Symmetrizations of convex sets and convergence of their iterations

Gabriele Bianchi, Richard J. Gardner e Paolo Gronchi

MathAnalysis(at)UniFiPiSi II, Pisa, November 2019

G. Bianchi, R.J. Gardner and P. Gronchi, *Symmetrizations in Geometry*, Adv. Math. 2017

------, Convergence of Symmetrization Processes, arXiv 2019

Let us begin with some examples: Steiner

Let *H* be an hyperplane Steiner symmetrization with respect to *H* of a convex body *C*, denoted by $S_H C$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let us begin with some examples: Steiner

Let *H* be an hyperplane Steiner symmetrization with respect to *H* of a convex body *C*, denoted by $S_H C$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

does not change volume

▶ in general, it decreases surface area

Minkowski symmetrization: preliminaries

Minkowski sum of L and M

$$L + M = \{x + y : x \in L, y \in M\}$$
$$= \bigcup_{y \in M} (L + y)$$

Minkowski symmetrization: preliminaries

Support function $h_{\mathcal{K}}(u)$ and width $w_{\mathcal{K}}(u)$

Mean width= $\int_{S^{n-1}} w_{\mathcal{K}}(u) du$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Minkowski symmetrization

Let *H* be a subspace of dimension *i*, $1 \le i \le n - 1$. Minkowski symmetry with respect to *H* of convex body *C*:

$$M_H C = \frac{1}{2}C + \frac{1}{2}R_H C$$

where R_H denotes reflection with respect to H.

(日) (四) (日) (日) (日)

▶ What do I mean by R_H ? if $x \in \mathbb{R}^n$ and $x = h + h' \in H \times H^{\perp}$ then $R_H x = h - h'$.

Minkowski symmetrization

Let *H* be a subspace of dimension *i*, $1 \le i \le n - 1$. Minkowski symmetry with respect to *H* of convex body *C*:

$$M_H C = \frac{1}{2}C + \frac{1}{2}R_H C$$

where R_H denotes reflection with respect to H.

3

- ▶ What do I mean by R_H ? if $x \in \mathbb{R}^n$ and $x = h + h' \in H \times H^{\perp}$ then $R_H x = h h'$.
- M_H is linear: $M_H(K + L) = M_HK + M_HL$
- *M_H* does not change mean width
- in general, M_H increases surface area and volume

Iterating the symmetrizations in order to converge to a ball

let \Diamond_H denote Steiner or Minkowski symmetrization It is known that there are sequences (H_m) of hyperplanes such that, for any choice of the convex body C, as $m \to \infty$

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} C) \to \mathsf{ball}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Iterating the symmetrizations in order to converge to a ball

let \Diamond_H denote Steiner or Minkowski symmetrization It is known that there are sequences (H_m) of hyperplanes such that, for any choice of the convex body C, as $m \to \infty$

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} C) \to \mathsf{ball}.$$

Ingredient of a proof of the isoperimetric inequality in the class of convex bodies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In this research we have:

studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;
- characterized Steiner and Minkowski symmetrizations on the basis of some of these properties;

In this research we have:

- studied set symmetrization processes, from an abstract viewpoint, independent on the specific symmetrization, in the class of convex bodies, sometimes also in the class of compact sets;
- studied their most meaningful properties and the relations existing among them;
- characterized Steiner and Minkowski symmetrizations on the basis of some of these properties;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

applied these ideas to the study of the convergence to a ball of iterations of symmetrizations.

Definition of *i*-symmetrization

Let $i \in \mathbb{N}$, $1 \le i \le n-1$ and let H be a linear subspace of dimension i.

