This article was downloaded by: [the Bodleian Libraries of the University of Oxford]
On: 04 March 2014, At: 08:03
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number:
1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International J ournal

Publication details, including instructions for authors and subscription information: http:// www. tandfonline.com/ loi/ gapa20

Homogenization of nonuniformly elliptic operators

Paolo Marcellini ${ }^{\text {a }}$ \& Carlo Sbordone ${ }^{\text {b }}$
${ }^{\text {a }}$ Istituto Maternatico, "U. Dini", Viale Morgagni 67a, Firenze, 50134, Italy
${ }^{\text {b }}$ Istituto Maternatico, "R. Caccioppoli", Via Mezzocannone 8, Napoli, 80134, Italy
Published online: 10 May 2007.

To cite this article: Paolo Marcellini \& Carlo Sbordone (1978) Homogenization of non-uniformly elliptic operators, Applicable Analysis: An International Journal, 8:2, 101-113

To link to this article: http:// dx.doi.org/ 10.1080/00036817808839219

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \& Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor \& Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor \& Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and

Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms \& Conditions of access and use can be found at http://www.tandfonline.com/page/terms-andconditions

Homogenization of Non-Uniformly Elliptic Operators \dagger

PAOLO MARCELLINI

Istituto Matematico "U. Bini", Vale Morgagni 67a, 50134, Firenze, Italy.

CARLO SBORDONE

Istituto Matematico "R. Caccioppoli", Via Mezzocannone 8, 80134, Napoli, Italy.

Communicated by H . Weinberger
(Received February 9, 1977)

An elliptic operator $\mathscr{A}=-\alpha_{i j} D_{i} D_{j}$ with constant coefficients is associated with any non-uniformly elliptic operator $A=-D_{i} a_{i j}(x) D_{j}$ with periodic coefficients (\mathscr{A} is called the homogenization of A), such that the solutions of Dirichlet's problems for $A_{\varepsilon}=-D_{i} a_{i j}\left(x \varepsilon^{-1}\right) D_{i}$ converge in $L^{2}($ as $\varepsilon \rightarrow 0)$ to the solution of the same problem for \mathscr{A}. The constants $\alpha_{i j}$ can be determined by solving a differential problem relative to A. These results (which are also proved for obstacle problems) extend those obtained by several authors when A is uniformly elliptic.

§1. INTRODUCTION

Let Y be an open interval in R^{N} and $\left[a_{i j}\right]$ a symmetric matrix of Y-periodic real functions in $L_{\text {bloc }}^{1}\left(R^{N}\right)$, such that $a_{i j}(x) \xi_{i} \xi_{j} \geqq 0 \forall x, \xi \varepsilon R^{N}$.

Let us consider the operators

$$
\begin{equation*}
A=-D_{i} a_{i j}(x) D_{j}, \quad A_{\varepsilon}=-D_{i} a_{i j}\left(x \varepsilon^{-1}\right) D_{j}, \varepsilon>0 \tag{1.1}
\end{equation*}
$$

and denote by u_{ε} the variational solution (assuming that it exists) of the Dirichlet problem

$$
\begin{equation*}
u_{\varepsilon} \in H_{0}^{1}(\Omega) \quad A_{\varepsilon} u_{\varepsilon}=\phi, \tag{1.2}
\end{equation*}
$$

where Ω is a bounded open set in R^{N} and $\phi \varepsilon L^{2}(\Omega)$.

[^0]To homogenize A means to find an operator

$$
\begin{equation*}
\mathscr{A}=-\alpha_{i j} \mathrm{D}_{i} \mathrm{D}_{j} \tag{1.3}
\end{equation*}
$$

with constant coefficients $\alpha_{i j} \in R$, such that, for any $\phi \varepsilon L^{2}(\Omega), u_{\varepsilon}$ converges in some sense to u, the solution of the Dirichlet problem

$$
\begin{equation*}
u \varepsilon H_{0}^{1}(\Omega) \quad \mathscr{A} u=\phi . \tag{1.4}
\end{equation*}
$$

The motivation for this problem lies in the study of physical models with periodic structure (Sanchez Palencia [19] and Babuška [2, 3]). We quote from [3]: "Homogenization is an approach which studies the macro-behaviour of a medium by its microproperties. The origin of this word is related to the question of a replacement of the heterogeneous material by an equivalent homogeneous one".

De Giorgi and Spagnolo [11], by using the technique of G-convergence, proved the following theorem:

ThEOREM If $\left[a_{i j}\right]$ is uniformly elliptic (i.e. there exist $0<\lambda \leqq \Lambda$ such that

$$
\begin{equation*}
\left.\lambda|\xi|^{2} \leqq a_{i j}(x) \xi_{i} \xi_{j} \leqq \Lambda|\xi|^{2} \quad \forall x, \xi \varepsilon R^{N}\right), \tag{1.5}
\end{equation*}
$$

then, $\forall \phi \varepsilon L^{2}(\Omega)$, the solution u_{ε} of (1.2) tends in $L^{2}(\Omega)($ as $\varepsilon \rightarrow 0)$ to the solution u of (1.4), where $\alpha_{i j}$ is the elliptic matrix defined by

$$
\alpha_{i j} \xi_{i} \xi_{j}=|Y|^{-1} \operatorname{Inf}\left\{\int_{Y} a_{i j}\left(u_{x_{i}}+\xi_{i}\right)\left(u_{x_{j}}+\xi_{j}\right) d x: u \in C^{1}, u Y \text {-periodic }\right\} .
$$

This result was also obtained in [2], [19]; was extended to obstacle problems (Bensoussan-Lions-Papanicolaou [5], Boccardo-Capuzzo Dolcetta [8], Boccardo-Marcellini [9]), to non symmetric operators of order $2 m(m \geqq 1)$ (Tartar [22]) and to more general homogenization problems (Babuška [2, 3], Bensoussan-Lions-Papanicolaou [6], Lions [12, 13], Marcellini [16]) (see also the book [7]).

In this paper we study the homogenization of non-uniformly elliptic operators, (i.e. of operators which do not satisfy (1.5)). We replace this condition with suitable summability properties of the minimum and maximum eigenvalue of the matrix $\left[a_{i j}\right]$ such as (3.1), of the type considered in Murthy-Stampacchia [18] and Trudinger [23]. We prove the result corresponding to the above theorem for the Dirichlet problem (Theorem 5.2) and also for the obstacle problem (Theorem 6.1). These results have been announced in [24].

The proofs are derived by means of a compactness result (Theorem 3.1) with respect to Γ^{-}-convergence (see the Definition 2.1) given in MarcelliniSbordone [17]. The main difficulty is the extension of the Γ^{-}-convergence
from C^{1} to the Sobolev space containing all the solutions. This is done in $\S 4$. The extension problem for more general classes of functionals, for example without periodicity of the coefficients, is still open.

