

Citations From References: $8 \quad$ From Reviews: 0
MR3819100 14N05 14Q15 15A69
Angelini, Elena [Angelini, Elena ${ }^{2}$] (I-SIN-IFM); Chiantini, Luca (I-SIN-IFM); Vannieuwenhoven, Nick (B-KUL-C)
Identifiability beyond Kruskal's bound for symmetric tensors of degree 4.
(English summary)
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 3, 465-485.
Kruskal's well-known criterion for identifiability of tensor decompositions applies only within a certain bounded numerical range and applies to general tensor decompositions, ignoring any symmetry of the tensor being decomposed. This paper specializes to (fully) symmetric decompositions of symmetric tensors, or equivalently, Waring decompositions of homogeneous polynomials. The authors specialize further to polynomials (symmetric tensors) of degree 4, i.e., homogeneous quartics. In this case they are able to extend Kruskal's criterion for identifiability to a criterion for symmetric identifiability, valid in a numerical range extending one step further than the original range for Kruskal's criterion.

Let F be a homogeneous quartic in $n+1$ variables, with a decomposition $F=\sum_{i=1}^{r} \ell_{i}^{4}$, the ℓ_{i} linear forms. Assume that the decomposition is minimal in the sense that F does not lie in the linear span of any $r-1$ terms of the sum; equivalently, the terms ℓ_{i}^{4} are linearly independent. A first question is whether r is minimal, in which case one says that F has Waring rank r, or if there exists some other decomposition with fewer than r terms. When r is minimal (F has Waring rank r), a second question is whether the terms ℓ_{i} are uniquely determined (up to order and scale), in which case F is called "identifiable".
A version of Kruskal's criterion asserts, in the degree 4 case, that when the points ℓ_{i} are in linearly general position (LGP) and $r \leq 2 n$, then F has Waring rank r and is identifiable. (More general statements apply to other degrees, or general tensors.) In this paper, a criterion for identifiability is given for quartics with rank $r \leq 2 n+1$. When $r \leq 2 n$ it is the same criterion as before. In the new case $r=2 n+1$, one checks whether the points $\ell_{1}, \ldots, \ell_{2 n+1}$ lie on a rational normal curve. This can be computed effectively, and indeed the authors have implemented their test in the Macaulay2 computer algebra system.

The result is a very appealing application of classical algebraic geometric techniques to a problem of current interest in tensor decompositions. The authors recall and extend a classical result of Castelnuovo on rational normal curves passing through a finite set of points; and they recall and extend a result of Geramita, Kreuzer, and Robbiano on Hilbert functions of finite sets of points with the Cayley-Bacharach property. The paper is self-contained as it includes good reviews of needed background from algebraic geometry and from tensor decompositions, so readers from either of these areas will be able to learn what they need from the other side.

Zach Teitler

References

1. E. S. Allman - C. Matias - J. A. Rhodes, Identifiability of parameters in latent structure models with many observed variables, Ann. Stat. 37 (2009), 3099-3132. MR2549554
2. A. Anandkumar - R. Ge - D. Hsu - S. M. Kakade - M. Telgarsky, Tensor
decompositions for learning latent variable models, J. Machine Learn. Res. 15 (2014), 2773-2832. MR3270750
3. E. Ballico, On the weak non-defectivity of Veronese embeddings of projective spaces, Central Eur. J. Math. 3 (2005), 183-187. MR2129920
4. E. Ballico-L. Chiantini, A criterion for detecting the identifiability of symmetric tensors of size three, Diff. Geom. Applic. 30 (2012), 233-237. MR2922641
5. E. Ballico - L. Chiantini, Sets computing the symmetric tensor rank, Mediterranean J. Math. 10 (2013), 643-654. MR3045672
6. A. M. Bigatti - A. V. Geramita - J. Migliore, Geometric consequences of extremal behavior in a theorem of Macaulay, Trans. Amer. Math. Soc. 346 (1994), 203-235. MR1272673
7. J. E. Campbell, Note on the maximum number of arbitrary points which can be double points on a curve, or surface, of any degree, Messenger Math. XXI (18911892), 158-164.
8. L. Chiantini - C. Ciliberto, On the concept of k-secant order of a variety, J. London Math. Soc. 73 (2006), 436-454. MR2225496
9. L. Chiantini - G. Ottaviani - N. Vannieuwenhoven, On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369 (2017), 4021-4042. MR3624400
10. L. Chiantini - G. Ottaviani - N. Vannieuwenhoven, Effective criteria for specific identifiability of tensors and forms, SIAM J. Matrix Anal. Appl. 38 (2017), 656-681. MR3666774
11. H. Derksen, Kruskal's uniqueness inequality is sharp, Linear Alg. Applic. 438 (2013), 708-712. MR2996363
12. P. Griffiths - J. Harris, Principles of Algebraic Geometry, Wiley Interscience, New York NY (1978). MR0507725
13. A. V. Geramita - M. Kreuzer - L. Robbiano, Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), 443-452. MR1102886
14. J. Harris, Algebraic Geometry, a First Course, Graduate Texts in Math., Springer, Berlin - New York NY (1992). MR1182558
15. A. Iarrobino - V. Kanev, Power Sums, Gorenstein Algebras, and Determi-nantal Loci, Lecture Notes in Mathematics 1721, Springer, Berlin - New York NY (1999). MR1735271
16. J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl. 18 (1977), 95-138. MR0444690

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.
(c) Copyright American Mathematical Society 2022

