Border Rank

Claim

Let $\mathcal{I}=\left\langle\operatorname{Ann}(F)_{d-1}\right\rangle . F$ is a concise polynomial with vanishing Hessian then $\mathcal{I}^{\text {sat }}$ contains a linear form.

Lemma

$R \subset \mathbb{P}^{n}$ is a scheme defined by the saturated ideal \mathcal{J} such that $\langle R\rangle=\mathbb{P}^{n}$. Then $\left(\mathcal{J}_{d}\right)^{\perp}$ is spanned by $(n+1)$ algebraically independent forms.

Proof.

Let $\mathcal{J}=\mathcal{I}^{\text {sat }} . \mathcal{I}^{\text {sat }}$ contains no linear form $\Rightarrow\langle R\rangle=\mathbb{P}^{n} \Rightarrow\left(\mathcal{I}_{d-1}^{\text {sat }}\right)^{\perp}$ contains ($n+1$) algebraically independent forms.

$$
\left(\mathcal{I}_{d-1}^{\text {sat }}\right)^{\perp} \subset\left(\mathcal{I}_{d-1}\right)^{\perp}=\left\langle\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\rangle
$$

$\left\{\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\}$ are algebraically independent $\Rightarrow \operatorname{Hess}(F) \neq 0$.

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

Vanishing Hessian and Wild Cubics

Theorem (Part II)
Let $F \in S^{3} \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then:

$$
\operatorname{Hess}(F) \neq 0 \Longrightarrow \operatorname{cr}(F) \leq n+1 \Longleftrightarrow F \text { is not wild. }
$$

In particular:

$$
\operatorname{Hess}(F)=0 \Longleftrightarrow \operatorname{cr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow \operatorname{sr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow F \text { is wild. }
$$

Vanishing Hessian and Wild Cubics

Theorem (Part II)
Let $F \in S^{3} \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then:

$$
\operatorname{Hess}(F) \neq 0 \Longrightarrow \operatorname{cr}(F) \leq n+1 \Longleftrightarrow F \text { is not wild. }
$$

In particular:
$\operatorname{Hess}(F)=0 \Longleftrightarrow \operatorname{cr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow \operatorname{sr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow F$ is wild.
Sketch.

Vanishing Hessian and Wild Cubics

Theorem (Part II)
Let $F \in S^{3} \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then:

$$
\operatorname{Hess}(F) \neq 0 \Longrightarrow \operatorname{cr}(F) \leq n+1 \Longleftrightarrow F \text { is not wild. }
$$

In particular:
$\operatorname{Hess}(F)=0 \Longleftrightarrow \operatorname{cr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow \operatorname{sr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow F$ is wild.

Sketch.
$\operatorname{Hess}(F) \neq 0 \Leftrightarrow T_{F}$ is the structure tensor of a $(n+1)$-dimensional smoothable algebra A.

Vanishing Hessian and Wild Cubics

Theorem (Part II)
Let $F \in S^{3} \mathbb{C}^{n+1}$ be a concise cubic of minimal border rank. Then:

$$
\operatorname{Hess}(F) \neq 0 \Longrightarrow \operatorname{cr}(F) \leq n+1 \Longleftrightarrow F \text { is not wild. }
$$

In particular:
$\operatorname{Hess}(F)=0 \Longleftrightarrow \operatorname{cr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow \operatorname{sr}(F)>\underline{\mathbf{r}}(F) \Longleftrightarrow F$ is wild.
Sketch.
$\operatorname{Hess}(F) \neq 0 \Leftrightarrow T_{F}$ is the structure tensor of a $(n+1)$-dimensional smoothable algebra A.
We can use A to construct a scheme of length $(n+1)$ that spans F.