§2. DEFINITION AND PROPERTIES OF Γ^{-}-CONVERGENCE

In the following we consider topological spaces (V, τ) and sequences of functionals $F_{h}: V \rightarrow[0, \infty]$ satisfying one of the properties:
(2.1) (V, τ) verifies the first countability axiom
(2.2) $\left\{\begin{array}{l}V \text { is a reflexive and separable Banach space with dual } V^{*}, \tau=w-V \\ =\text { weak topology in } V ; F_{h} \text { convex, l.s. (lower semicontinuous), } F_{h}(0) \leqq M \\ <\infty, F_{h}(v) \geqq \chi(v) \text {, with } \alpha: V \rightarrow[0, \infty] \text { such that } \lim _{\|v\| \rightarrow \infty} \alpha(v)\|v\|^{-1}=\infty .\end{array}\right.$

DEFINITION 2.1 Let (V, τ) and F_{h} satisfy (2.1) or (2.2); then $F: V \rightarrow[0, \infty]$ is the $\Gamma^{-}(\tau)$ limit of F_{h} on $V\left(F=\Gamma^{-}(\tau)-\lim F_{h}\right)$ iff
i) $\forall v \varepsilon V \exists v_{h} \varepsilon V: v_{h} \xrightarrow{\tau} v$ and $F(v)=\lim _{h} F_{h}\left(v_{h}\right)$
ii) $\forall v_{h}, v \varepsilon V, v_{h} \xrightarrow{\tau} v \Rightarrow F(v) \leqq \lim _{h} \inf F_{h}\left(v_{h}\right)$.

Remark 2.2 The convergence (i), (ii) can also be defined for arbitrary (V, τ) and F_{h}, and in this case (see [1]) it is called "sequential Γ^{-}-convergence". But, assuming (2.1) or (2.2), it coincides with Γ^{-}-convergence as defined in [10] (cfr. [10] Proposition 3.1 and [1] Proposition 1.4). We observe that in the case (2.2) it is called G-convergence in $[9,14,15]$.
THEOREM 2.3 ([9], Theorem 2.7), If F_{h}, F satisfy (2.2), then $F=\Gamma^{-}$-(w -V) $\lim F_{h}$ on V iff $\forall v^{*} \varepsilon V^{*} u_{h}\left(v^{*}\right) \rightarrow u\left(v^{*}\right)$ in $w-V$, where $u_{h}\left(v^{*}\right)\left(\right.$ resp. $\left.u\left(v^{*}\right)\right)$ is the minimum point in V of $v \rightarrow F_{h}(v)-\left\langle v^{*}, v\right\rangle\left(\right.$ resp. $\left.F(v)-\left\langle v^{*}, v\right\rangle\right)$.
Proposition 2.4 ([14] Proposition 9). Let F_{h} satisfy (2.2); then there exist a subsequence $\left(F_{h r}\right)$ of $\left(F_{h}\right)$ and an F such that $F=\Gamma^{-}(w-V) \lim F_{h r}$ on V.
Theorem 2.5 ($[9]$ Theorem 3.6). Let F_{h} satisfy (2.2), $F: V \rightarrow[0, \infty]$ and let $K_{0} \subseteq V$ be such that:
j) K_{0} is dense in $\{v \varepsilon V: F(v)<\infty\}$, with respect to a topology σ stronger than $w-V$ and F is σ-continuous.
jj) $\forall v \varepsilon K_{0} \exists v_{h} \rightarrow v$ in $w-V$ such that $F(v)=\lim _{h} F_{h}\left(v_{h}\right)$.
jij) $\forall v_{h}, v \varepsilon V, v_{h} \rightarrow v$ in $w-V \Rightarrow F(v) \leqq \lim _{h}$ inf $F_{h}\left(v_{h}\right)$.
Then: $F=\Gamma^{-}-(w-V) \lim F_{h}$ on V.

§3. Γ^{-}-CONVERGENCE ON THE SPACE $C^{1}=C^{1}\left(R^{N}\right)$

In this section we consider non-uniformly elliptic matrices $\left[a_{i j}\right]$ satisfying $\forall i, j$ $=1, \ldots, N ; \forall x, \xi \varepsilon R^{N}$

$$
\left\{\begin{array}{l}
a_{i j}=a_{j i}, 0 \leqq m(x)|\xi|^{2} \leqq a_{i j}(x) \xi_{i} \xi_{j} \leqq M(x)|\xi|^{2} \tag{3.1}\\
\left.\left.\left\|m^{-1}\right\|_{L^{r}(\Omega)}+\|M\|_{L^{s}(\Omega)} \leqq Q(\Omega) ; r, s \in\right] 1, \infty\right], r^{-1}+s^{-1}<2 N^{-1},
\end{array}\right.
$$

where Ω is a bounded open set in R^{N} and $Q(\Omega)$ a fixed increasing real function of Ω.

THEOREM 3.1 ([17] Corollary 2.9). Let $\left[a_{i j, k}\right]$ be a sequence of symmetric matrices such that

$$
\left\{\begin{array}{c}
0 \leqq m_{h}(x)|\xi|^{2} \leqq a_{i j, h}(x) \xi_{i} \xi_{j} \leqq M_{h}(x)|\xi|^{2} \tag{3.2}\\
\left\|m_{h}^{-1}\right\| L_{L^{\prime}(\Omega)}+\left\|M_{h}\right\|_{L^{s}(\Omega)} \leqq Q(\Omega),(r, s \text { as in }(3.1), Q \text { fixed }) .
\end{array}\right.
$$

There exist a subsequence, which we still denote $\left[a_{i j,}\right]$, and $\alpha_{i j}$ verifying (3.1) such that, if $\forall u \varepsilon C^{1}$

$$
\begin{equation*}
F_{h}(\Omega, u)=\int_{\Omega} a_{i j, h} u_{x_{i}} u_{x_{j} j} F(\Omega, u)=\int_{\Omega} \alpha_{i j} u_{x_{i}} u_{x_{j}}, \tag{3.3}
\end{equation*}
$$

then for any $q \varepsilon[1, \infty]$ and any bounded open set Ω in R^{N},

$$
\begin{align*}
F(\Omega, u)=\Gamma^{-}\left(L^{q}(\Omega)\right) \lim F_{h}(\Omega, u) & \\
& =\Gamma^{-}\left(L_{0}^{q}(\Omega)\right) \lim F_{h}(\Omega, u) \text { on } C^{1} \cdot \dagger \tag{3.4}
\end{align*}
$$

We note that, under the assumptions of Theorem 3.1, one has

$$
\begin{equation*}
Q(\Omega)^{-1}\|D u\|_{L^{p}(\Omega)}^{2} \leqq F_{h}(\Omega, u) \leqq Q(\Omega)\|D u\|_{L^{25(s-1)}(\Omega)}^{2^{2}} \div \tag{3.5}
\end{equation*}
$$

