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Astounding conjecture

Strassen (1968) wrote an explicit algorithm to multiply n × n
matrices with O(n2.81) < O(n3) arithmetic operations.

Bini 1978, Schönhage 1983, Strassen 1987, Coppersmith-Winograd
1988  O(n2.378) arithmetic operations.

Astounding Conjecture

For all ε > 0, matrices can be multiplied using O(n2+ε) arithmetic
operations.

1988-2011 no progress, 2011-14 Stouthers,Williams,LeGall
O(n2.373) arithmetic operations.
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Tensor formulation of conjecture

Set N = n2.
Matrix multiplication is a bilinear map

M〈n〉 : CN × CN → CN ,

Bilinear maps CN × CN → CN may also be viewed as trilinear

maps CN × CN × CN∗ → C.

In other words
M〈n〉 ∈ CN∗⊗CN∗⊗CN .

Exercise: As a trilinear map, M〈n〉(X ,Y ,Z ) = trace(XYZ ).
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Tensor formulation of conjecture

A tensor T ∈ CN⊗CN⊗CN =: A⊗B⊗C has rank one if it is of the
form T = a⊗b⊗c , with a ∈ A, b ∈ B, c ∈ C . ∼ bilinear maps
that can be computed using one scalar multiplication.

The rank of a tensor T , R(T ), is the smallest r such that T may
be written as a sum of r rank one tensors. ∼ number of scalar
multiplications needed to compute the corresponding bilinear map.
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Tensor formulation of conjecture

Theorem (Strassen): M〈n〉 can be computed using O(nτ )
arithmetic operations ⇔ R(M〈n〉) = O(nτ )

Let ω := infτ{R(M〈n〉) = O(nτ )}

exponent of matrix multiplication.
Astounding conjecture: ω = 2

border rank of T ∈ A⊗B⊗C R(T ) denotes the smallest r such
that T is a limit of tensors of rank r . I.e., smallest r such that
[T ] ∈ σr := σr (Seg(PA× PB × PC )), where, for X ⊂ PV

σr (X ) := ∪x1,...,xr∈X span{x1, . . . , xr}

Theorem (Bini 1980) border rank is also a legitimate complexity
measure: R(M〈n〉) = O(nω).
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How to disprove astounding conjecture?

Find a polynomial P (in N3 variables) in the ideal of σr ,

Show that P(M〈n〉) 6= 0.

Embarassing (?): had not been known even for M〈2〉, i.e., for σ6
when N = 4.
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Why did I think this would be easy?: Representation
Theory

Matrices of rank at most r : zero set of size r + 1 minors.

Ideal of Segre generated by size 2 minors of flattenings tensors to
matrices: A⊗B⊗C = (A⊗B)⊗C .

Ideal of σ2 generated by degree 3 polynomials.

Representation theory: systematic way to search for polynomials.

2004 L-Manivel: No polynomials in ideal of σ6 of degree less than
12

2013 Hauenstein-Ikenmeyer-L: No polynomials in ideal of σ6 of
degree less than 19. However there are polynomials of degree 19.
Caveat: too complicated to evaluate on M〈2〉. Good news: easier
polynomial of degree 20 (trivial representation)  
(L 2006, Hauenstein-Ikenmeyer-L 2013) R(M〈2〉) = 7.
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Polynomials via a retreat to linear algebra

T ∈ A⊗B⊗C = CN⊗CN⊗CN may be recovered up to isom. from
the linear space T (C ∗) ⊂ A⊗B.
tensors up to changes of bases ∼ linear subspaces of spaces of
matrices up to changes of bases.
Even better than linear maps are endomorphisms. Assume
T (C ∗) ⊂ A⊗B contains an element of full rank. Use it to obtain
an isomorphism A⊗B ' End(A)  space of endomorphisms.
R(T ) = N ⇔ N-dimensional space of simultaneously
diagonalizable matrices
R(T ) ≤ N ⇔ limits of N-dimensional spaces of simultaneously
diagonalizable matrices

Good News: Classical linear algebra!

Bad News: Open question.
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Retreat to linear algebra, cont’d

Simultaneously diagonalizable matrices ⇒ commuting matrices

Good news: Easy to Test.

