Symmetrizations of convex sets and convergence of their iterations

Gabriele Bianchi, Richard J. Gardner e Paolo Gronchi

MathAnalysis(at)UniFiPiSi II, Pisa, November 2019
W. Bianchi, R.J. Gardner and P. Gronchi, Symmetrizations in Geometry, Adv. Math. 2017
T
_-, Convergence of Symmetrization Processes, arXiv 2019

Let us begin with some examples: Steiner

Let H be an hyperplane
Steiner symmetrization with respect to H of a convex body C, denoted by $S_{H} C$:

Let us begin with some examples: Steiner

Let H be an hyperplane
Steiner symmetrization with respect to H of a convex body C, denoted by $S_{H} C$:

- does not change volume
- in general, it decreases surface area

Minkowski symmetrization: preliminaries

Minkowski sum of L and M

$$
\begin{aligned}
L+M & =\{x+y: x \in L, y \in M\} \\
& =\bigcup_{y \in M}(L+y)
\end{aligned}
$$

Minkowski symmetrization: preliminaries

Support function $h_{K}(u)$ and width $w_{K}(u)$

Mean width $=\int_{S^{n-1}} w_{K}(u) d u$

Minkowski symmetrization

Let H be a subspace of dimension i,
$1 \leq i \leq n-1$.
Minkowski symmetry with respect to H of convex body C :

$$
M_{H} C=\frac{1}{2} C+\frac{1}{2} R_{H} C
$$

where R_{H} denotes reflection with respect to H.

- What do I mean by R_{H} ? if $x \in \mathbb{R}^{n}$ and $x=h+h^{\prime} \in H \times H^{\perp}$ then $R_{H} x=h-h^{\prime}$.

Minkowski symmetrization

Let H be a subspace of dimension i, $1 \leq i \leq n-1$.
Minkowski symmetry with respect to H of convex body C :

$$
M_{H} C=\frac{1}{2} C+\frac{1}{2} R_{H} C
$$

where R_{H} denotes reflection with respect to H.

- What do I mean by R_{H} ? if $x \in \mathbb{R}^{n}$ and $x=h+h^{\prime} \in H \times H^{\perp}$ then $R_{H} X=h-h^{\prime}$.
- M_{H} is linear: $M_{H}(K+L)=M_{H} K+M_{H} L$
- M_{H} does not change mean width
- in general, M_{H} increases surface area and volume

Iterating the symmetrizations in order to converge to a ball

let \diamond_{H} denote Steiner or Minkowski symmetrization
It is known that there are sequences $\left(H_{m}\right)$ of hyperplanes such that, for any choice of the convex body C, as $m \rightarrow \infty$

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { ball. }
$$

Iterating the symmetrizations in order to converge to a ball

let \diamond_{H} denote Steiner or Minkowski symmetrization
It is known that there are sequences $\left(H_{m}\right)$ of hyperplanes such that, for any choice of the convex body C, as $m \rightarrow \infty$

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { ball. }
$$

- Ingredient of a proof of the isoperimetric inequality in the class of convex bodies

plan of the talk

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;

plan of the talk

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;

plan of the talk

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;
- characterized Steiner and Minkowski symmetrizations on the basis of some of these properties;

plan of the talk

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;
- characterized Steiner and Minkowski symmetrizations on the basis of some of these properties;
- applied these ideas to the study of the convergence to a ball of iterations of symmetrizations.

Definition of i-symmetrization

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let H be a linear subspace of dimension i.

Definition of i-symmetrization

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let H be a linear subspace of dimension i.
i-symmetrization

$$
\text { Any map } \quad \diamond_{H}: \mathcal{E} \rightarrow \mathcal{E}_{H}
$$

where

- $\mathcal{E}=\{$ convex bodies $\}$ or $\mathcal{E}=\{$ compact sets $\}$,
- $\mathcal{E}_{H}=$
$\left\{\right.$ elements of \mathcal{E} which are symmetric wrt H (i.e., we repeat, invariant wrt R_{\not}