In the following we propose to extend the Γ^{-}-convergence result of Theorem 3.1 from C^{1} to $H_{0}^{1, p}(\Omega)$. For any bounded open set Ω in R^{N}, we denote by $\tilde{F}_{h}(\Omega, u)$ the convex function obtained as the lower semicontinuous envelope on the space $H^{1, p}(\Omega)$ of the convex functional

$$
u \varepsilon H^{1, p}(\Omega) \rightarrow \begin{cases}F_{h}(\Omega, u) & \text { if } \quad u \varepsilon C^{1} \tag{3.6}\\ +\infty & \text { if } u \varepsilon H^{1, p}(\Omega) C^{1} ;\end{cases}
$$

that is

$$
\begin{equation*}
\tilde{F}_{h}(\Omega, u)=\inf \left\{\lim _{k} \inf F_{h}\left(\Omega, u_{k}\right): u_{k} \varepsilon C^{1}, u_{k} \rightarrow u \operatorname{in} H^{1, p}(\Omega)\right\} . \tag{3.7}
\end{equation*}
$$

[^1]We note that $\tilde{F}_{h}(\Omega, u)=F_{h}(\Omega, u) \quad \forall u \varepsilon C^{1}$.
The strictly convex l.s. functions

$$
\begin{equation*}
\phi_{h}(\Omega, u)=\widetilde{F}_{h}(\Omega, u)+\|u\|_{L^{p}(\Omega)}^{2} \tag{3.8}
\end{equation*}
$$

satisfy $\quad \phi_{h}(\Omega, 0)=0 \quad$ and $\quad \phi_{h}(\Omega, u) \geqq \min \left\{Q(\Omega)^{-1}, 1\right\}\|u\|_{H^{1}, p_{(\Omega)}}^{2} \quad \forall u \varepsilon H^{1, p}(\Omega)$. Therefore by Proposition 2.4, there exist a subsequence ($\phi_{h_{r}}$) of $\left(\phi_{h}\right)$ and a convex 1.s. function ϕ such that

$$
\begin{equation*}
\phi(\Omega, u)=\Gamma^{-}-\left(w-H^{1 . p}(\Omega)\right) \lim \phi_{h_{r}}(\Omega, u) \text { on } H^{1, p}(\Omega) . \tag{3.9}
\end{equation*}
$$

Lemma 3.2 If $\phi(\Omega, u)$ is as in (3.9), then

$$
\begin{equation*}
\phi(\Omega, u)=F(\Omega, u)+\|u\|_{L^{2}(\Omega)}^{2} \quad \forall u \varepsilon C^{1} . \tag{3.10}
\end{equation*}
$$

Proof For $u \varepsilon C^{1}$, let $u_{r} \varepsilon C^{1}$ be such that $u_{r} \rightarrow u$ in $L^{p}(\Omega)$ and $F(\Omega, u)=\lim _{r}$ $F_{h_{r}}\left(\Omega, u_{r}\right)$. In particular $\left(u_{r}\right)$ is $H^{1, p}(\Omega)$-bounded and so $u_{r} \rightarrow u$ in $w-H^{1, p}(\Omega)$. Then by (3.9)

$$
\begin{equation*}
\phi(\Omega, u) \leqq \lim _{r} \inf \left(F_{h_{r}}\left(\Omega, u_{r}\right)+\left\|u_{r}\right\|_{L^{p}(\Omega)}^{2}\right)=F(\Omega, u)+\|u\|_{L^{p}(\Omega)}^{2} . \tag{3.11}
\end{equation*}
$$

Let now (u_{r}) converge weakly in $H^{1, p}(\Omega)$ to $u \varepsilon C^{1}$ and $\phi(\Omega, u)=\lim _{r} \phi_{h_{r}}$ $\left(\Omega, u_{r}\right)$. It is easy to find $v_{r} \varepsilon C^{1}$ such that $\left|\phi_{h_{r}}\left(\Omega, v_{r}\right)-\phi_{h_{r}}\left(\Omega, u_{r}\right)\right|<1 / r$, $\left\|v_{r}-u_{r}\right\|_{H^{1, p_{(S)}}}<1 / r$, so that

$$
\begin{equation*}
F(\Omega, u)+\|u\|_{L^{p}(\Omega)}^{2} \leqq \lim _{r} \inf \phi_{h_{r}}\left(\Omega, v_{r}\right)=\phi(\Omega, u) \tag{3.12}
\end{equation*}
$$

(3.10) follows from (3.11) and (3.12).

For any $k \varepsilon N$ let $\dot{\Omega}_{k}=\left\{x \varepsilon R^{v}:|x|<k\right\}$ and let $\phi_{h}\left(\Omega_{k}, u\right)$ be as in (3.8). By Proposition 2.4, with a diagonal process it is possible to find a subsequence $\left(\phi_{h_{r}}\right)$ of (ϕ_{h}) such that

$$
\begin{equation*}
\phi\left(\Omega_{k}, u\right)=\Gamma^{-}-\left(w-H^{1 \cdot p}\left(\Omega_{k}\right)\right) \lim _{r} \phi_{h_{r}}\left(\Omega_{k}, u\right) \text { on } H^{1, p}\left(\Omega_{k}\right) \quad \forall k \varepsilon N . \tag{3.13}
\end{equation*}
$$

Lemma 3.3 Let $\phi\left(\Omega_{k}, u\right)$ be as in (3.13). Then the function

$$
\begin{equation*}
\phi(u)=\sup _{k} \phi\left(\Omega_{k}, u\right) \quad \forall u \varepsilon H^{1, p}\left(R^{N}\right) \tag{3.14}
\end{equation*}
$$

is convex and l.s. on $H^{1 . p}\left(R^{v}\right)$ and $\left(\alpha_{i j}\right.$ being as in Theorem 3.1):

Proof Clearly ϕ is convex and 1.s. and by $\phi\left(\Omega_{k}, u\right) \leqq \phi\left(\Omega_{k+1}, u\right) \quad \forall k \varepsilon N$, $\forall u \varepsilon H^{1, p}\left(R^{N}\right)$, we deduce that the supremum in (3.14) is a limit as $k \rightarrow \infty$. By Lemma 3.2 and the monotone convergence theorem we have (3.15).

Remark 3.4 In the next section we shall prove that $F(\Omega, u)=\Gamma^{-}-(w$ $\left.-H_{0}^{1 \cdot p}\right) \lim F_{h_{r}}(\Omega, u)$ on $H_{0}^{1 \cdot p}(\Omega)$. This will be a consequence of the fact that (3.15) holds on $H^{1 . p}$ (see 4.9). This follows from (3.15) if, e.g. the F_{h} are uniformly elliptic functionals ($r=s=\infty$), as in this case F and ϕ are $H^{1.2}$ continuous and C^{1} is dense in $H^{1.2}(\Omega)$. In the general case, for the same reason, one has that $\phi(\Omega, u)=F(\Omega, u)+\|u\|_{L^{p}(\Omega)}^{2}$ on $H^{1,2 s /(s-1)}(\Omega)$; the main result of next section is (3.15) on $H_{0}^{1, p}(\Omega) \supseteq H_{0}^{1,2 s /(s-1)}(\Omega)$.