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank - Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.
- $\operatorname{HF}(T / \operatorname{Ann}(F))=141010410$

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.
- $\operatorname{HF}(T / \operatorname{Ann}(F))=14101041010$
- $\underline{\mathbf{r}}\left(v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}\right) \leq 7$ and $\underline{\mathbf{r}}\left(v_{0}^{3} v_{1}^{2}\right)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.
- $\operatorname{HF}(T / \operatorname{Ann}(F))=14101041010$
- $\underline{\mathbf{r}}\left(v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}\right) \leq 7$ and $\underline{\mathbf{r}}\left(v_{0}^{3} v_{1}^{2}\right)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.
- $\underline{r}(F)=10$.

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.
- $\operatorname{HF}(T / \operatorname{Ann}(F))=14101041010$
- $\underline{\mathbf{r}}\left(v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}\right) \leq 7$ and $\underline{\mathbf{r}}\left(v_{0}^{3} v_{1}^{2}\right)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.
- $\underline{\mathbf{r}}(F)=10$.
- $\mathcal{I}=\operatorname{Ann}(F)_{\leq 3}$ is not saturated. This shows $\operatorname{sr}(F) \geq \operatorname{cr}(F)>10$.

A Wild Polynomial with Non-vanishing Hessian

$$
F=v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}+v_{0}^{3} v_{1}^{2} \in S^{5} \mathbb{C}^{4}
$$

- $\operatorname{Hess}(F) \neq 0$.
- $\operatorname{HF}(T / \operatorname{Ann}(F))=141010410$
- $\underline{\mathbf{r}}\left(v_{0} u_{0}^{3} u_{1}+v_{1} u_{0} u_{1}^{3}\right) \leq 7$ and $\underline{\mathbf{r}}\left(v_{0}^{3} v_{1}^{2}\right)=3$. So $\underline{\mathbf{r}}(F) \leq 10$.
- $\underline{r}(F)=10$.
- $\mathcal{I}=\operatorname{Ann}(F)_{\leq 3}$ is not saturated. This shows $\operatorname{sr}(F) \geq \operatorname{cr}(F)>10$.
- F is a wild polynomial with non-vanishing Hessian not of minimal border rank.

Outline

(1) Wild Polynomials

- Different notions of ranks
- Known results about wild polynomials
- An example of wild cubic
(2) Vanishing Hessian Implies Wild
- Apolarity and border apolarity
- Concise polynomials of minimal border rank
- Wild cubic = cubic with vanishing Hessian
- A wild polynomial with non-vanishing Hessian
(3) Two Infinite Series of Wild Polynomials and Their border VSP

VSP and Border VSP

- $F \in S^{d} V, V \cong \mathbb{C}^{n+1}, T=\operatorname{Sym}^{\bullet} V^{*}$.

VSP and Border VSP

- $F \in S^{d} V, V \cong \mathbb{C}^{n+1}, T=\operatorname{Sym}^{\bullet} V^{*}$.

$$
\begin{aligned}
& \text { Variety of Sums of Powers } \\
& \qquad \operatorname{VSP}(F, r) \\
& \quad=\overline{\left\{\left\{\ell_{1}, \ldots, \ell_{r}\right\} \in \operatorname{Hilb}_{r}\left(\mathbb{P}^{n}\right): \exists \lambda_{i} \in \mathbb{C} \text { s.t. } F=\lambda_{1} \ell_{1}^{d}+\lambda_{2} \ell_{2}^{d}+\ldots \lambda_{r} \ell_{r}^{d}\right\}}
\end{aligned}
$$

VSP and Border VSP

- $F \in S^{d} V, V \cong \mathbb{C}^{n+1}, T=\operatorname{Sym}^{\bullet} V^{*}$.

$$
\begin{aligned}
& \text { Variety of Sums of Powers } \\
& \qquad \begin{array}{|l|l}
\\
& =\{\{, r)
\end{array} \\
& \left.\quad\left\{\ell_{1}, \ldots, \ell_{r}\right\} \in \operatorname{Hilb}_{r}\left(\mathbb{P}^{n}\right): \exists \lambda_{i} \in \mathbb{C} \text { s.t. } F=\lambda_{1} \ell_{1}^{d}+\lambda_{2} \ell_{2}^{d}+\ldots \lambda_{r} \ell_{r}^{d}\right\} .
\end{aligned}
$$

- $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T / \mathcal{I}, d)=h_{r}(d)=\min \left\{r, \operatorname{dim} S^{d} V^{*}\right\}$, for $d \geq 0$.

