New lower bounds for matrix multiplication

A. Conner, A. Harper and J.M. Landsberg

Texas A&M University

Landsberg supported by NSF grant CCF-1814254

Astounding conjecture

Strassen (1968) wrote an explicit algorithm to multiply $n \times n$ matrices with $O(n^{2.81}) < O(n^3)$ arithmetic operations.

Bini 1978, Schönhage 1983, Strassen 1987, Coppersmith-Winograd 1988 $\rightsquigarrow O(n^{2.378})$ arithmetic operations.

Astounding Conjecture

For all $\epsilon > 0$, matrices can be multiplied using $O(n^{2+\epsilon})$ arithmetic operations.

1988-2011 no progress, 2011-14 Stouthers, Williams, LeGall $O(n^{2.373})$ arithmetic operations.

Tensor formulation of conjecture

Set $N = n^2$. Matrix multiplication is a *bilinear* map

$$M_{\langle n \rangle} : \mathbb{C}^N \times \mathbb{C}^N \to \mathbb{C}^N,$$

Bilinear maps $\mathbb{C}^N \times \mathbb{C}^N \to \mathbb{C}^N$ may also be viewed as trilinear

maps
$$\mathbb{C}^N \times \mathbb{C}^N \times \mathbb{C}^{N*} \to \mathbb{C}$$
.

In other words

$$M_{\langle n\rangle} \in \mathbb{C}^{N*} \otimes \mathbb{C}^{N*} \otimes \mathbb{C}^{N}.$$

Exercise: As a trilinear map, $M_{\langle n \rangle}(X, Y, Z) = \text{trace}(XYZ)$.

Tensor formulation of conjecture

A tensor $T \in \mathbb{C}^N \otimes \mathbb{C}^N \otimes \mathbb{C}^N =: A \otimes B \otimes C$ has rank one if it is of the form $T = a \otimes b \otimes c$, with $a \in A$, $b \in B$, $c \in C$. ~ bilinear maps that can be computed using one scalar multiplication.

The rank of a tensor T, $\mathbf{R}(T)$, is the smallest r such that T may be written as a sum of r rank one tensors. \sim number of scalar multiplications needed to compute the corresponding bilinear map.

Tensor formulation of conjecture

Theorem (Strassen): $M_{\langle n \rangle}$ can be computed using $O(n^{\tau})$ arithmetic operations $\Leftrightarrow \mathbf{R}(M_{\langle n \rangle}) = O(n^{\tau})$

Let
$$\omega := \inf_{\tau} \{ \mathbf{R}(M_{\langle n \rangle}) = O(n^{\tau}) \}$$

exponent of matrix multiplication. Astounding conjecture: $\omega = 2$

border rank of $T \in A \otimes B \otimes C \underline{\mathbf{R}}(T)$ denotes the smallest r such that T is a limit of tensors of rank r. I.e., smallest r such that $[T] \in \sigma_r := \sigma_r(Seg(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C))$, where, for $X \subset \mathbb{P}V$

$$\sigma_r(X) := \overline{\bigcup_{x_1,\ldots,x_r \in X} \operatorname{span}\{x_1,\ldots,x_r\}}$$

Theorem (Bini 1980) border rank is also a legitimate complexity measure: $\underline{\mathbf{R}}(M_{\langle n \rangle}) = O(n^{\omega})$.

How to disprove astounding conjecture?

when N = 4.

Find a polynomial P (in N^3 variables) in the ideal of σ_r , Show that $P(M_{\langle n \rangle}) \neq 0$. Embarassing (?): had not been known even for $M_{(2)}$, i.e., for σ_6

Why did I think this would be easy?: Representation Theory

Matrices of rank at most r: zero set of size r + 1 minors.

Ideal of Segre generated by size 2 minors of flattenings tensors to matrices: $A \otimes B \otimes C = (A \otimes B) \otimes C$.

Ideal of σ_2 generated by degree 3 polynomials.

Representation theory: systematic way to search for polynomials.