§4. Γ^{-}-CONVERGENCE ON THE SPACE $H_{0}^{1,0}$

We begin this section with an abstract result on convex functions which will be useful in the sequel. It is a generalization of Jensen's inequality.
PROPOSITION 4.1 Let Ω be an open set in $R^{N}, \phi: V=H^{1, p}(\Omega) \rightarrow[0, \infty]$ convex and l.s. function; $\alpha: R^{N} \rightarrow\left[0, \infty\left[\right.\right.$ such that $\int_{R^{N}} \alpha(y) d y=1$. If $v: R^{N} \rightarrow V$ is measurable and $u=\int_{R^{v}} \alpha(y) v(y) d y \varepsilon V$ then

$$
\phi\left(\int_{R^{v}} \alpha(y) v(y) d y\right) \leqq \int_{R^{v}} \alpha(y) \phi(v(y)) d y
$$

Proof Using known properties of ϕ, if $\phi(u)<\infty$ then $\forall \varepsilon>0 \exists v^{*} \varepsilon V^{*}, a \varepsilon R$ such that

$$
\phi(v) \geqq\left\langle v^{*}, v\right\rangle+a \quad \forall v \varepsilon V ; \quad \phi(u)<\left\langle v^{*}, u\right\rangle+a+\varepsilon ;
$$

from which it follows that

$$
\begin{equation*}
\phi(u)-\phi(v)<\left\langle v^{*}, u-v\right\rangle+\varepsilon \quad \forall v \varepsilon V . \tag{4.1}
\end{equation*}
$$

In particular, setting in (4.1) $v=v(y)$, multiplying by $\alpha(y)$ and integrating over R^{N}, one has

$$
\begin{aligned}
\phi(u)-\int_{R^{N} \alpha} \alpha(y) \phi(v(y)) d y<\int_{R^{v}} \alpha(y)\left\langle v^{*}\right. & , u-v\rangle d y+\varepsilon \\
& =\left\langle v^{*}, u\right\rangle-\left\langle v^{*}, \int_{R^{N}} \alpha(y) v(y) d y\right\rangle+\varepsilon=\varepsilon
\end{aligned}
$$

Since ε is arbitrary, we have the assertion.
If $\phi(u)=\infty$, then for any $k \exists v^{*} \varepsilon V^{*}$ and $a \varepsilon R$ such that

$$
\phi(v) \geqq\left\langle v^{*}, v\right\rangle+a \forall v \varepsilon V ;\left\langle v^{*}, u\right\rangle+a>k
$$

by which $\phi(v)\rangle\left\langle u^{*}, v-u\right\rangle+k$. Since k is arbitrary, the assertion follows as in the previous case.
Corollary 4.2 Let Ω be an open set in $R^{N}, V=H^{1, p}(\Omega), \phi: V \rightarrow[0, \infty]$ convex and l.s.; $\alpha_{k}: R^{N} \rightarrow\left[0, \infty\left[\right.\right.$ with $\int \alpha_{k}(y) d y=1$. Let $v: R^{N} \rightarrow V$ be such that v_{k} $=\int_{R} v \alpha_{k}(y) v(y) d y \varepsilon V$ and $v_{k} \rightarrow w$ in V. Then if $\phi(v(y))=\phi(w) \quad \forall y \varepsilon R^{N}$, we have $\phi(w)=\lim _{k} \phi\left(v_{k}\right)$.

Proof By Proposition 4.1 we deduce $\phi\left(v_{k}\right) \leqq \phi(w) \quad \forall k$, so that $\lim _{k}$ $\sup \phi\left(v_{k}\right) \leqq \phi(w)$. Since ϕ is l.s., this proves the assertion.

In the following we consider sequences of periodic matrices. Let $\left[a_{i j}\right]$ be as in (3.1) with the further assumption that there exist an open interval $Y \subseteq R^{N}$ such that $a_{i j}$ is Y-periodic $\forall i, j$. Let $\left(\tau_{h}\right)$ be a divergent sequence of positive numbers and set $\forall h \varepsilon N$

$$
\begin{equation*}
a_{i j, h}(x)=a_{i j}\left(\tau_{h} x\right) \quad i, j=1, \ldots, N, x \varepsilon R^{N} \tag{4.2}
\end{equation*}
$$

In order to prove that the $\left[a_{i j, h}\right]$ verify (3.2), let Y^{\prime} an integer multiple of Y containing Ω and $k_{h}=\left[\tau_{h}\right]+1$; then we have for h large

$$
\int_{\Omega} M_{h}^{s} d x \leqq \int_{k_{h} / \tau_{h} Y} M_{h}^{s} d x=1 / \tau_{h}^{N} \int_{k_{h} Y} M^{s} d x \leqq 2^{N} Q\left(Y^{\prime}\right)^{s}
$$

LEMMA 4.3 Let $\left[a_{i j, h}\right]$ be defined by (4.2) with $a_{i j} Y$-periodic and satisfying (3.1). If $\alpha_{i j}$ is defined by (3.3), (3.4); then $\alpha_{i j}$ are real constants and $\alpha_{i j} \xi_{i} \xi_{i} \geqq \hat{\lambda}|\xi|^{2}$ with $\lambda>0$.

Proof It is sufficient to prove that

$$
\begin{equation*}
F\left(R^{N}, u\right)=F\left(R^{N}, u(y)\right) \quad \forall u \varepsilon C_{0}^{1}, \quad \forall y \varepsilon R^{N}, \tag{4.3}
\end{equation*}
$$

where $u(y)(x)=u(x-y)$. For $y \varepsilon R^{N}$ let $k_{h} \varepsilon N^{N}$ be such that $y_{h}=k_{h} / \tau_{h} \rightarrow y$ and $a_{i j}\left(x+k_{h}\right)=a_{i j}(x) \quad \forall h \varepsilon N, x \varepsilon R^{N}$. Then

$$
\begin{equation*}
a_{i j, h}\left(x+y_{h}\right)=a_{i j, h}(x) \tag{4.4}
\end{equation*}
$$

If $\left(u_{h}\right)$ is a sequence in C^{1} converging to $u \varepsilon C_{0}^{1}$ in L_{0}^{q} such that $F\left(R^{N}, u\right)=\lim _{h}$ $F\left(R^{N}, u_{h}\right)$; from (4.4) one has

$$
\begin{align*}
F\left(R^{N}, u\right) & =\lim _{h} \int_{R^{N}} a_{i j, h}\left(x+y_{h}\right) D_{i} u_{h}(x) D_{j} u_{h}(x) d x \tag{4.5}\\
& =\lim _{h} \int_{R^{N}} a_{i j, h}(x) D_{i} u_{h}\left(x-y_{h}\right) D_{j} u_{h}\left(x-y_{h}\right) d x \geqq F\left(R^{N}, u(y)\right),
\end{align*}
$$

as $u_{h}\left(y_{h}\right)$ converge to $u(y)$ in $L_{0}^{q}\left(\Omega^{\prime}\right)$, where Ω^{\prime} is a bounded open set containing $\operatorname{spt}\left(u_{h}\left(y_{h}\right)\right) \quad \forall h$. The opposite inequality of (4.5) being obtained by symmetry, the lemma is proved.