Definition of *i*-symmetrization

Let $i \in \mathbb{N}$, $1 \le i \le n-1$ and let H be a linear subspace of dimension i.

i-symmetrization

Any map
$$\diamondsuit_H : \mathcal{E} \to \mathcal{E}_H$$

where

•
$$\mathcal{E} = \{\text{convex bodies}\} \text{ or } \mathcal{E} = \{\text{compact sets}\},\$$

 $\blacktriangleright \mathcal{E}_H =$

{elements of \mathcal{E} which are symmetric wrt $H(i.e., we repeat, invariant wrt <math>R_F$

Definition of *i*-symmetrization

Let $i \in \mathbb{N}$, $1 \le i \le n-1$ and let H be a linear subspace of dimension i.

i-symmetrization

Any map
$$\diamondsuit_H : \mathcal{E} \to \mathcal{E}_H$$

where

•
$$\mathcal{E} = \{\text{convex bodies}\} \text{ or } \mathcal{E} = \{\text{compact sets}\},\$$

 $\blacktriangleright \mathcal{E}_H =$

{elements of \mathcal{E} which are symmetric wrt H(i.e., we repeat, invariant wrt R_F

some of the properties which appear to be relevant:

- monotonicity (wrt inclusion): $K_1 \subset K_2 \Longrightarrow \Diamond K_1 \subset \Diamond K_2$
- \mathcal{F} -preserving (\mathcal{F} is a functional): $\mathcal{F}(K) = \mathcal{F}(\diamondsuit K)$
- invariance on *H*-symmetric sets: $\Diamond K = K$ for every *H*-symmetric *K*
- invariance on H-symmetric cylinders
- invariance wrt translations orthogonal to H of H-symmetric sets: ◊(K + x) = K for every H-symmetric set K and x ∈ H[⊥]

An unified definition of Steiner and Minkowski symmetrization which shows their duality

・ロト・日本・ヨト・ヨー うへの

an unified dual definition of Steiner e Minkowski symm.

Theorem

For every *i* and $K \in \{\text{convex bodies}\}$ we have

$$F_H K = \bigcup_{y \in H^\perp} (K + y) \cap R_H (K + y)$$

and

$$M_{H}K = \bigcap_{y \in H^{\perp}} conv \left((K + y) \cup R_{H}(K + y) \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(F_{H} = Fiber symmetrization. We do not define it here, we only say that when i = n - 1 it coincides with Steiner symmetrization)

an unified dual definition of Steiner e Minkowski symm.

Theorem

For every *i* and $K \in \{\text{convex bodies}\}$ we have

$$F_H K = \bigcup_{y \in H^\perp} (K + y) \cap R_H (K + y)$$

and

$$M_{H}K = \bigcap_{y \in H^{\perp}} conv \left((K + y) \cup R_{H}(K + y) \right)$$

(F_{H} = Fiber symmetrization. We do not define it here, we only say that when i = n - 1 it coincides with Steiner symmetrization)

> in the next slides we visualize the theorem and give an idea of its proof for i = n - 1

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

ч.

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Let $v \in S^{n-1}$. For the support functions we have

$$h_{\bigcap_{y}\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v) = \inf_{y}\left(h_{\operatorname{conv}\left((K+y),R_{H}(K+y)\right)}(v)\right) = \inf_{y}\left(\max\left(h_{K+y}(v),h_{R_{H}(K+y)}(v)\right)\right).$$

$$h_{K+y}(v) = \frac{1}{2} \Big(h_K(v) + h_{R_H(K)}(v) \Big).$$

Inclusions of general symm.

Corollary

Let $1 \leq i \leq n-1$ and $K \in \{\text{convex bodies}\}$. If \Diamond_H is

- 1. monotonic,
- 2. invariant on H-symmetric sets and
- 3. invariant w.r.t. translations orthogonal to H of H-symmetric sets then

 $F_H K \subset \diamondsuit K \subset M_H K.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inclusions of general symm.

