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A power sum decomposition of a complex homogeneous polynomial F ∈ R =
C[x0, . . . , xn] of degree d is a collection of linear forms {`1, . . . , `k} and scalars
λ1, . . . , λk ∈ C such that F = λ1`

d
1 + · · ·+ λk`

d
k. More generally, suppose we are given

several homogeneous forms F1, . . . , Fr ∈ R, with each Fi homogeneous of degree di. A
power sum decomposition of the vector F = (F1, . . . , Fr) is a collection of linear forms
{`1, . . . , `k} and scalars that express each Fi as a linear combination of dith powers of
the `1, . . . , `k. Every vector of complex homogeneous polynomials admits a power sum
decomposition. The primary interest is in decompositions with k as small as possible,
called Waring decompositions.

It is natural to ask under what circumstances a vector F has a unique Waring
decomposition, in which case one says F is identifiable. This has been especially studied
in the case that F is general among vectors with a fixed dimension n, number of
homogeneous forms r, and degrees d1, . . . , dr, i.e., the forms F1, . . . , Fr have general
coefficients. Dimension counting gives a necessary condition (the dimension of the
space of such vectors F must be equal to the dimension of the variety of power sum
decompositions of the expected length k) which can be expressed as a simple arithmetic
condition among the numbers n, r, and the di: namely, a necessary condition for
identifiability of general vectors F is that

∑r
j=1

(
dj+n

n

)
must be divisible by r+n. Cases

that meet this condition are called perfect. The primary question is which perfect cases
are generically identifiable. In addition, for perfect but generically non-identifiable cases,
general vectors F have finitely many Waring decompositions (but more than one); a
second question is the number of Waring decompositions in these cases.

For the case r = 1 (the classical case of Waring rank for a single homogeneous
form), recent work of M. Mella [Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523–
5538; MR2238925; Proc. Amer. Math. Soc. 137 (2009), no. 1, 91–98; MR2439429]
and F. Galuppi and Mella [“Identifiability of homogeneous polynomials and Cremona
transformations”, J. Reine Angew. Math., posted November 12, 2017; MR4036576]
determined precisely which perfect cases are generically identifiable. The generically
identifiable binary (n = 1) cases were determined by C. Ciliberto and F. Russo [Adv.
Math. 200 (2006), no. 1, 1–50; MR2199628].

For r, n > 1, the generically identifiable cases are much more rare. Three generically
identifiable cases were known classically. One of these classical cases, going back to
Weierstrass, is equivalent to the fact that a general pair of quadratic forms has a unique
simultaneous diagonalization, which is a close analogue to the well-known statement
that a general ellipsoid has uniquely determined axes. (Ignoring distinctions between the
complex and real cases, if we assume the quadratic forms are real and positive definite,
the linear forms `i in the Waring decomposition of the pair of quadrics correspond to
the axes of the ellipsoid given by the unit ball of one of the quadratic forms, after
normalizing so that the unit ball of the other quadratic form is the unit sphere.)
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In this paper, the authors find a new generically identifiable case and present evidence
that there are no further generically identifiable cases. (It seems that they preferred
not to explicitly make a conjecture in the paper. The closest they come is to say, in
the abstract, that the new generically identifiable case is “likely the last one”. In the
reviewer’s opinion, this deserves to be given serious consideration as a conjecture.)

The new case was found by using numerical algebraic geometry to conduct compu-
tational exploration. Once found, it was proved to be generically identifiable using the
method of non-abelian apolarity introduced by J. M. Landsberg and G. M. Ottaviani
[Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 569–606; MR3081636]. The authors also
use non-abelian apolarity to give a uniform proof of generic identifiability for almost all
of the previously known cases. Along the way they give a very good introduction and
historical overview of the subject.

Some evidence that this may be the last case of generic identifiability is that the au-
thors rule out generic identifiability for some cases. Using numerical algebraic geometry,
they rule out generic identifiability for a lot of cases and also gather evidence that in
non-identifiable cases the number of decompositions grows rapidly. Also, they prove that
for the list of cases with consecutive degrees (d1, d2) = (a, a+ 1) and n = r = 2, with a
even, identifiability holds only for a= 2 (one of the classically known identifiable cases).
In addition, for a > 2, the number of decompositions grows at least quadratically. This
proof is not by numerical algebraic geometry, rather by reducing some questions about
birational geometry to a consideration of intersections of plane curves. One more inter-
esting result is that when generic identifiability holds, the variety parametrizing power
sum decompositions with k terms (for k greater than the minimal value) is unirational.

This paper is a very nice introduction to questions around identifiability and gives
a valuable historical overview. It poses an interesting question (or maybe conjecture)
which seems worthy of attention. And it is a nice showcase of a variety of methods, from
birational geometry and geometry of plane curves to computational methods such as
numerical algebraic geometry. Zach Teitler
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