Lemma 4.4 Under the assumptions of preceding lemma, let ϕ be defined on $H^{1, p}\left(R^{N}\right)$ by (3.14). Set $u(y)(x)=u(x-y)$; we have

$$
\begin{equation*}
\phi(u(y))=\phi(u) \quad . \quad \forall y \varepsilon R^{N}, u \varepsilon H^{1, p}\left(R^{N}\right) . \tag{4.6}
\end{equation*}
$$

Proof For any $y \varepsilon R^{N}$ let $y_{r} \rightarrow y$ with $\left|y_{r}\right|<k_{0}$ and $a_{i j, h_{r}}\left(x+y_{r}\right)=a_{i j, h_{r}}(x)$. For $u i \varepsilon H^{1 . p}\left(R^{N}\right)$ let $u_{r} \rightarrow u$ in $w-H^{1 . p}\left(\Omega_{k+k_{0}}\right)$ and $\lim _{r} \phi_{h_{r}}\left(\Omega_{k+k_{0}}, u_{r}\right)=\phi\left(\Omega_{k+k_{0}}, u\right)$. From the obvious relation $\phi_{h_{r}}\left(\Omega_{k+k_{g}}, u_{r}\right) \geqq \phi_{h_{r}}\left(\Omega_{k}, u_{r}\left(y_{r}\right)\right)$ it follows that

$$
\begin{equation*}
\phi\left(\Omega_{k+k_{o}}, u\right) \geqq \lim _{r} \inf \phi_{h_{r}}\left(\Omega_{k}, u_{r}\left(y_{r}\right)\right) \geqq \phi\left(\Omega_{k}, u(y)\right), \tag{4.7}
\end{equation*}
$$

since $u_{r}\left(y_{r}\right) \rightarrow u(y)$ in $w-H^{1, p}\left(\Omega_{k}\right)$. Passing to the limit in (4.7) as $k \rightarrow \infty$, we have $\phi(u) \geqq \phi(u(y))$ and the result follows by symmetry.

Lemma 4.5 Let $a_{i j, h}$ be defined by (4.2), F_{h}, F as in (3.3), (3.4), and \tilde{F}_{h} as in (3.7). Then there exists a subsequence ($\tilde{F}_{h_{r}}$) of $\left(\tilde{F}_{h}\right)$ such that $u_{r} \rightarrow u$ $w-H_{0}^{1, p}(\Omega) \Rightarrow F(\Omega, u) \leqq \lim _{r} \inf \widetilde{F}_{h_{r}}\left(\Omega, u_{r}\right)$.

Proof Let $u \varepsilon H^{1, p}\left(R^{N}\right)$ and $\left(\alpha_{k}\right)$ be a sequence such that $\alpha_{k} * u \varepsilon C^{1}, \alpha_{k} * u \rightarrow u$ in $H^{1, p}\left(R^{N}\right)$. Using Lemma 4.4 and Corollary 4.2 we have

$$
\begin{equation*}
\phi(u)=\lim _{k} \phi\left(\alpha_{k} * u\right) \quad u \varepsilon H^{1, p}\left(R^{N}\right) . \tag{4.8}
\end{equation*}
$$

Formula (4.8) holds also for $F\left(R^{N}, u\right)+\|u\|_{L}^{2} p_{\left(R^{N},\right.}$, by Lemma 4.3.
Replacing u in (3.15) by $\alpha_{k} * u$ and passing to the limit, we have

$$
\begin{equation*}
\phi(u)=F\left(R^{N}, u\right)+\|u\|_{L^{p}\left(R^{N}\right)}^{2} \quad \forall u \varepsilon H^{1, p}\left(R^{N}\right) . \tag{4.9}
\end{equation*}
$$

Now, for a fixed Ω let $\Omega_{k_{0}} \supseteq \Omega$ and $u_{r}, u \varepsilon H_{0}^{1 . p}(\Omega)$ such that $u_{r} \rightarrow u$ in $w-H_{0}^{1 . p}(\Omega)$. Then $\forall k \geqq k_{0}$ we have from (3.9)

$$
\underset{r}{\lim \inf } \tilde{F}_{h_{r}}\left(\Omega, u_{r}\right)=\underset{r}{\lim \inf } \tilde{F}_{h_{r}}\left(\Omega_{k}, u_{r}\right) \geqq \phi\left(\Omega_{k}, u\right)-\|u\|_{L^{p}(\Omega)}^{2} .
$$

By passing to the limit as $k \rightarrow \infty$ and using (4.9) we deduce

$$
\lim _{r} \inf {\widetilde{F_{r}}}_{h_{r}}\left(\Omega, u_{r}\right) \geqq \phi(u)-\|u\|_{L_{p}(\Omega)}^{2}=F(\Omega, u) .
$$

We can now state and prove the principal result of this section.
Theorem 4.6 Under the assumptions of the preceding lemma we have

$$
\alpha_{i j} \int_{\Omega} u_{x_{i}} u_{x_{j}} d x=F(\Omega, u)=\Gamma^{-}-\left(w-H_{0}^{1 \cdot p}(\Omega)\right) \lim \tilde{F}_{h_{r}}(\Omega, u) \text { on } H_{0}^{1 \cdot p}(\Omega) .
$$

Proof The proof comes from Theorem 2.5 with $K_{0}=C_{0}^{1}(\Omega)$. In fact (j) is verified since, $\left[\alpha_{i j}\right]$ being positive definite, one has $\left\{u \varepsilon H_{0}^{1, p}(\Omega): F(\Omega, u)<\infty\right\}$ $=H_{0}^{1 ; 2} ; C_{0}^{1}(\Omega)$ is dense in $H_{0}^{1}{ }^{2}(\Omega)$ and $F(\Omega, u)$ is $H^{1,2}(\Omega)$-continuous.

Moreover by Theorem 3.1, $\forall u \varepsilon C_{0}^{1}(\Omega) \exists\left(u_{r}\right) \in C_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\underset{r}{\lim \left\|u_{r}-u\right\|_{L^{p}}=0, \quad \lim _{r} \tilde{F}_{h_{r}}\left(\Omega, u_{r}\right)=F(\Omega, u)} \tag{4.10}
\end{equation*}
$$

From (4.10) and (3.5) we deduce that $\left(u_{r}\right)$ is $H_{0}^{1 . p}(\Omega)$-bounded and so $u_{r} \rightarrow u$ in $w-H_{0}^{1 . p}(\Omega)$. So (jj) of Theorem 2.5 is checked. Lemma 4.5 gives (jjj).