Corollary

Let $1 \leq i \leq n-1$ and $K \in \{\text{convex bodies}\}$. If \Diamond_H is

- 1. monotonic,
- 2. invariant on H-symmetric sets and
- 3. invariant w.r.t. translations orthogonal to H of H-symmetric sets then

 $F_H K \subset \diamondsuit K \subset M_H K.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No assumption is superfluous

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

For every $y \in H^{\perp}$ we have

$$egin{aligned} \mathcal{K} &= (\mathcal{K} + y) - y \ &\subset \mathit{conv}\left((\mathcal{K} + y) \cup \mathcal{R}_{\mathit{H}}(\mathcal{K} + y)
ight) - y. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For every $y \in H^{\perp}$ we have

$$egin{aligned} \mathcal{K} &= (\mathcal{K} + y) - y \ &\subset \mathit{conv}\left((\mathcal{K} + y) \cup \mathcal{R}_{\mathcal{H}}(\mathcal{K} + y)
ight) - y. \end{aligned}$$

Thus

$$\Diamond K \subset \Diamond \Big(\operatorname{conv} \big((K + y) \cup R_H(K + y) \big) - y \Big)$$
 (by monotony)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For every $y \in H^{\perp}$ we have

$$egin{aligned} \mathcal{K} &= (\mathcal{K} + y) - y \ &\subset \mathit{conv}\left((\mathcal{K} + y) \cup \mathcal{R}_{\mathcal{H}}(\mathcal{K} + y)
ight) - y. \end{aligned}$$

Thus

$$\Diamond K \subset \Diamond \Big(\mathit{conv} \left((K + y) \cup R_H(K + y) \right) - y \Big)$$
 (by monotony)

$$= \diamondsuit conv ((K + y) \cup R_H(K + y))$$
 (by translations invar.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For every $y \in H^{\perp}$ we have

$$egin{aligned} \mathcal{K} &= (\mathcal{K} + y) - y \ &\subset \mathit{conv}\left((\mathcal{K} + y) \cup \mathcal{R}_{\mathcal{H}}(\mathcal{K} + y)
ight) - y. \end{aligned}$$

Thus

$$\diamondsuit K \subset \diamondsuit \Big({\it conv} \left((K+y) \cup R_H(K+y)
ight) - y \Big)$$
 (by monotony)

$$= \diamondsuit conv ((K + y) \cup R_H(K + y))$$
 (by translations invar.)

 $= conv\left((K+y) \cup R_H(K+y)
ight)$ (by the invar. on H-symm. sets)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ
proof of the inclusion $\Diamond K \subset M_H K$:

For every $y \in H^{\perp}$ we have

$$egin{aligned} \mathcal{K} &= (\mathcal{K} + y) - y \ &\subset \mathit{conv}\left((\mathcal{K} + y) \cup \mathcal{R}_{\mathcal{H}}(\mathcal{K} + y)
ight) - y. \end{aligned}$$

Thus

$$\Diamond K \subset \Diamond \Big(\mathit{conv} \left((K + y) \cup R_H(K + y) \right) - y \Big)$$
 (by monotony)

$$= \diamondsuit conv ((K + y) \cup R_H(K + y))$$
 (by translations invar.)

 $= conv\left((K+y) \cup R_H(K+y)
ight)$ (by the invar. on H-symm. sets)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Since this holds $\forall y$, we have proved that

$$\Diamond K \subset \bigcap_{y \in H^{\perp}} conv ((K + y) \cup R_H(K + y)) = M_H K$$

Characterizations of Steiner and Minkowski symmetrizations

characterizations of Minkowski symmetrization

characterization 1

For every i and in the class {convex bodies}. Minkowski symmetrization is the only i-symmetrization which is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. monotonic,
- 2. invariant on H-symmetric sets and
- 3. linear.

characterizations of Minkowski symmetrization

characterization 1

For every i and in the class {convex bodies}. Minkowski symmetrization is the only i-symmetrization which is

- 1. monotonic,
- 2. invariant on H-symmetric sets and
- 3. linear.

characterization 2

For every i and in the class {convex bodies}. Minkowski symmetrization is the only *i*-symmetrization which is

- 1. monotonic,
- 2. invariant on H-symmetric sets,
- 3. invariant w.r.t. translations orthogonal to H of H-symmetric sets and
- 4. mean width preserving.
- we do not have any example showing that in characterization 2 assumption 3 is really necessary.

in the class of convex bodies

Let i = n - 1 and let the class be {convex bodies}. Steiner symm. is the only *i*-symm. which is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. and volume preserving.

in the class of convex bodies

Let i = n - 1 and let the class be {convex bodies}. Steiner symm. is the only *i*-symm. which is

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. and volume preserving.