Definition of i-symmetrization

Let $i \in \mathbb{N}, 1 \leq i \leq n-1$ and let H be a linear subspace of dimension i.
i-symmetrization
Any map $\quad \nabla_{H}: \mathcal{E} \rightarrow \mathcal{E}_{H}$
where

- $\mathcal{E}=\{$ convex bodies $\}$ or $\mathcal{E}=\{$ compact sets $\}$,
- $\mathcal{E}_{H}=$
$\left\{\right.$ elements of \mathcal{E} which are symmetric wrt H (i.e., we repeat, invariant wrt R_{\vdash}
some of the properties which appear to be relevant:
- monotonicity (wrt inclusion): $K_{1} \subset K_{2} \Longrightarrow \diamond K_{1} \subset \diamond K_{2}$
$-\mathcal{F}$-preserving $(\mathcal{F}$ is a functional): $\mathcal{F}(K)=\mathcal{F}(\diamond K)$
- invariance on H-symmetric sets: $\diamond K=K$ for every H-symmetric K
- invariance on H -symmetric cylinders
- invariance wrt translations orthogonal to H of H-symmetric sets: $\diamond(K+x)=K$ for every H-symmetric set K and $x \in H^{\perp}$

An unified definition of Steiner and Minkowski symmetrization which shows their duality

an unified dual definition of Steiner e Minkowski symm.

Theorem
For every i and $K \in\{$ convex bodies $\}$ we have

$$
F_{H} K=\bigcup_{y \in H^{\perp}}(K+y) \cap R_{H}(K+y)
$$

and

$$
M_{H} K=\bigcap_{y \in H^{\perp}} \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)
$$

($F_{H}=$ Fiber symmetrization. We do not define it here, we only say that when $i=n-1$ it coincides with Steiner symmetrization)

an unified dual definition of Steiner e Minkowski symm.

Theorem

For every i and $K \in\{$ convex bodies $\}$ we have

$$
F_{H} K=\bigcup_{y \in H^{\perp}}(K+y) \cap R_{H}(K+y)
$$

and

$$
M_{H} K=\bigcap_{y \in H^{\perp}} \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)
$$

($F_{H}=$ Fiber symmetrization. We do not define it here, we only say that when $i=n-1$ it coincides with Steiner symmetrization)

- in the next slides we visualize the theorem and give an idea of its proof for $i=n-1$

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

The intersection of the two red segments has length equal to that of the corresponding chord for one value of y and less than that for all other values

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

In this slide the figure on the left should animate. If it does not, try to push the up or down arrow keys and also try to put your pdf viewer in presentation mode

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\bigcap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Let $v \in S^{n-1}$. For the support functions we have
$h_{\cap_{y} \operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)=\inf _{y}\left(h_{\operatorname{conv}\left((K+y), R_{H}(K+y)\right)}(v)\right)=\inf _{y}\left(\max \left(h_{K+y}(v), h_{R_{H}(K+y)}(v)\right)\right)$.
The animation shows that this infimum is attained when $h_{K+y}(v)=h_{R_{H}(K+y)}(v)$, and this happens exactly for y such that

$$
h_{K+y}(v)=\frac{1}{2}\left(h_{K}(v)+h_{R_{H}(K)}(v)\right) .
$$

Inclusions of general symm.

Corollary
Let $1 \leq i \leq n-1$ and $K \in\{$ convex bodies $\}$. If \diamond_{H} is

1. monotonic,
2. invariant on H -symmetric sets and
3. invariant w.r.t. translations orthogonal to H of H -symmetric sets then

$$
F_{H} K \subset \diamond K \subset M_{H} K .
$$

Inclusions of general symm.