Better news (Strassen): Can upgrade to tests for higher border
rank than N: R(T ) ≥ N + 1

2(rank of commutator)

 (Strassen 1983) R(M〈n〉) ≥ 3
2n

2

Variant: (Lickteig 1985) R(M〈n〉) ≥ 3
2n

2 + n
2 − 1

1985-2012: no further progress other than for M〈2〉.
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Retreat to linear algebra, cont’d

Perspective: Strassen mapped space of tensors to space of
matrices, found equations by taking minors.

Classical trick in algebraic geometry to find equations via minors.
 (L-Ottaviani 2013) R(M〈n〉) ≥ 2n2 − n

Found via a G = GL(A)× GL(B)× GL(C ) module map from
A⊗B⊗C to a space of matrices (systematic search possible).

Explicitly: A⊗B⊗C → Hom(ΛpA∗⊗B,Λp+1A⊗C ).
Polynomials: minors of matrix.

Punch line: Found modules of determinantal equations by
exploiting symmetry of σr .

Note: Only gives good bounds if dimB ∼ dimC ≥ dimA.
Example: says nothing new for M〈2nn〉, M〈3nn〉 for n > 3.
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Bad News: Barriers
Theorem (Bernardi-Ranestad, Buczyńska-Buczyński-Galcazka,
Efremenko-Garg-Oliviera-Wigderson): Game (almost) over for
determinantal methods.

Variety of zero dimensional schemes of length r is not irreducible
r > 13.

Determinantal methods detect zero dimensional schemes (want
zero dimensional smoothable schemes).

σr (X ) :=
⋃
{〈R〉 | length(R) = r , support(R) ⊂ X , R : smoothable}

secant variety.

κr (X ) :=
⋃
{〈R〉 | length(R) = r , support(R) ⊂ X}

cactus variety.

Determinantal equations are equations for the cactus variety.

Punch line: Barrier to progress.
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How to go further?

So far, lower bounds via symmetry of σr .

The matrix multiplication tensor also has symmetry:

T ∈ A⊗B⊗C , define symmetry group of T
GT := {g ∈ GL(A)× GL(B)× GL(C ) | g · T = T}

GL×3n ⊂ GM〈n〉 ⊂ GL×3
n2

= GL(A)× GL(B)× GL(C ):

Proof: (g1, g2, g3) ∈ GL×3n

trace(XYZ ) = trace((g1Xg2
−1)(g2Yg3

−1)(g3Zg1
−1))
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How to exploit GT?

Given T ∈ A⊗B⊗C
R(T ) ≤ r ⇔ ∃ curve Et ⊂ G (r ,A⊗B⊗C ) such that
i) For t 6= 0, Et is spanned by r rank one elements.
ii) T ∈ E0.

For all g ∈ GT , gEt also works.
 can insist on normalized curves (for M〈n〉, those with E0 Borel
fixed).

 (L-Michalek 2017) R(M〈n〉) ≥ 2n2 − log2n − 1

More bad news: this method cannot go much further.
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New idea: Buczyńska-Buczyński (review of last week)

Use more algebraic geometry: Consider not just curve of r points,
but the curve of ideals It ∈ Sym(A∗ ⊕ B∗ ⊕ C ∗) it gives rise to:
border apolarity method
T = limt→0

∑r
j=1 Tj ,t

It ideal of [T1,t ] ∪ · · · ∪ [Tr ,t ] ⊂ PA× PB × PC

Can insist that limiting ideal I0 is Borel fixed: reduces to small
search in each multi-degree.

Instead of single curve Et ⊂ G (r ,A⊗B⊗C ) limiting to Borel fixed
point, for each (i , j , k) get curve {I⊥ijk,t} ⊂ G (r ,S iA⊗S jB⊗SkC ),
each limiting to Borel fixed point and satisfying compatibility
conditions.

Upshot: algorithm that either produces all normalized candidate
I0’s or proves border rank > r .
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The border apolarity method (Buczyńska-Buczyński)

If R(T ) ≤ r , there exists a multi-graded ideal I satisfying:

1. I is contained in the annihilator of T . This condition says
I110 ⊂ T (C ∗)⊥, I101 ⊂ T (B∗)⊥, I011 ⊂ T (A∗)⊥ and
I111 ⊂ T⊥ ⊂ A∗⊗B∗⊗C ∗.