§ 5. THE HOMOGENIZATION

Let $\left[a_{i j}\right]$ be a Y-periodic matrix (Y an open interval in R^{N}) satisfying (3.1). Let us consider the family of second order non-uniformly elliptic operators $A_{\varepsilon}=$ $-D_{i} a_{i j}\left(x \varepsilon^{-1}\right) D_{j}$. The aim of this section is to prove that for any $\phi \varepsilon L^{2}(\Omega)$ the variational solution $u_{\varepsilon}=u_{\varepsilon}(\phi)$ of the problem

$$
\begin{equation*}
u_{\varepsilon} \varepsilon H_{0}^{1 \cdot p}(\Omega): A_{\varepsilon} u_{\varepsilon}=\phi \tag{5.1}
\end{equation*}
$$

converges in $L^{2}(\Omega)$ to the solution $u=u(\phi)$ of the problem

$$
\begin{equation*}
u \in H_{0}^{1 \cdot p}(\Omega): \mathscr{A} u=\phi \tag{5.2}
\end{equation*}
$$

\mathscr{A} is an uniformly elliptic operator of the form $\mathscr{A}=-\alpha_{i j} D_{i} D_{j}$ whose coefficients it is possible to compute by solving a differential problem on Y relative to the operator $A=-D_{i} a_{i j}(x) D_{j}$. This generalizes the similar theory ($[2,3,5,11,13,19,21]$) for the case $r=s=\infty$.

We begin with some notations and a lemma.
Let W_{Y} be the completion with respect to the norm $\|u\|_{W_{Y}}=\|D u\|_{L^{p}\left(Y_{Y}\right)}$ of the space of C^{1}-functions u which are Y-periodic and have $\int_{Y} u d x=0$.
Lemma 5.1 Let $\left[a_{i j}\right]$ be an Y-periodic matrix satisfying (3.1). Let $a_{i j, h}$ be as in (4.2), F_{h} and F as in (3.3), (3.4), \tilde{F}_{h} as in (3.7). Set

$$
\begin{equation*}
\psi_{h}(u)=\widetilde{F}_{h}(Y, u+\langle\xi, x\rangle), \psi(u)=F(Y, u+\langle\xi, x\rangle) \quad \xi \varepsilon R^{N} . \tag{5.3}
\end{equation*}
$$

Then there exists $\left(\psi_{h_{r}}\right)$ such that $\psi=\Gamma^{-}-\left(w-W_{Y}\right) \lim _{r} \psi_{h_{r}}$ on W_{Y}.
Proof By utilizing (3.5) it is easy to check that

$$
\begin{equation*}
\psi_{h}(u) \geqq Q(\Omega)^{-1}| | u+\langle\zeta, x\rangle \|_{W_{Y}}^{2} \quad \forall u \varepsilon W_{Y}, \psi_{h}(0) \leqq Q(\Omega)|\xi|^{2}|Y|^{(s-1) / s} . \tag{5.4}
\end{equation*}
$$

Then, by Proposition 2.3 there exists a subsequence $\left(\psi_{h_{r}}\right)$ of $\left(\psi_{h}\right)$ and a convex 1.s. function χ verifying (5.4) such that $\chi=\Gamma^{-}-\left(w-W_{Y}\right) \lim _{r} \psi_{h_{r}}$ on W_{Y}. Let us prove first that $\chi(u)=\psi(u) \forall u \varepsilon C^{1} \cap W_{Y}$.

If $u \varepsilon C^{1} \cap W_{Y}$, then by (3.4) there exists a sequence $\left(v_{r}\right) \subset C^{1}$ such that $v_{r} \rightarrow u$
$+\langle\xi, x\rangle \operatorname{in} L^{p}(Y), \operatorname{spt}\left[v_{r}-(u+\langle\xi, x\rangle)\right] \subset Y$ and $F(Y, u+\langle\xi, x\rangle)=\lim _{r} \tilde{F}_{h_{r}}(Y$, v_{r}). Setting $u_{r}=v_{r}-\langle\xi, x\rangle$, we have $u_{r} \varepsilon W_{Y} \cap C^{1}, u_{r}$ converges to u strongly in $L^{p}(Y)$ and in $w-W_{Y}\left(\right.$ as $\left(\psi_{h_{r}}\left(u_{r}\right)\right)$ is bounded $)$, and $\psi(u)=\lim _{r} \psi_{h_{r}}\left(u_{r}\right)$. So $\chi(u)$ $\leqq \lim _{r} \psi_{h_{r}}\left(u_{r}\right)=\psi(u)$.

Moreover if $\left(u_{r}\right) \subset W_{Y}$ is such that $u_{r} \rightarrow u$ in $w-W_{Y}$ and $\chi(u)=\lim _{r} \psi_{h_{r}}\left(u_{r}\right)$, then $u_{r} \rightarrow u$ in $L^{p}(Y)$ and therefore

$$
\psi(u)=F(Y, u+\langle\xi, x\rangle) \leqq \liminf _{r} \tilde{F}_{h_{r}}\left(Y, u_{r}+\langle\xi, x\rangle\right)=\lim _{r} \psi_{h_{r}}\left(u_{r}\right)=\chi(u)
$$

Setting $u(y)(x)=u(x-y) \forall u \varepsilon W_{Y}$, we have, as in the proof of Lemma 4.4 $\chi(u(y))=\chi(u)$ for any u; and so, by Corollary 4.2 we deduce $\chi(u)=\psi(u) \forall u \varepsilon W_{Y}$.

Now we are able to prove the homogenization theorem for problems (5.1), (5.2). The proof of Theorem 5.2 is similar to that of [11] and so we will not enter in all the details.

THEOREM 5.2 Let $\left[a_{i j}\right]$ be a Y-periodic matrix satisfying (3.1) and Ω a bounded open set in R^{N}. For any $\phi \varepsilon L^{2}(\Omega)$ let $u_{\varepsilon}(\phi)$ be the function in $H_{0}^{1, p}(\Omega)$ which minimizes the functional

$$
\begin{equation*}
\int_{\Omega} a_{i j}\left(x \varepsilon^{-1}\right) u_{x_{i}} u_{x j} d x-2 \int_{\Omega} \phi u d x(\uparrow) \tag{5.5}
\end{equation*}
$$

Then, as $\varepsilon \rightarrow 0, u_{\varepsilon}(\phi)$ converges weakly in $H_{0}^{1, p}(\Omega)$ and strongly in $L^{2}(\Omega)$ to the function in $H_{0}^{1,2}(\Omega)$ which minimizes the functional

$$
\begin{equation*}
\alpha_{i j} \int_{\Omega} u_{x_{i}} u_{x_{j}} d x-2 \int_{\Omega} \phi u d x \tag{5.6}
\end{equation*}
$$

where $\left[\alpha_{i j}\right]$ is the symmetric elliptic constant matrix defined by

$$
\begin{equation*}
\alpha_{i j} \xi_{i} \xi_{j}=|Y|^{-1} \operatorname{Min}\left\{\int_{Y} a_{i j}\left(u_{x_{i}}+\xi_{i}\right)\left(u_{x_{j}}+\xi_{j}\right) d x: u \varepsilon W_{Y}(\dagger)\right\} \tag{5.7}
\end{equation*}
$$