VSP and Border VSP

- $F \in S^{d} V, V \cong \mathbb{C}^{n+1}, T=\operatorname{Sym}^{\bullet} V^{*}$.

Variety of Sums of Powers

$\operatorname{VSP}(F, r)$
$=\left\{\left\{\ell_{1}, \ldots, \ell_{r}\right\} \in \operatorname{Hilb}_{r}\left(\mathbb{P}^{n}\right): \exists \lambda_{i} \in \mathbb{C}\right.$ s.t. $\left.F=\lambda_{1} \ell_{1}^{d}+\lambda_{2} \ell_{2}^{d}+\ldots \lambda_{r} \ell_{r}^{d}\right\}$.

- $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T / \mathcal{I}, d)=h_{r}(d)=\min \left\{r, \operatorname{dim} S^{d} V^{*}\right\}$, for $d \geq 0$.
- $\operatorname{Slip}_{r, \mathbb{P}^{n}} \subset \operatorname{Hilb}_{T}^{h_{r}, \mathbb{P}^{n}}:$ irreducible component containing the radical ideals of r distinct points with a generic Hilbert function.

VSP and Border VSP

- $F \in S^{d} V, V \cong \mathbb{C}^{n+1}, T=\operatorname{Sym}^{\bullet} V^{*}$.

Variety of Sums of Powers

$\operatorname{VSP}(F, r)$
$=\overline{\left\{\left\{\ell_{1}, \ldots, \ell_{r}\right\} \in \operatorname{Hilb}_{r}\left(\mathbb{P}^{n}\right): \exists \lambda_{i} \in \mathbb{C} \text { s.t. } F=\lambda_{1} \ell_{1}^{d}+\lambda_{2} \ell_{2}^{d}+\ldots \lambda_{r} \ell_{r}^{d}\right\} .}$

- $I \subset T$ with Hilbert polynomial r has a generic Hilbert function if: $\operatorname{HF}(T / \mathcal{I}, d)=h_{r}(d)=\min \left\{r, \operatorname{dim} S^{d} V^{*}\right\}$, for $d \geq 0$.
- Slip $_{r, \mathbb{P}^{n}} \subset \operatorname{Hilb}_{T}^{h_{r}, \mathbb{P}^{n}}$: irreducible component containing the radical ideals of r distinct points with a generic Hilbert function.

Border Variety of Sums of Powers(Buczyńska, Buczyński,2019)

$$
\underline{\operatorname{VSP}}(F, r)=\left\{\mathcal{I} \in \operatorname{Slip}_{r, \mathbb{P}^{n}} \mid \mathcal{I} \subset \operatorname{Ann}(F) \subset T\right\}
$$

Wild Polynomials of Higher Degree and Their VSP

$$
G_{d}=v_{0} u_{1}^{d-1}+v_{1} u_{0} u_{1}^{d-2}+\ldots v_{d-1} u_{0}^{d-1}=\sum_{i=0}^{d-1} v_{i} u_{0}^{i} u_{1}^{d-1-i} .
$$

Wild Polynomials of Higher Degree and Their VSP

$$
G_{d}=v_{0} u_{1}^{d-1}+v_{1} u_{0} u_{1}^{d-2}+\ldots v_{d-1} u_{0}^{d-1}=\sum_{i=0}^{d-1} v_{i} u_{0}^{i} u_{1}^{d-1-i}
$$

- G_{d} are concise polynomials and $\underline{\mathbf{r}}\left(G_{d}\right)=d+2$.