2004 L-Manivel: No polynomials in ideal of $\sigma_{\rm 6}$ of degree less than 12

2013 Hauenstein-Ikenmeyer-L: No polynomials in ideal of σ_6 of degree less than 19. However there are polynomials of degree 19. Caveat: too complicated to evaluate on $M_{\langle 2 \rangle}$. Good news: easier polynomial of degree 20 (trivial representation) \rightsquigarrow (L 2006, Hauenstein-Ikenmeyer-L 2013) $\mathbf{\underline{R}}(M_{\langle 2 \rangle}) = 7$.

Polynomials via a retreat to linear algebra

 $T \in A \otimes B \otimes C = \mathbb{C}^N \otimes \mathbb{C}^N \otimes \mathbb{C}^N$ may be recovered up to isom. from the linear space $T(C^*) \subset A \otimes B$.

tensors up to changes of bases \sim linear subspaces of spaces of matrices up to changes of bases.

Even better than linear maps are endomorphisms. Assume $T(C^*) \subset A \otimes B$ contains an element of full rank. Use it to obtain an isomorphism $A \otimes B \simeq \operatorname{End}(A) \rightsquigarrow$ space of endomorphisms. $\mathbf{R}(T) = N \Leftrightarrow N$ -dimensional space of simultaneously diagonalizable matrices $\underline{\mathbf{R}}(T) \leq N \Leftrightarrow$ limits of N-dimensional spaces of simultaneously

diagonalizable matrices

Good News: Classical linear algebra!

Bad News: Open question.

Retreat to linear algebra, cont'd

Simultaneously diagonalizable matrices \Rightarrow commuting matrices

Good news: Easy to Test.

Better news (Strassen): Can upgrade to tests for higher border rank than N: $\underline{\mathbf{R}}(T) \ge N + \frac{1}{2}$ (rank of commutator)

 \rightsquigarrow (Strassen 1983) $\underline{\mathbf{R}}(M_{\langle n \rangle}) \geq \frac{3}{2}n^2$

Variant: (Lickteig 1985) $\underline{\mathbf{R}}(M_{\langle n \rangle}) \geq \frac{3}{2}n^2 + \frac{n}{2} - 1$

1985-2012: no further progress other than for $M_{\langle 2 \rangle}$.

Retreat to linear algebra, cont'd

Perspective: Strassen mapped space of tensors to space of matrices, found equations by taking minors.

Classical trick in algebraic geometry to find equations via minors. \rightsquigarrow (L-Ottaviani 2013) $\underline{\mathbf{R}}(M_{\langle n \rangle}) \geq 2n^2 - n$

Found via a $G = GL(A) \times GL(B) \times GL(C)$ module map from $A \otimes B \otimes C$ to a space of matrices (systematic search possible).

Explicitly: $A \otimes B \otimes C \rightarrow \text{Hom}(\Lambda^p A^* \otimes B, \Lambda^{p+1} A \otimes C)$. Polynomials: minors of matrix.

Punch line: Found modules of determinantal equations by exploiting symmetry of σ_r .

Note: Only gives good bounds if dim $B \sim \dim C \ge \dim A$. Example: says nothing new for $M_{(2nn)}$, $M_{(3nn)}$ for n > 3.

Bad News: Barriers

Theorem (Bernardi-Ranestad, Buczyńska-Buczyński-Galcazka, Efremenko-Garg-Oliviera-Wigderson): Game (almost) over for determinantal methods.

Variety of zero dimensional schemes of length r is not irreducible r > 13.

Determinantal methods detect zero dimensional schemes (want zero dimensional smoothable schemes).

 $\sigma_r(X) := \bigcup \{ \langle R \rangle \mid \text{length}(R) = r, \text{ support}(R) \subset X, R : \text{smoothable} \}$ secant variety.

$$\kappa_r(X) := \bigcup \{ \langle R \rangle \mid ext{length}(R) = r, ext{ support}(R) \subset X \}$$

cactus variety.

Determinantal equations are equations for the cactus variety. Punch line: **Barrier** to progress.

How to go further?