2. For all (ijk) with i + j + k > 1, codimIijk = r .

3. each Iijk is Borel-fixed.

4. I is an ideal, so the multiplication maps
Ii−1,j ,k⊗A∗ ⊕ Ii ,j−1,k⊗B∗ ⊕ Ii ,j ,k−1⊗C ∗ → S iA∗⊗S jB∗⊗SkC ∗

have image contained in Iijk . Call this the (ijk)-test.
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Borel fixed subspaces for U∗⊗sl(V )⊗W
C = W ∗⊗U Case U = V = W = C2. Candidate codim= r I110
when T = M〈2〉 Equivalently, dim= r I⊥110 containing

T (C ∗) = U∗⊗ IdV ⊗W x ij = ui⊗vj need to add r −m dimensional
Borel fixed subspace here r = 6, m = 4, r −m = 2

x21 ⊗ y21

x21 ⊗ y22 x11 ⊗ y21

x11 ⊗ y22

x21 ⊗ y11 − x22 ⊗ y21

x21 ⊗ y12 − x22 ⊗ y22 x11 ⊗ y11 − x12 ⊗ y21

x11 ⊗ y12 − x12 ⊗ y22

x22 ⊗ y11

x22 ⊗ y12 x12 ⊗ y11

x12 ⊗ y12
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Border apolarity: results
Conner-Harper-L May 2019:
 very easy algebraic proof R(M〈2〉) = 7

M〈3〉?Strassen R(M〈3〉) ≥ 14, L-Ottaviani R(M〈3〉) ≥ 15,
L-Michalek R(M〈3〉) ≥ 16.

Conner-Harper-L June 2019: R(M〈3〉) ≥ 17

June 2019 only R(M〈2〉) known among nontrivial matrix
multiplication tensors.

Conner-Harper-L August 2019: R(M〈223〉) = 10
Conner-Harper-L August 2019: R(M〈233〉) = 14

All above results only use total degree 3 tests.

Conner-Harper-L Fall 2019: for all n > 2, R(M〈2nn〉) ≥ n2 + 1.32n
Previously, only R(M〈2nn〉) ≥ n2 + 1 known.
Conner-Harper-L 2020: for all n, R(M〈3nn〉) ≥ n2 + 1.6n
Previously, only R(M〈3nn〉) ≥ n2 + 2 known.
Just uses (210) and (120) tests!
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Idea of proof for asymptotic results

How to prove lower bounds for all n?

Candidate I⊥110:
C = W ∗⊗U.
M〈u,v,w〉(C

∗) = U∗⊗ IdV ⊗W ⊂ I⊥110 ⊂ B⊗C
= U∗⊗sl(V )⊗W ⊕ U∗⊗ IdV ⊗W

To prove R(M〈mnn〉) ≥ n2 + ρ, we show:

∀ E ∈ G (ρ,U∗⊗sl(V )⊗W )B, (210) or (120) test fails.
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Idea of proof for asymptotic results
Set of U∗⊗W weights of I⊥110 “outer structure”

Given U∗⊗W weight (s, t), set of sl(V )-weights appearing with it
“inner structure”

 n × n grid, attach to each vertex a B-closed subspace of sl(V ).
Split calculation of the kernel into a local and global computation.
Bound local (grid point) contribution to kernel by function of s, t
and dimension of subspace of sl(V ).

Solve a nearly convex optimization problem over all possible outer
structures.
Show extremal values fail test  all choices fail test.
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What about the barrier?

Bad news: (ijk)-tests are determinantal equations— subject to
barrier, i.e., candidate ideals may be candidate cactus border rank
decompositions.

More bad news: For any tensor T ∈ Cm⊗Cm⊗Cm there exist

ideals passing all total degree 3 tests for R(T ) = m + m
1
3
+ε, e.g.,

m = 9, R = 2m.

How to tell if zero dimensional scheme is smoothable?

In general, hopeless. But: algorithm produces Borel fixed ideals  
schemes supported at a point.

Here there are recent techniques (Jelisejew).

Spring 2020: full (unsaturated) ideals for M〈3〉 that pass all tests
for border rank 17.
Impostors or Slip?

Stay tuned!
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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