Proof By the compactness Theorem 3.1, Lemma 4.3 and Theorem 4.6, there exist an increasing sequence $\tau_{h} \rightarrow \infty$ and a symmetric elliptic constant matrix $\left[\alpha_{i j}\right]$ such that, with the notations (4.2), (3.3), (3.7): $F(\Omega, u)=\Gamma^{-}$(w $\left.-H_{0}^{1, p}(\Omega)\right) \lim _{h} \tilde{F}_{h}(\Omega, u)$ on $H_{0}^{1, p}(\Omega)$. For any $\phi \varepsilon L^{2}(\Omega)$, by Theorem 2.3, the function $u_{h}(\phi)$ which minimizes $\tilde{F}_{h}(\Omega, v)-2 \int_{\Omega} \phi v d x$ on $H_{0}^{1, p}(\Omega)$ converges weakly in $H_{0}^{1, p}(\Omega)$, and strongly in $L^{2}(\Omega)$, to the function $u(\phi)$ which minimizes on $H_{0}^{1, p}(\Omega)$ (or on $H_{0}^{1,2}(\Omega)$) the functional $F(\Omega, v)-2 \int_{\Omega} \phi v d x$.

If we prove (5.7), by the uniqueness of the limit matrix $\alpha_{i j}$ and using a compactness argument, we have that $u_{\varepsilon}(\phi) \rightarrow u(\phi)$ in $w-H_{0}^{1, p}$ and strongly in $L^{2}(\Omega)$.

Let us prove (5.7). Since under our assumptions $\Gamma^{-}-(w-V)$ convergence implies the convergence of minimum values ([14], Proposition 6 (i)), we deduce from Lemma 5.1 that

$$
\begin{equation*}
\operatorname{Min}\left\{\psi(u): u \varepsilon W_{Y}\right\}=\lim \operatorname{Min}\left\{\psi_{h_{r}}(u): u \varepsilon W_{Y}\right\} . \tag{5.8}
\end{equation*}
$$

By the definition of ψ (see (5.3)) and the fact that $\alpha_{i j}$ are constants, the left side in (5.8) is equal to $Y \mid x_{i j} \breve{\zeta}_{i} \zeta_{j}$. Moreover (cfr. $[11,16]$) the right side of (5.8) is equal to

$$
\begin{equation*}
\operatorname{Inf}\left\{\int_{Y} a_{i j}\left(D_{i} u+\xi_{i}\right)\left(D_{j} u+\xi_{j}\right) d x: u \varepsilon W_{Y} \cap C^{1}\right\} \tag{5.9}
\end{equation*}
$$

So we have (5.7) and the theorem.

§6. CONVERGENCE OF SOLUTIONS OF OBSTACLE PROBLEMS

Let us consider the following closed convex sets in $H_{0}^{1, p}(\Omega)$:

$$
\begin{align*}
& K_{1}=\left\{v \varepsilon H_{0}^{1 \cdot p}(\Omega): v \geqq \psi \quad \text { on } \quad E\right\} \tag{6.1}\\
& K_{2}=\left\{v \varepsilon H_{0}^{1 \cdot p}(\Omega): v \geqq \psi \quad \text { on } \Omega\right\}, \tag{6.2}
\end{align*}
$$

where E is a compact of $\Omega, \psi \varepsilon L^{\infty}(\Omega) \cap H^{1, p}(\Omega)$ and $\psi \leqq 0$ on Ω. The inequality $v \geqq \psi$ means that there exists $\left(v_{h}\right) \in C^{1}$ such that $v_{h} \geqq 0$ and v_{h} converges to $v-\psi$ in $H^{1, p}(\Omega)$.

THEOREM 6.1 Under the assumptions of Theorem 5.2, if $u_{s}(\phi)\left(\phi \varepsilon L^{2}(\Omega)\right)$ is the vector which minimizes the functional (5.5) over $K_{1}\left(K_{2}\right)$, then, as $\varepsilon \rightarrow 0, u_{\varepsilon}(\phi)$ converges to $u(\phi)$ in $w-H_{0}^{1, p}(\Omega)$ and strongly in $L^{2}(\Omega)$, where $u(\phi)$ is the vector which minimizes the functional (5.6) over $K_{1}\left(K_{2}\right)$, and $\left[\alpha_{i j}\right]$ is given by (5.7).
Proof Let $\delta_{h_{1}}(v)=0$ if $v \varepsilon K_{1}$ and $\delta_{h_{1}}(v)=\infty$ if $v \& K_{1}$. If $\tau_{h} \rightarrow \infty$ we define $a_{i j, h}$ as in (4.2) and F, \tilde{F}_{h} as in (3.3), (3.7). We prove that

$$
\begin{equation*}
F+\dot{\delta}_{h_{1}}=\Gamma^{-}-\left(w-H_{0}^{1, p}(\Omega)\right) \lim \left(\tilde{F}_{h}+\delta_{\kappa_{1}}\right) ; \tag{6.3}
\end{equation*}
$$

and this, by Theorem 2.3, proves the result relative to the convex K_{1}.
We check (6.3) by using Theorem 2.5. If $v, v_{h} \varepsilon H_{0}^{1, p}(\Omega)$ and $v_{h} \rightarrow v$ in $w-H_{0}^{1, p}(\Omega)$, we deduce from Theorems 2.3, 5.2 and (ii) of Definition 2.1 that $F(v) \leqq \lim _{h} \inf \widetilde{F}_{h}\left(v_{h}\right)$ and, since $\delta_{K_{1}}$ is 1.s., $F(v)+\delta_{K_{1}}(v) \leqq \lim _{h} \inf \left(\widetilde{F}_{h}\left(v_{h}\right)\right.$ $+\delta_{\mathrm{k}_{1}}\left(v_{h}\right)$). This gives (jjj) of Theorem 2.5. We choose in (j)

$$
\begin{equation*}
K_{0}=\left\{v \varepsilon C_{0}^{1}(\Omega): \exists \varepsilon=\varepsilon(v)>0, v>\psi+\varepsilon \text { on } E\right\} ; \tag{6.4}
\end{equation*}
$$

in fact, since $\left[\alpha_{i j}\right]$ is positive definite, $\left\{v: F(v)+\delta_{k_{1}}(v)<\infty\right\}=K_{1} \cap H_{0}^{1,2}(\Omega)$ and K_{0} is dense in this set with respect to $H_{0}^{1,2^{1}}$-norm, while F is $H_{0}^{1,2}$ continuous.