Wild Polynomials of Higher Degree and Their VSP

$$
G_{d}=v_{0} u_{1}^{d-1}+v_{1} u_{0} u_{1}^{d-2}+\ldots v_{d-1} u_{0}^{d-1}=\sum_{i=0}^{d-1} v_{i} u_{0}^{i} u_{1}^{d-1-i}
$$

- G_{d} are concise polynomials and $\underline{\mathbf{r}}\left(G_{d}\right)=d+2$.
- $\operatorname{Hess}\left(G_{d}\right)=0$.

Wild Polynomials of Higher Degree and Their VSP

$$
G_{d}=v_{0} u_{1}^{d-1}+v_{1} u_{0} u_{1}^{d-2}+\ldots v_{d-1} u_{0}^{d-1}=\sum_{i=0}^{d-1} v_{i} u_{0}^{i} u_{1}^{d-1-i}
$$

- G_{d} are concise polynomials and $\underline{\mathbf{r}}\left(G_{d}\right)=d+2$.
- $\operatorname{Hess}\left(G_{d}\right)=0$.
- G_{d} is an infinite series of wild polynomials of degree d.

Wild Polynomials of Higher Degree and Their VSP

$$
G_{d}=v_{0} u_{1}^{d-1}+v_{1} u_{0} u_{1}^{d-2}+\ldots v_{d-1} u_{0}^{d-1}=\sum_{i=0}^{d-1} v_{i} u_{0}^{i} u_{1}^{d-1-i}
$$

- G_{d} are concise polynomials and $\underline{\mathbf{r}}\left(G_{d}\right)=d+2$.
- $\operatorname{Hess}\left(G_{d}\right)=0$.
- G_{d} is an infinite series of wild polynomials of degree d.

Proposition

$\operatorname{VSP}\left(G_{d}, d+2\right)$ is isomorphic to the projective space $\mathbb{P}^{d+2} \cong \mathbb{P}\left(S^{d+2} \mathbb{C}^{2}\right) \cong S^{d+2} \mathbb{P}^{1}$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10}+x_{9} x_{10}^{2} \\
& +\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.
- F_{n} are concise polynomials and $\underline{\mathbf{r}}\left(F_{n}\right)=n+1$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.
- F_{n} are concise polynomials and $\underline{\mathbf{r}}\left(F_{n}\right)=n+1$.
- $\operatorname{Hess}\left(F_{n}\right)=0$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.
- F_{n} are concise polynomials and $\underline{\mathbf{r}}\left(F_{n}\right)=n+1$.
- $\operatorname{Hess}\left(F_{n}\right)=0$.
- F_{n} is an infinite series of wild cubics.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.
- F_{n} are concise polynomials and $\underline{\mathbf{r}}\left(F_{n}\right)=n+1$.
- $\operatorname{Hess}\left(F_{n}\right)=0$.
- F_{n} is an infinite series of wild cubics.

Proposition

When $k=1, \underline{\operatorname{VSP}}\left(F_{4}, 5\right)=\underline{\operatorname{VSP}}\left(G_{3}, 5\right) \cong \mathbb{P}^{4}$.

An Infinite Series of Wild Cubics and Their VSP

$$
\begin{aligned}
F_{n}= & x_{0} x_{1}^{2}+x_{1} x_{2} x_{4}+x_{3} x_{4}^{2}+x_{4} x_{5} x_{7}+x_{6} x_{7}^{2}+x_{8} x_{7} x_{10} \\
& +x_{9} x_{10}^{2}+\cdots+x_{n-4} x_{n-3}^{2}+x_{n-3} x_{n-2} x_{n}+x_{n-1} x_{n}^{2}
\end{aligned}
$$

- $n=3 k+1$.
- F_{n} are concise polynomials and $\underline{\mathbf{r}}\left(F_{n}\right)=n+1$.
- $\operatorname{Hess}\left(F_{n}\right)=0$.
- F_{n} is an infinite series of wild cubics.