So far, lower bounds via symmetry of σ_r .

The matrix multiplication tensor also has symmetry:

 $T \in A \otimes B \otimes C$, define symmetry group of T $G_T := \{g \in GL(A) \times GL(B) \times GL(C) \mid g \cdot T = T\}$

$$GL_n^{\times 3} \subset G_{M_{\langle n \rangle}} \subset GL_{n^2}^{\times 3} = GL(A) \times GL(B) \times GL(C)$$
:
Proof: $(g_1, g_2, g_3) \in GL_n^{\times 3}$

 $trace(XYZ) = trace((g_1Xg_2^{-1})(g_2Yg_3^{-1})(g_3Zg_1^{-1}))$

How to exploit G_T ?

Given $T \in A \otimes B \otimes C$ $\underline{\mathbf{R}}(T) \leq r \Leftrightarrow \exists$ curve $E_t \subset G(r, A \otimes B \otimes C)$ such that i) For $t \neq 0$, E_t is spanned by r rank one elements. ii) $T \in E_0$.

For all $g \in G_T$, gE_t also works. \rightsquigarrow can insist on normalized curves (for $M_{\langle n \rangle}$, those with E_0 Borel fixed).

 \rightsquigarrow (L-Michalek 2017) $\underline{\mathbf{R}}(M_{\langle n \rangle}) \geq 2n^2 - \log_2 n - 1$

More bad news: this method cannot go much further.

New idea: Buczyńska-Buczyński (review of last week)

Use more algebraic geometry: Consider not just curve of r points, but the curve of **ideals** $I_t \in Sym(A^* \oplus B^* \oplus C^*)$ it gives rise to: border apolarity method

$$I = \lim_{t \to 0} \sum_{j=1}^{t} I_{j,t}$$

 I_t ideal of $[T_{1,t}] \cup \cdots \cup [T_{r,t}] \subset \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$

Can insist that limiting ideal I_0 is Borel fixed: reduces to small search in each multi-degree.

Instead of single curve $E_t \subset G(r, A \otimes B \otimes C)$ limiting to Borel fixed point, for each (i, j, k) get curve $\{I_{ijk,t}^{\perp}\} \subset G(r, S^i A \otimes S^j B \otimes S^k C)$, each limiting to Borel fixed point *and* satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate I_0 's or proves border rank > r.

The border apolarity method (Buczyńska-Buczyński)

If $\underline{\mathbf{R}}(\mathcal{T}) \leq r$, there exists a multi-graded ideal I satisfying:

- 1. *I* is contained in the annihilator of *T*. This condition says $I_{110} \subset T(C^*)^{\perp}$, $I_{101} \subset T(B^*)^{\perp}$, $I_{011} \subset T(A^*)^{\perp}$ and $I_{111} \subset T^{\perp} \subset A^* \otimes B^* \otimes C^*$.
- 2. For all (*ijk*) with i + j + k > 1, codim $I_{ijk} = r$.
- 3. each I_{ijk} is Borel-fixed.
- 4. *I* is an ideal, so the multiplication maps $I_{i-1,j,k} \otimes A^* \oplus I_{i,j-1,k} \otimes B^* \oplus I_{i,j,k-1} \otimes C^* \to S^i A^* \otimes S^j B^* \otimes S^k C^*$ have image contained in I_{ijk} . Call this the (ijk)-test.

Borel fixed subspaces for $U^* \otimes \mathfrak{sl}(V) \otimes W$

 $C = W^* \otimes U$ Case $U = V = W = \mathbb{C}^2$. Candidate codim= $r I_{110}$ when $T = M_{\langle 2 \rangle}$ Equivalently, dim= $r I_{110}^{\perp}$ containing $T(C^*) = U^* \otimes \operatorname{Id}_V \otimes W x_j^i = u^i \otimes v_j$ need to add r - m dimensional Borel fixed subspace here r = 6, m = 4, r - m = 2

Border apolarity: results

Conner-Harper-L May 2019:

 \rightsquigarrow very easy algebraic proof $\underline{\mathbf{R}}(M_{\langle 2 \rangle}) = 7$

 $M_{\langle 3 \rangle}$?Strassen $\underline{\mathbf{R}}(M_{\langle 3 \rangle}) \ge 14$, L-Ottaviani $\underline{\mathbf{R}}(M_{\langle 3 \rangle}) \ge 15$, L-Michalek $\underline{\mathbf{R}}(M_{\langle 3 \rangle}) \ge 16$.