Corollary
Let $1 \leq i \leq n-1$ and $K \in\{$ convex bodies $\}$. If \diamond_{H} is

1. monotonic,
2. invariant on H -symmetric sets and
3. invariant w.r.t. translations orthogonal to H of H -symmetric sets then

$$
F_{H} K \subset \diamond K \subset M_{H} K .
$$

- No assumption is superfluous

proof of the inclusion $\diamond K \subset M_{H} K$:

proof of the inclusion $\diamond K \subset M_{H} K$:

For every $y \in H^{\perp}$ we have

$$
\begin{aligned}
K & =(K+y)-y \\
& \subset \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y .
\end{aligned}
$$

proof of the inclusion $\diamond K \subset M_{H} K$:

For every $y \in H^{\perp}$ we have

$$
\begin{aligned}
K & =(K+y)-y \\
& \subset \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y .
\end{aligned}
$$

Thus

$$
\diamond K \subset \diamond\left(\operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y\right) \quad \text { (by monotony) }
$$

proof of the inclusion $\diamond K \subset M_{H} K$:

For every $y \in H^{\perp}$ we have

$$
\begin{aligned}
K & =(K+y)-y \\
& \subset \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\diamond K & \subset \diamond\left(\operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y\right) \quad \text { (by monotony) } \\
& =\diamond \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right) \quad \text { (by translations invar.) }
\end{aligned}
$$

proof of the inclusion $\diamond K \subset M_{H} K$:

For every $y \in H^{\perp}$ we have

$$
\begin{aligned}
K & =(K+y)-y \\
& \subset \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\diamond K & \subset \diamond\left(\operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y\right) \quad \text { (by monotony) } \\
& =\diamond \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right) \quad \text { (by translations invar.) } \\
& =\operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right) \quad \text { (by the invar. on } H \text {-symm. sets) }
\end{aligned}
$$

proof of the inclusion $\diamond K \subset M_{H} K$:

For every $y \in H^{\perp}$ we have

$$
\begin{aligned}
K & =(K+y)-y \\
& \subset \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\diamond K & \subset \diamond\left(\operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)-y\right) \quad \text { (by monotony) } \\
& =\diamond \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right) \quad \text { (by translations invar.) } \\
= & \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right) \quad \text { (by the invar. on } H \text {-symm. sets) }
\end{aligned}
$$

Since this holds $\forall y$, we have proved that

$$
\diamond K \subset \bigcap_{y \in H^{\perp}} \operatorname{conv}\left((K+y) \cup R_{H}(K+y)\right)=M_{H} K
$$

Characterizations of Steiner and Minkowski symmetrizations

characterizations of Minkowski symmetrization

characterization 1
For every i and in the class \{convex bodies\}. Minkowski symmetrization is the only i-symmetrization which is

1. monotonic,
2. invariant on H -symmetric sets and
3. linear.

characterizations of Minkowski symmetrization

characterization 1
For every i and in the class \{convex bodies\}. Minkowski symmetrization is the only i-symmetrization which is

1. monotonic,
2. invariant on H -symmetric sets and
3. linear.
characterization 2
For every i and in the class \{convex bodies\}. Minkowski symmetrization is the only i-symmetrization which is
4. monotonic,
5. invariant on H-symmetric sets,
6. invariant w.r.t. translations orthogonal to H of H-symmetric sets and
7. mean width preserving.

- we do not have any example showing that in characterization 2 assumption 3 is really necessary.

characterizations of Steiner symmetrization

in the class of convex bodies
Let $i=n-1$ and let the class be \{convex bodies\}. Steiner symm. is the only i-symm. which is

1. monotonic,
2. invariant on H-symmetric cylinders,
3. and volume preserving.

characterizations of Steiner symmetrization

in the class of convex bodies
Let $i=n-1$ and let the class be \{convex bodies\}. Steiner symm. is the only i-symm. which is

1. monotonic,
2. invariant on H-symmetric cylinders,
3. and volume preserving.

- Let $1 \leq i \leq n-1$ and let C be compact. What we show is that, under those three hypothesis, the measures of the sections of C orthogonal to H do not change during the symmetrization.

characterizations of Steiner symmetrization

in the class of convex bodies
Let $i=n-1$ and let the class be $\{$ convex bodies $\}$. Steiner symm. is the only i-symm. which is

1. monotonic,
2. invariant on H-symmetric cylinders,
3. and volume preserving.
in the class of compact sets
Let $i=n-1$ and let the class be \{compact sets\}. Steiner symm. is the only i-symm. which is
4. monotonic,
5. invariant on H-symmetric cylinders,
6. volume preserving
7. and with the property that $\diamond_{H} C$ is convex in the direction orthogonal to H, for every compact sets C