Let 1 ≤ i ≤ n − 1 and let C be compact. What we show is that, under those three hypothesis, the measures of the sections of C orthogonal to H do not change during the symmetrization.

in the class of convex bodies

Let i = n - 1 and let the class be {convex bodies}. Steiner symm. is the only *i*-symm. which is

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. and volume preserving.

in the class of compact sets

Let i = n - 1 and let the class be {compact sets}. Steiner symm. is the only *i*-symm. which is

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. volume preserving
- 4. and with the property that $\Diamond_H C$ is convex in the direction orthogonal to H, for every compact sets C
- Let 1 ≤ i ≤ n − 1 and let C be compact. What we show is that, under those three hypothesis, the measures of the sections of C orthogonal to H do not change during the symmetrization.

in the class of convex bodies

Let i = n - 1 and let the class be {convex bodies}. Steiner symm. is the only *i*-symm. which is

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. and volume preserving.

in the class of compact sets

Let i = n - 1 and let the class be {compact sets}. Steiner symm. is the only *i*-symm. which is

- 1. monotonic,
- 2. invariant on H-symmetric cylinders,
- 3. volume preserving
- 4. and with the property that $\diamondsuit_H C$ is convex in the direction orthogonal to H, for every compact sets C

Is there an (n-1)-symmetrization in {convex bodies} which is

- 1. monotonic,
- 2. invariant on H-symmetric sets,
- 3. and surface area preserving?
- Blaschke symm. preserves surface area but is not monotonic
- a partial answer is available in
 - C. Saroglou, On some problems concerning symmetrization operators, Forum Mathematicum 2019.

- ロ ト - 4 回 ト - 4 □

Convergence of iterates of symmetrizations to a ball

Let \Diamond_H be Steiner or Minkowski symmetrization It is known that there are sequences (H_m) of hyperplanes such that, for any choice of the convex body K, as $m \to \infty$

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} K) \to \mathsf{ball}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let \diamondsuit_H be Steiner or Minkowski symmetrization It is known that there are sequences (H_m) of hyperplanes such that, for any choice of the convex body K, as $m \to \infty$

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} K) \to \mathsf{ball}.$$

3 ingredients in this phenomenon:

- the choice of the symmetrization \Diamond_H
- the sequence (H_m) of subspaces (and, in particular, their dimension i)

• the class of subsets of \mathbb{R}^n on which the \Diamond_H acts

Let \diamondsuit_H be Steiner or Minkowski symmetrization It is known that there are sequences (H_m) of hyperplanes such that, for any choice of the convex body K, as $m \to \infty$

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} K) \to \mathsf{ball}.$$

3 ingredients in this phenomenon:

- the choice of the symmetrization \Diamond_H
- the sequence (H_m) of subspaces (and, in particular, their dimension i)
- the class of subsets of \mathbb{R}^n on which the \diamondsuit_H acts

We are interested in studying this process for different symmetrizations, set class and to better understand which sequences "round"

A D N A 目 N A E N A E N A B N A C N

an example

What if the hyperplanes in (H_m) form a dense subset in S^{n-1} ?

an example

What if the hyperplanes in (H_m) form a dense subset in S^{n-1} ?

Let $\Diamond_H = Steiner$. There exists a convex body $K \subset \mathbb{R}^2$ and a sequence (H_m) of lines, dense in S^1 , such that

 $(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} K)$ does NOT converge.

an example

What if the hyperplanes in (H_m) form a dense subset in S^{n-1} ?

Let $\diamondsuit_H = Steiner$. There exists a convex body $K \subset \mathbb{R}^2$ and a sequence (H_m) of lines, dense in S^1 , such that

 $(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} K)$ does NOT converge.