Conner-Harper-L June 2019: $\underline{\mathbf{R}}(M_{\langle 3 \rangle}) \geq 17$

June 2019 only $\underline{\mathbf{R}}(M_{\langle 2 \rangle})$ known among nontrivial matrix multiplication tensors.

Conner-Harper-L August 2019: $\underline{\mathbf{R}}(M_{(223)}) = 10$ Conner-Harper-L August 2019: $\underline{\mathbf{R}}(M_{(233)}) = 14$

All above results only use total degree 3 tests.

Conner-Harper-L Fall 2019: for all n > 2, $\underline{\mathbf{R}}(M_{\langle 2nn \rangle}) \ge n^2 + 1.32n$ Previously, only $\underline{\mathbf{R}}(M_{\langle 2nn \rangle}) \ge n^2 + 1$ known. Conner-Harper-L 2020: for all n, $\underline{\mathbf{R}}(M_{\langle 3nn \rangle}) \ge n^2 + 1.6n$ Previously, only $\underline{\mathbf{R}}(M_{\langle 3nn \rangle}) \ge n^2 + 2$ known. Just uses (210) and (120) tests!

Idea of proof for asymptotic results

How to prove lower bounds for all n?

Candidate I_{110}^{\perp} : $C = W^* \otimes U$. $M_{\langle \mathbf{u}, \mathbf{v}, \mathbf{w} \rangle}(C^*) = U^* \otimes \operatorname{Id}_V \otimes W \subset I_{110}^{\perp} \subset B \otimes C$ $= U^* \otimes \mathfrak{sl}(V) \otimes W \oplus U^* \otimes \operatorname{Id}_V \otimes W$ To prove $\underline{\mathbf{R}}(M_{\langle mnn \rangle}) \geq n^2 + \rho$, we show: $\forall E \in G(\rho, U^* \otimes \mathfrak{sl}(V) \otimes W)^{\mathbb{B}}$, (210) or (120) test fails.

Idea of proof for asymptotic results

Set of $U^* \otimes W$ weights of I_{110}^{\perp} "outer structure"

Given $U^* \otimes W$ weight (s, t), set of $\mathfrak{sl}(V)$ -weights appearing with it "inner structure"

 $\rightsquigarrow n \times n$ grid, attach to each vertex a \mathbb{B} -closed subspace of $\mathfrak{sl}(V)$. Split calculation of the kernel into a local and global computation. Bound local (grid point) contribution to kernel by function of s, tand dimension of subspace of $\mathfrak{sl}(V)$.

Solve a nearly convex optimization problem over all possible outer structures.

Show extremal values fail test \rightsquigarrow all choices fail test.

What about the barrier?

Bad news: (ijk)-tests are determinantal equations— subject to barrier, i.e., candidate ideals may be candidate cactus border rank decompositions.

More bad news: For any tensor $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$ there exist ideals passing all total degree 3 tests for $\underline{\mathbf{R}}(T) = m + m^{\frac{1}{3} + \epsilon}$, e.g., m = 9, $\underline{\mathbf{R}} = 2m$.

How to tell if zero dimensional scheme is smoothable?

In general, hopeless. But: algorithm produces Borel fixed ideals \rightsquigarrow schemes supported at a point.

Here there are recent techniques (Jelisejew).

Spring 2020: full (unsaturated) ideals for $M_{\langle 3 \rangle}$ that pass all tests for border rank 17. Impostors or Slip?

Stay tuned!

Thank you for your attention

For more on **tensors**, their geometry and applications, resp. **geometry and complexity**, resp. **recent developments**:

