New lower bounds for matrix multiplication

A. Conner, A. Harper and J.M. Landsberg

Texas A\&M University
Landsberg supported by NSF grant CCF-1814254

Astounding conjecture

Strassen (1968) wrote an explicit algorithm to multiply $n \times n$ matrices with $O\left(n^{2.81}\right)<O\left(n^{3}\right)$ arithmetic operations.

Bini 1978, Schönhage 1983, Strassen 1987, Coppersmith-Winograd $1988 \rightsquigarrow O\left(n^{2.378}\right)$ arithmetic operations.

Astounding Conjecture
For all $\epsilon>0$, matrices can be multiplied using $O\left(n^{2+\epsilon}\right)$ arithmetic operations.

1988-2011 no progress, 2011-14 Stouthers,Williams,LeGall $O\left(n^{2.373}\right)$ arithmetic operations.

Tensor formulation of conjecture

Set $N=n^{2}$.
Matrix multiplication is a bilinear map

$$
M_{\langle n\rangle}: \mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}
$$

Bilinear maps $\mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ may also be viewed as trilinear maps $\mathbb{C}^{N} \times \mathbb{C}^{N} \times \mathbb{C}^{N *} \rightarrow \mathbb{C}$.

In other words

$$
M_{\langle n\rangle} \in \mathbb{C}^{N *} \otimes \mathbb{C}^{N *} \otimes \mathbb{C}^{N}
$$

Exercise: As a trilinear map, $M_{\langle n\rangle}(X, Y, Z)=\operatorname{trace}(X Y Z)$.

Tensor formulation of conjecture

A tensor $T \in \mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{N}=: A \otimes B \otimes C$ has rank one if it is of the form $T=a \otimes b \otimes c$, with $a \in A, b \in B, c \in C$. \sim bilinear maps that can be computed using one scalar multiplication.

The rank of a tensor $T, \mathbf{R}(T)$, is the smallest r such that T may be written as a sum of r rank one tensors. \sim number of scalar multiplications needed to compute the corresponding bilinear map.

Tensor formulation of conjecture

Theorem (Strassen): $M_{\langle n\rangle}$ can be computed using $O\left(n^{\tau}\right)$ arithmetic operations $\Leftrightarrow \mathbf{R}\left(M_{\langle n\rangle}\right)=O\left(n^{\tau}\right)$
Let $\omega:=\inf _{\tau}\left\{\mathbf{R}\left(M_{\langle n\rangle}\right)=O\left(n^{\tau}\right)\right\}$
exponent of matrix multiplication. Astounding conjecture: $\omega=2$
border rank of $T \in A \otimes B \otimes C \underline{\mathbf{R}}(T)$ denotes the smallest r such that T is a limit of tensors of rank r. I.e., smallest r such that $[T] \in \sigma_{r}:=\sigma_{r}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$, where, for $X \subset \mathbb{P} V$

$$
\sigma_{r}(X):=\overline{U_{x_{1}, \ldots, x_{r} \in X} \operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}}
$$

Theorem (Bini 1980) border rank is also a legitimate complexity measure: $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right)=O\left(n^{\omega}\right)$.

How to disprove astounding conjecture?

Find a polynomial P (in N^{3} variables) in the ideal of σ_{r},
Show that $P\left(M_{\langle n\rangle}\right) \neq 0$.
Embarassing (?): had not been known even for $M_{\langle 2\rangle}$, i.e., for σ_{6} when $N=4$.

Why did I think this would be easy?: Representation Theory

Matrices of rank at most r : zero set of size $r+1$ minors. Ideal of Segre generated by size 2 minors of flattenings tensors to matrices: $A \otimes B \otimes C=(A \otimes B) \otimes C$. Ideal of σ_{2} generated by degree 3 polynomials.

Representation theory: systematic way to search for polynomials. 2004 L-Manivel: No polynomials in ideal of σ_{6} of degree less than 12

2013 Hauenstein-Ikenmeyer-L: No polynomials in ideal of σ_{6} of degree less than 19. However there are polynomials of degree 19. Caveat: too complicated to evaluate on $M_{\langle 2\rangle}$. Good news: easier polynomial of degree 20 (trivial representation) \rightsquigarrow
(L 2006, Hauenstein-Ikenmeyer-L 2013) $\underline{\mathbf{R}}\left(M_{\langle 2\rangle}\right)=7$.

Polynomials via a retreat to linear algebra

$T \in A \otimes B \otimes C=\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{N}$ may be recovered up to isom. from the linear space $T\left(C^{*}\right) \subset A \otimes B$.
tensors up to changes of bases \sim linear subspaces of spaces of matrices up to changes of bases.
Even better than linear maps are endomorphisms. Assume $T\left(C^{*}\right) \subset A \otimes B$ contains an element of full rank. Use it to obtain an isomorphism $A \otimes B \simeq \operatorname{End}(A) \rightsquigarrow$ space of endomorphisms.
$\mathbf{R}(T)=N \Leftrightarrow N$-dimensional space of simultaneously diagonalizable matrices
$\underline{\mathbf{R}}(T) \leq N \Leftrightarrow$ limits of N-dimensional spaces of simultaneously diagonalizable matrices
Good News: Classical linear algebra!
Bad News: Open question.

Retreat to linear algebra, cont'd

Simultaneously diagonalizable matrices \Rightarrow commuting matrices
Good news: Easy to Test.
Better news (Strassen): Can upgrade to tests for higher border rank than $N: \underline{\mathbf{R}}(T) \geq N+\frac{1}{2}$ (rank of commutator)
$\rightsquigarrow\left(\right.$ Strassen 1983) $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq \frac{3}{2} n^{2}$
Variant: (Lickteig 1985) $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq \frac{3}{2} n^{2}+\frac{n}{2}-1$
1985-2012: no further progress other than for $M_{\langle 2\rangle}$.

Retreat to linear algebra, cont'd

Perspective: Strassen mapped space of tensors to space of matrices, found equations by taking minors.

Classical trick in algebraic geometry to find equations via minors.
$\rightsquigarrow\left(\right.$ L-Ottaviani 2013) $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq 2 n^{2}-n$
Found via a $G=G L(A) \times G L(B) \times G L(C)$ module map from $A \otimes B \otimes C$ to a space of matrices (systematic search possible).
Explicitly: $A \otimes B \otimes C \rightarrow \operatorname{Hom}\left(\wedge^{p} A^{*} \otimes B, \wedge^{p+1} A \otimes C\right)$.
Polynomials: minors of matrix.
Punch line: Found modules of determinantal equations by exploiting symmetry of σ_{r}.
Note: Only gives good bounds if $\operatorname{dim} B \sim \operatorname{dim} C \geq \operatorname{dim} A$.
Example: says nothing new for $M_{\langle 2 n n\rangle}, M_{\langle 3 n n\rangle}$ for $n>3$.

Bad News: Barriers

Theorem (Bernardi-Ranestad, Buczyńska-Buczyński-Galcazka, Efremenko-Garg-Oliviera-Wigderson): Game (almost) over for determinantal methods.
Variety of zero dimensional schemes of length r is not irreducible $r>13$.

Determinantal methods detect zero dimensional schemes (want zero dimensional smoothable schemes).
$\sigma_{r}(X):=\overline{\bigcup\{\langle R\rangle \mid \text { length }(R)=r, \text { support }(R) \subset X, R: \text { smoothable }\}}$ secant variety.

$$
\kappa_{r}(X):=\overline{\bigcup\{\langle R\rangle \mid \text { length }(R)=r, \text { support }(R) \subset X\}}
$$

cactus variety.
Determinantal equations are equations for the cactus variety.
Punch line: Barrier to progress.

How to go further?

So far, lower bounds via symmetry of σ_{r}.
The matrix multiplication tensor also has symmetry:
$T \in A \otimes B \otimes C$, define symmetry group of T
$G_{T}:=\{g \in G L(A) \times G L(B) \times G L(C) \mid g \cdot T=T\}$
$G L_{n}^{\times 3} \subset G_{M_{\langle n\rangle}} \subset G L_{n^{2}}^{\times 3}=G L(A) \times G L(B) \times G L(C):$
Proof: $\left(g_{1}, g_{2}, g_{3}\right) \in G L_{n}^{\times 3}$

$$
\operatorname{trace}(X Y Z)=\operatorname{trace}\left(\left(g_{1} X g_{2}^{-1}\right)\left(g_{2} Y g_{3}^{-1}\right)\left(g_{3} Z g_{1}^{-1}\right)\right)
$$

How to exploit G_{T} ?

Given $T \in A \otimes B \otimes C$
$\underline{\mathbf{R}}(T) \leq r \Leftrightarrow \exists$ curve $E_{t} \subset G(r, A \otimes B \otimes C)$ such that
i) For $t \neq 0, E_{t}$ is spanned by r rank one elements.
ii) $T \in E_{0}$.

For all $g \in G_{T}, g E_{t}$ also works.
\rightsquigarrow can insist on normalized curves (for $M_{\langle n\rangle}$, those with E_{0} Borel fixed).
$\rightsquigarrow\left(\right.$ L-Michalek 2017) $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq 2 n^{2}-\log _{2} n-1$
More bad news: this method cannot go much further.

New idea: Buczyńska-Buczyński (review of last week)

Use more algebraic geometry: Consider not just curve of r points, but the curve of ideals $I_{t} \in \operatorname{Sym}\left(A^{*} \oplus B^{*} \oplus C^{*}\right)$ it gives rise to: border apolarity method
$T=\lim _{t \rightarrow 0} \sum_{j=1}^{r} T_{j, t}$
I_{t} ideal of $\left[T_{1, t}\right] \cup \cdots \cup\left[T_{r, t}\right] \subset \mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C$
Can insist that limiting ideal I_{0} is Borel fixed: reduces to small search in each multi-degree.
Instead of single curve $E_{t} \subset G(r, A \otimes B \otimes C)$ limiting to Borel fixed point, for each (i, j, k) get curve $\left\{I_{i j k, t}^{\perp}\right\} \subset G\left(r, S^{i} A \otimes S^{j} B \otimes S^{k} C\right)$, each limiting to Borel fixed point and satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate I_{0} 's or proves border rank $>r$.

The border apolarity method (Buczyńska-Buczyński)

If $\underline{\mathbf{R}}(T) \leq r$, there exists a multi-graded ideal I satisfying:

1. I is contained in the annihilator of T. This condition says
$l_{110} \subset T\left(C^{*}\right)^{\perp}, l_{101} \subset T\left(B^{*}\right)^{\perp}, I_{011} \subset T\left(A^{*}\right)^{\perp}$ and $l_{111} \subset T^{\perp} \subset A^{*} \otimes B^{*} \otimes C^{*}$.
2. For all ($i j k$) with $i+j+k>1, \operatorname{codim} / l_{i j k}=r$.
3. each $I_{i j k}$ is Borel-fixed.
4. I is an ideal, so the multiplication maps
$I_{i-1, j, k} \otimes A^{*} \oplus I_{i, j-1, k} \otimes B^{*} \oplus I_{i, j, k-1} \otimes C^{*} \rightarrow S^{i} A^{*} \otimes S^{j} B^{*} \otimes S^{k} C^{*}$ have image contained in $l_{i j k}$. Call this the (ijk)-test.

Borel fixed subspaces for $U^{*} \otimes \mathfrak{s l}(V) \otimes W$

$C=W^{*} \otimes U$ Case $U=V=W=\mathbb{C}^{2}$. Candidate codim $=r I_{110}$ when $T=M_{\langle 2\rangle}$ Equivalently, dim $=r l_{110}^{\perp}$ containing
$T\left(C^{*}\right)=U^{*} \otimes \operatorname{Id} v \otimes W x_{j}^{i}=u^{i} \otimes v_{j}$ need to add $r-m$ dimensional Borel fixed subspace here $r=6, m=4, r-m=2$

Border apolarity: results

Conner-Harper-L May 2019:
\rightsquigarrow very easy algebraic proof $\underline{\mathbf{R}}\left(M_{\langle 2\rangle}\right)=7$
$M_{\langle 3\rangle}$?Strassen $\underline{\mathbf{R}}\left(M_{\langle 3\rangle}\right) \geq 14$, L-Ottaviani $\underline{\mathbf{R}}\left(M_{\langle 3\rangle}\right) \geq 15$,
L-Michalek $\underline{\mathbf{R}}\left(M_{\langle 3\rangle}\right) \geq 16$.
Conner-Harper-L June 2019: $\underline{\mathbf{R}}\left(M_{\langle 3\rangle}\right) \geq 17$
June 2019 only $\underline{\mathbf{R}}\left(M_{\langle 2\rangle}\right)$ known among nontrivial matrix multiplication tensors.

Conner-Harper-L August 2019: $\underline{\mathbf{R}}\left(M_{\langle 223\rangle}\right)=10$
Conner-Harper-L August 2019: $\underline{\mathbf{R}}\left(M_{\langle 233\rangle}\right)=14$
All above results only use total degree 3 tests.
Conner-Harper-L Fall 2019: for all $n>2, \underline{\mathbf{R}}\left(M_{\langle 2 n n\rangle}\right) \geq n^{2}+1.32 n$ Previously, only $\underline{\mathbf{R}}\left(M_{\langle 2 n n\rangle}\right) \geq n^{2}+1$ known.
Conner-Harper-L 2020: for all $n, \underline{\mathbf{R}}\left(M_{\langle 3 n n\rangle}\right) \geq n^{2}+1.6 n$
Previously, only $\underline{\mathbf{R}}\left(M_{\langle 3 n n\rangle}\right) \geq n^{2}+2$ known.
Just uses (210) and (120) tests!

Idea of proof for asymptotic results

How to prove lower bounds for all n ?
Candidate I_{110}^{\perp} :
$C=W^{*} \otimes U$.
$M_{\langle\mathbf{u}, \mathbf{v}, \mathbf{w}\rangle}\left(C^{*}\right)=U^{*} \otimes \mathbf{I d}_{V} \otimes W \subset I_{110}^{\perp} \subset B \otimes C$
$=U^{*} \otimes \mathfrak{s l}(V) \otimes W \oplus U^{*} \otimes \operatorname{ld}_{V} \otimes W$
To prove $\underline{\mathbf{R}}\left(M_{\langle m n n\rangle}\right) \geq n^{2}+\rho$, we show:
$\forall E \in G\left(\rho, U^{*} \otimes \mathfrak{s l}(V) \otimes W\right)^{\mathbb{B}},(210)$ or (120) test fails.

Idea of proof for asymptotic results

Set of $U^{*} \otimes W$ weights of I_{110}^{\perp} "outer structure"
Given $U^{*} \otimes W$ weight (s, t), set of $\mathfrak{s l}(V)$-weights appearing with it "inner structure"
$\rightsquigarrow n \times n$ grid, attach to each vertex a \mathbb{B}-closed subspace of $\mathfrak{s l}(V)$. Split calculation of the kernel into a local and global computation. Bound local (grid point) contribution to kernel by function of s, t and dimension of subspace of $\mathfrak{s l}(V)$.

Solve a nearly convex optimization problem over all possible outer structures.
Show extremal values fail test \rightsquigarrow all choices fail test.

What about the barrier?

Bad news: (ijk)-tests are determinantal equations- subject to barrier, i.e., candidate ideals may be candidate cactus border rank decompositions.

More bad news: For any tensor $T \in \mathbb{C}^{m} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{m}$ there exist ideals passing all total degree 3 tests for $\underline{\mathbf{R}}(T)=m+m^{\frac{1}{3}+\epsilon}$, e.g., $m=9, \underline{\mathbf{R}}=2 m$.

How to tell if zero dimensional scheme is smoothable?
In general, hopeless. But: algorithm produces Borel fixed ideals \rightsquigarrow schemes supported at a point.

Here there are recent techniques (Jelisejew).
Spring 2020: full (unsaturated) ideals for $M_{\langle 3\rangle}$ that pass all tests for border rank 17.
Impostors or Slip?
Stay tuned!

Thank you for your attention

For more on tensors, their geometry and applications, resp. geometry and complexity, resp. recent developments:

CBMS
Bengeral Cenlerence Sertes in Mastrmases
Nunser 132
Tensors: Asymptotic
Geometry and
Developments 2016-2018
J.M. Landsberg