In \mathbb{R}^n , for each *n*, it is possible to rearrange any dense sequence (H_m) so that it "rounds" every convex body.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bianchi, Klain, Lutwak, Yang and Zhang (2011)

Literature

- speed of convergence to ball (how many symmetrizations are needed to transform a convex body in Rⁿ of volume 1 to one at ε distance from the ball of volume 1?): Bourgain, Lindestrauss, Milman, Klartag, Florentin and Segal
- results of probabilistic type : Mani-Levitska, Volčič, Van Shaftingen, Fortier e Burchard, Coupier e Davydov.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Coupier e Davydov (2014)

 (H_m) is called an \diamondsuit -universal sequence in the set class \mathcal{E} if

$$\forall K \in \mathcal{E}, \quad \forall j \in \mathbb{N} \quad (\diamondsuit_{H_m} \diamondsuit_{H_{m-1}} \dots \diamondsuit_{H_j} K) \to \mathsf{ball},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(convergence to ball independently of starting index)

Universal sequences deserve this name

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem, Coupier and Davidov (2014)

Let i = n - 1 and let the set class be {convex bodies}.

A sequence is Minkowski-universal if and only if it is Steiner-universal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem, Coupier and Davidov (2014)

Let i = n - 1 and let the set class be {convex bodies}.

A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem

Let $1 \le i \le n-1$ and let the set class be {convex bodies}. Then

► A sequence is Minkowski-universal if and only if it is Fiber-universal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal.

Theorem, Coupier and Davidov (2014)

Let i = n - 1 and let the set class be {convex bodies}.

A sequence is Minkowski-universal if and only if it is Steiner-universal.

Theorem

Let $1 \le i \le n-1$ and let the set class be {convex bodies}. Then

- A sequence is Minkowski-universal if and only if it is Fiber-universal.
- A sequence is (Minkowski-Blaschke)-universal if and only if it is Schwarz-universal.

Theorem

Let $1 \le i \le n-1$ and let the set class be {convex bodies}. Let \diamondsuit_H be an *i*-symmetrization

- 1. monotonic,
- 2. invariant on H-symmetric sets,
- 3. invariant w.r.t. translations orthogonal to H of H-symmetric sets.

Then a sequence is \diamond -universal if and only if it is Minkowski-universal.

Is it more difficult to "round" compact sets?

"a compact set need not become convex"

There exists compact sets $C \subset \mathbb{R}^2$ and "meaningful" sequences (H_m) such that

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} C) \to a \text{ non-convex set.}$$

Bianchi, Burchard, Gronchi and Volcic (2012)

Is it more difficult to "round" compact sets?

"a compact set need not become convex"

There exists compact sets $C \subset \mathbb{R}^2$ and "meaningful" sequences (H_m) such that

$$(\Diamond_{H_m} \Diamond_{H_{m-1}} \dots \Diamond_{H_1} C) \to a \text{ non-convex set.}$$

Bianchi, Burchard, Gronchi and Volcic (2012)

Theorem

Let $1 \le i \le n-1$ and let \diamondsuit be Steiner, Minkowski or Schwarz symm. A sequence is \diamondsuit -universal in the class of {compact sets} if it is \diamondsuit -universal in the class of {convex bodies}

Explicit construction of universal sequences

"Alphabet" = finite set $\mathcal{F} = \{F_1, \dots, F_p\}$ of *i*-dimensional subspaces in \mathbb{R}^n

Sequences built from a finite "alphabet"

Sequences (H_m) with the property that every their element belongs to \mathcal{F}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: $(H_m) = F_3, F_3, F_1, F_4, F_2, F_3, F_1, F_3, F_1, F_4, \dots$

Explicit construction of universal sequences

"Alphabet" = finite set $\mathcal{F} = \{F_1, \dots, F_p\}$ of *i*-dimensional subspaces in \mathbb{R}^n

Sequences built from a finite "alphabet"

Sequences (H_m) with the property that every their element belongs to \mathcal{F}

Example: $(H_m) = F_3, F_3, F_1, F_4, F_2, F_3, F_1, F_3, F_1, F_4, \dots$

These sequences are universal if the alphabet \mathcal{F} has the following property: The (reflection) symmetry w.r.t every F_i implies full radial symmetry.

This research contains also results regarding how to construct alphabets with this property.