Proposition

When $k=1, \underline{\operatorname{VSP}}\left(F_{4}, 5\right)=\underline{\operatorname{VSP}}\left(G_{3}, 5\right) \cong \mathbb{P}^{4}$.
When $k \geq 3 \Leftrightarrow n \geq 10, \underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$ are reducible.

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$ are reducible.

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle$ is a chain of \mathbb{P}^{1} 's. Let C_{k} be this chain of P^{1} 's.

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle$ is a chain of \mathbb{P}^{1} s. Let C_{k} be this chain of \mathbb{P}^{1} 's.

Figure: $\mathcal{J}(R) \in \underline{\operatorname{VSP}}\left(F_{13}, 14\right)$ and $R \subseteq C_{4}$

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \operatorname{VSP}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle$ is a chain of \mathbb{P}^{1} 's. Let C_{k} be this chain of \mathbb{P}^{1} 's. $\mathcal{J} \in \underline{\operatorname{VSP}}\left(F_{n}, n+1\right) \Rightarrow$ $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle \subseteq \mathcal{J} . \mathcal{J}$ defines a length $(n+1)$ scheme supported on C_{k}.

Figure: $\mathcal{J}(R) \in \underline{\operatorname{VSP}}\left(F_{13}, 14\right)$ and $R \subseteq C_{4}$

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \operatorname{VSP}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle$ is a chain of \mathbb{P}^{1} 's. Let C_{k} be this chain of \mathbb{P}^{1} 's. $\mathcal{J} \in \underline{\operatorname{VSP}}\left(F_{n}, n+1\right) \Rightarrow$ $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle \subseteq \mathcal{J} . \mathcal{J}$ defines a length $(n+1)$ scheme supported on C_{k}.

Figure: $\mathcal{J}(R) \in \underline{\operatorname{VSP}}\left(F_{13}, 14\right)$ and $R \subseteq C_{4}$

$$
\psi_{n}: \underline{\operatorname{VSP}}\left(F_{n}, n+1\right) \rightarrow \operatorname{Hilb}_{n+1}\left(C_{k}\right),
$$

An Infinite Series of Wild Cubics and Their VSP

Proposition

When $n \geq 10, \operatorname{VSP}\left(F_{n}, n+1\right)$ are reducible.

Proof Sketch

Projective scheme defined by $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle$ is a chain of \mathbb{P}^{1} 's. Let C_{k} be this chain of \mathbb{P}^{1} 's. $\mathcal{J} \in \underline{\operatorname{VSP}}\left(F_{n}, n+1\right) \Rightarrow$ $\mathcal{I}=\left\langle\operatorname{Ann}\left(F_{n}\right)_{2}\right\rangle \subseteq \mathcal{J} . \mathcal{J}$ defines a length $(n+1)$ scheme supported on C_{k}.

Figure: $\mathcal{J}(R) \in \underline{\operatorname{VSP}}\left(F_{13}, 14\right)$ and $R \subseteq C_{4}$

$$
\psi_{n}: \underline{\operatorname{VSP}}\left(F_{n}, n+1\right) \rightarrow \operatorname{Hilb}_{n+1}\left(C_{k}\right),
$$

$\operatorname{Im}\left(\psi_{n}\right)$ is reducible.

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?
- Is $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$ irreducible?

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?
- Is $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$ irreducible?
- What is the dimension of $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$?

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?
- Is $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$ irreducible?
- What is the dimension of $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$?
- Further description of $\underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$?

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?
- Is $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$ irreducible?
- What is the dimension of $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$?
- Further description of $\underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$?
- What about wild polynomials of higher border rank?

Further Questions

- F is a concise polynomial of degree $d>3$ and of minimal border rank, F is wild $\Rightarrow \operatorname{Hess}(F)=0$?
- Is $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$ irreducible?
- What is the dimension of $\underline{\operatorname{VSP}}\left(F_{7}, 8\right)$?
- Further description of $\underline{\operatorname{VSP}}\left(F_{n}, n+1\right)$?
- What about wild polynomials of higher border rank?
- ...