- Let $1 \leq i \leq n-1$ and let C be compact. What we show is that, under those three hypothesis, the measures of the sections of C orthogonal to H do not change during the symmetrization.

characterizations of Steiner symmetrization

in the class of convex bodies
Let $i=n-1$ and let the class be \{convex bodies\}. Steiner symm. is the only i-symm. which is

1. monotonic,
2. invariant on H-symmetric cylinders,
3. and volume preserving.
in the class of compact sets
Let $i=n-1$ and let the class be \{compact sets\}. Steiner symm. is the only i-symm. which is
4. monotonic,
5. invariant on H-symmetric cylinders,
6. volume preserving
7. and with the property that $\diamond_{H} C$ is convex in the direction orthogonal to H, for every compact sets C

- No assumption is superfluous

An open problem

Is there an ($\mathrm{n}-1$)-symmetrization in \{convex bodies\} which is

1. monotonic,
2. invariant on H -symmetric sets,
3. and surface area preserving?

- Blaschke symm. preserves surface area but is not monotonic
- a partial answer is available in

國
C. Saroglou, On some problems concerning symmetrization operators, Forum Mathematicum 2019.

Convergence of iterates of symmetrizations to a ball

Let \diamond_{H} be Steiner or Minkowski symmetrization
It is known that there are sequences $\left(H_{m}\right)$ of hyperplanes such that, for any choice of the convex body K, as $m \rightarrow \infty$

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \cdots \diamond_{H_{1}} K\right) \rightarrow \text { ball. }
$$

Let \diamond_{H} be Steiner or Minkowski symmetrization
It is known that there are sequences $\left(H_{m}\right)$ of hyperplanes such that, for any choice of the convex body K, as $m \rightarrow \infty$

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right) \rightarrow \text { ball. }
$$

3 ingredients in this phenomenon:

- the choice of the symmetrization \diamond_{H}
- the sequence $\left(H_{m}\right)$ of subspaces (and, in particular, their dimension i)
- the class of subsets of \mathbb{R}^{n} on which the \diamond_{H} acts

Let \diamond_{H} be Steiner or Minkowski symmetrization
It is known that there are sequences $\left(H_{m}\right)$ of hyperplanes such that, for any choice of the convex body K, as $m \rightarrow \infty$

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right) \rightarrow \text { ball }
$$

3 ingredients in this phenomenon:

- the choice of the symmetrization \diamond_{H}
- the sequence $\left(H_{m}\right)$ of subspaces (and, in particular, their dimension i)
- the class of subsets of \mathbb{R}^{n} on which the \diamond_{H} acts

We are interested in studying this process for different symmetrizations, set class and to better understand which sequences "round"

an example

What if the hyperplanes in $\left(H_{m}\right)$ form a dense subset in S^{n-1} ?

an example

What if the hyperplanes in $\left(H_{m}\right)$ form a dense subset in S^{n-1} ?

Let $\diamond_{H}=$ Steiner.
There exists a convex body $K \subset \mathbb{R}^{2}$ and a sequence $\left(H_{m}\right)$ of lines, dense in S^{1}, such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right) \quad \text { does NOT converge. }
$$

an example

What if the hyperplanes in $\left(H_{m}\right)$ form a dense subset in S^{n-1} ?

Let $\diamond_{H}=$ Steiner.
There exists a convex body $K \subset \mathbb{R}^{2}$ and a sequence $\left(H_{m}\right)$ of lines, dense in S^{1}, such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} K\right) \quad \text { does NOT converge. }
$$

In \mathbb{R}^{n}, for each n, it is possible to rearrange any dense sequence $\left(H_{m}\right)$ so that it "rounds" every convex body.