For $v \varepsilon K_{o}$, let

$$
\begin{equation*}
\left(v_{h}\right) \subset C_{0}^{1}(\Omega): \lim _{h}\left\|v_{h}-v\right\|_{L^{x}}=0, \lim _{h} \tilde{F}_{h}\left(v_{h}\right)=F(v) ; \tag{6.5}
\end{equation*}
$$

this is possible by choosing $q=\infty$ in Theorem 3.1. As $v_{\varepsilon} K_{0}$ we have $v_{h} \varepsilon K_{1}$ for h large, and so $\delta_{\mathrm{h}_{1}}\left(v_{h}\right)=0$. Therefore (v_{h}) satisfy (jj) of Theorem 2.5, since v_{h} converge to v in $w-H_{0}^{1, p}(\Omega),\left(v_{h}\right)$ being bounded in $H^{1, p}(\Omega)$ by (6.5) and (3.5). This completes the proof for K_{1}.

In the case of K_{2}, as in the previous one, we prove that

$$
\begin{equation*}
v_{h} \rightarrow v \text { in } w-H_{0}^{1, p}(\Omega) \Rightarrow F(v)+\delta_{h_{2}}(v) \leqq \lim _{h} \inf \left[\tilde{F}_{h}\left(v_{h}\right)+\delta_{k_{2}}\left(v_{h}\right)\right] . \tag{6.6}
\end{equation*}
$$

Let $K_{0}=\left\{v \varepsilon C^{1}(\bar{\Omega}) \cap H_{0}^{1, p}(\Omega): \forall E \subset \subset \Omega \exists \varepsilon=\varepsilon(v, E)>0, v>\psi+\varepsilon\right.$ on $\left.E\right\}$.
If $\left(v_{h}\right)$ verifies (6.5), let us set $w_{h}=\max \left\{v_{h}, \psi\right\}$. One can verify (e.g. as in the proof of Theorem 4.5 in [9]) that $w_{h} \rightarrow v$ in $w-H_{0}^{1, p}(\Omega)$ and $F(v)=\lim _{h} F_{h}\left(w_{h}\right)$. Since $w_{h} \varepsilon K_{2}$, we have

$$
\begin{equation*}
F(v)+\delta_{K_{2}}(v)=\lim _{h}\left[F_{h}\left(w_{h}\right)+\delta_{K_{2}}\left(w_{h}\right)\right] \quad \forall v \varepsilon K_{0} \tag{6.7}
\end{equation*}
$$

It is easy to check that K_{0} is $H_{0}^{1,2}(\Omega)$-dense into the set $\left\{w: F(w)+\delta_{K_{2}}(w)\right.$ $<\infty\}=K_{2} \cap H_{0}^{1,2}(\Omega)$. By this and (6.6), (6.7) we deduce, by Theorem 2.5:

$$
\begin{equation*}
F+\delta_{h_{2}}=\Gamma^{-}-\left(w-H_{0}^{1} \cdot p(\Omega)\right) \lim _{h}\left[\tilde{F}_{h}+\delta_{\mathrm{h}_{2}}\right] . \tag{6.8}
\end{equation*}
$$

Using Theorem 2.3, we obtain the result.

References

[1] A. Ambrosetti and C. Sbordone, Γ-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital. (5), 13-A (1976), 352-362.
[2] I. Babuška, Solution of interface problems by homogenization I, II, III, Univ. of Maryland Techn. Note (1974-75).
[3] I. Babuška, Homogenization and its applications. Mathematical and computational problems, Proc. Symp. Numerical Solution of Partial Diff, Equat., III, Maryland (1975), Acad. Press 1976, 89-116.
[4] N. S. Bakbalov, Averaging of partial differential equations with rapidly oscillating coefficients, Soviet Math. Dokl. 16 (1975), 351-355.
[5] A. Bensoussan, J. L. Lions and G. Papanicolaou, Sur quelques phénomènes asymptotiques stationnaires, C.R. Acad. Sc. Paris 281 (1975), 89-94.
[6] A. Bensoussan, J. L. Lions and G. Papanicolaou, Sur de nouveaux problèmes asymptotiques, C.R. Acad. Sc. Paris 282 (1976), 143-147.
[7] A. Bensoussan, J. L. Lions and G. Papanicolaou, On some asymptotic problems, homogenization, averaging and applications. North-Holland, to appear.
[8] L. Boccardo and I. Capuzzo Dolcetta, G-convergenza e problema di Dirichlet unilaterale, Boll. Un. Mat. Ital. 12 (1975), 115-123.
[9] L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali, Annali Mat. Pura Appl. 110 (1976), 137-159.
[10] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Rend. Acc. Naz. Iincei, Roma LVIII, 6 (1975), 842-850.
[11] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. 8 (1973), 391-411.
[12] J. L. Lions, Sur quelques questions d'Analyse, de Mécanique et de contrôle optimal, Univ. de Montréal (1976).
[13] J. L. Lions, Asymptotic behaviour of solutions of variational inequalities with highly oscillating coefficients. Lecture Notes in Math., Springer 503 (1976), 30-55.
[14] P. Marcellini, Su una convergenza di funzioni convesse. Boll. Un. Mat. Ital. 8 (1973), 137158.
[15] P. Marcellini, Un teorema di passaggio al limite per la somma di funzioni convesse, Boll. Un. Mat. Ital 11 (1975), 107-124.
[16] P. Marcellini, Periodic solutions and homogenization of non linear variational problems, Ann. Mat. Pura Appl., to appear.
[17] P. Marcellini and C. Sbordone, An approach to the asymptotic behaviour of ellipticparabolic operators, J. Math. Pures Appl. 56 (1977), 157-182.
[18] M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerateelliptic operators, Ann. Mat. Pura Appl. LXXX (1968), 1-122.
[19] E. Sanchez Palencia, Comportement local et macroscopique d'un type de milieux heterogènes, Int. J. Engng. Sci. 12 (1974), 331-351.
[20] C. Sbordone, Su alcune applicazioni di un tipo di convergenza variazionale, Ann. Scuola Norm. Sup. Pisa 2 (1975), 617-638.
[21] S. Spagnolo, Convergence in energy for elliptic operators, Proc. Symp. Numerical Solution of Partial Diff. Equat., III, Maryland (1975), Acad. Press 1976, 469-498.
[22] L. Tartar, Quelques remarques sur l'homogénéisation, Colloque, France-Japan, 1976.
[23] N. S. Trudinger, On the regularity of generalized solutions of linear non-uniformly elliptic equations, Arch. Rat. Mech. Anal. 42 (1971), 50-62.
[24] P. Marcellini and C. Sbordone, Sur quelques questions de G-convergence et d'homogénéisation non linéaire, C.R. Acad. Sc. Paris 284 (1977), 535-537.

[^0]: \dagger This paper was supported by GNAFA-CNR.

[^1]: \dagger We denote by $L_{\delta}^{q}(\Omega)$ the topology on C^{1} induced by the extended metric $d(u, v)=\|u-v\|_{L^{q}(\Omega)}$ if $\operatorname{spt}(u-v) \subset \Omega, d(u, v)=+\infty$ otherwise.
 \ddagger We set $p=2 r /(r+1)$ if $r<\infty, p=2$ if $r=\infty, 2 s /(s-1)=2$ if $s=\infty$.