圊 Bianchi, Klain, Lutwak, Yang and Zhang (2011)

Literature

- speed of convergence to ball (how many symmetrizations are needed to transform a convex body in R^{n} of volume 1 to one at ε distance from the ball of volume 1?): Bourgain, Lindestrauss, Milman, Klartag, Florentin and Segal
- results of probabilistic type: Mani-Levitska, Volčič, Van Shaftingen, Fortier e Burchard, Coupier e Davydov.

universal sequences

Coupier e Davydov (2014)
$\left(H_{m}\right)$ is called an \diamond-universal sequence in the set class \mathcal{E} if

$$
\forall K \in \mathcal{E}, \quad \forall j \in \mathbb{N} \quad\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \cdots \diamond_{H_{j}} K\right) \rightarrow \text { ball, }
$$

(convergence to ball independently of starting index)

Universal sequences deserve this name

Theorem, Coupier and Davidov (2014)
Let $i=n-1$ and let the set class be \{convex bodies\}.
A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem, Coupier and Davidov (2014)
Let $i=n-1$ and let the set class be \{convex bodies\}.
A sequence is Minkowski-universal if and only if it is Steiner-universal.
Theorem
Let $1 \leq i \leq n-1$ and let the set class be \{convex bodies\}. Then

- A sequence is Minkowski-universal if and only if it is Fiber-universal.
- A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal.

Theorem, Coupier and Davidov (2014)

Let $i=n-1$ and let the set class be \{convex bodies\}.
A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem

Let $1 \leq i \leq n-1$ and let the set class be \{convex bodies\}. Then

- A sequence is Minkowski-universal if and only if it is Fiber-universal.
- A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal.

Theorem

Let $1 \leq i \leq n-1$ and let the set class be $\{$ convex bodies $\}$. Let \diamond_{H} be an i-symmetrization

1. monotonic,
2. invariant on H-symmetric sets,
3. invariant w.r.t. translations orthogonal to H of H-symmetric sets.

Then a sequence is \diamond-universal if and only if it is Minkowski-universal.

Is it more difficult to "round" compact sets?

"a compact set need not become convex"
There exists compact sets $C \subset \mathbb{R}^{2}$ and "meaningful" sequences $\left(H_{m}\right)$ such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { a non-convex set. }
$$

國
Bianchi, Burchard, Gronchi and Volcic (2012)

Is it more difficult to "round" compact sets?

"a compact set need not become convex"
There exists compact sets $C \subset \mathbb{R}^{2}$ and "meaningful" sequences $\left(H_{m}\right)$ such that

$$
\left(\diamond_{H_{m}} \diamond_{H_{m-1}} \ldots \diamond_{H_{1}} C\right) \rightarrow \text { a non-convex set. }
$$

\square Bianchi, Burchard, Gronchi and Volcic (2012)
Theorem
Let $1 \leq i \leq n-1$ and let \diamond be Steiner, Minkowski or Schwarz symm. A sequence is \diamond-universal in the class of \{compact sets\} if it is \diamond-universal in the class of \{convex bodies\}

Explicit construction of universal sequences

"Alphabet" $=$ finite set $\mathcal{F}=\left\{F_{1}, \ldots, F_{p}\right\}$ of i-dimensional subspaces in \mathbb{R}^{n}

Sequences built from a finite "alphabet"
Sequences $\left(H_{m}\right)$ with the property that every their element belongs to \mathcal{F}
Example: $\left(H_{m}\right)=F_{3}, F_{3}, F_{1}, F_{4}, F_{2}, F_{3}, F_{1}, F_{3}, F_{1}, F_{1}, F_{4}, \ldots$

Explicit construction of universal sequences

"Alphabet" $=$ finite set $\mathcal{F}=\left\{F_{1}, \ldots, F_{p}\right\}$ of i-dimensional subspaces in \mathbb{R}^{n}

Sequences built from a finite "alphabet"
Sequences $\left(H_{m}\right)$ with the property that every their element belongs to \mathcal{F}
Example: $\left(H_{m}\right)=F_{3}, F_{3}, F_{1}, F_{4}, F_{2}, F_{3}, F_{1}, F_{3}, F_{1}, F_{1}, F_{4}, \ldots$

These sequences are universal if the alphabet \mathcal{F} has the following property:
The (reflection) symmetry w.r.t every F_{j} implies full radial symmetry.

This research contains also results regarding how to construct alphabets with this property.

