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Abstract. It is known that the category of homogeneous bundles on P2 is equivalent
to the category of representations of a quiver with relation. In this paper we make use of
this equivalence to describe a family of G-exceptional bundles on P2 and to prove that
they are stable. We also study the G-exceptionality of Fibonacci bundles on P2.
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1. Introduction

The problem of classifying holomorphic vector bundles on algebraic varieties has been
a central point of interest of many mathematicians during at least the last four decades.

It is well known that the set of isomorphic classes of vector bundles on an algebraic
variety X is too big if we want to parameterize this set by means of an algebraic variety.
Thus, to get a nice parametrization, one is forced to consider families of stable vector
bundles. It was in the way to search for stable vector bundles on P2 that Drézet and
Le Potier in [5] introduced the notion of exceptional vector bundle. Indeed, exceptional
vector bundles were defined by Drézet and Le Potier as a class of vector bundles on
P2 without deformations. These bundles appear as a sort of exceptional cases in the
study of the stable vector bundles on P2. Later, the school of Rudakov generalized the
concept of exceptional bundles to Pn and other varieties. Nowadays, there is an axiomatic
presentation of exceptional vector bundles on algebraic varieties in the setting of derived
categories of coherent sheaves (see for instance [11]; [3]).

Exceptional vector bundles are known to be stable on P2 ([5]), and on P3 ([22]). See
also [4]; [13]; [20] for other families of exceptional vector bundles which are known to be
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stable. Nevertheless, the stability of exceptional vector bundles on Pn and more in general
on an algebraic variety X is still an open and difficult problem.

Fibonacci bundles on Pn have been recently introduced in [4] as a generalization of
the Steiner exceptional bundles, namely of the exceptional bundles which admit a linear
resolution. Fibonacci bundles are homogeneous and generated by mutations. In general,
these bundles are not exceptional, since in particular they may have deformations (they
are not rigid). Nevertheless, there exist interesting families of non-rigid bundles which do
not have deformations in the category of homogeneous bundles (e.g. the so called syzygy
bundles).

This remark leads us to study a property analogous to the exceptionality in the category
of homogeneous vector bundles. We will call such a notion G-exceptionality (see Definition
4.2). One of the main results of this paper is that the Fibonacci bundles on P2 are G-
exceptional.

A further natural object of investigation is the stability of G-exceptional vector bundles.
In order to tackle the problem of stability in the setting of homogeneous bundles, we can
take advantage of the techniques provided by the theory of representations of quivers with
relations. Indeed a celebrated result due to Bondal and Kapranov ([2]) and Hille ([8]),
recently investigated also by Ottaviani and Rubei ([15]), states that results of classification
of vector bundles and results of classification of representations of quivers are closely
related. In fact, there is an equivalence between the category of homogeneous bundles
on P2 and the category of representation of a certain quiver QP2 with relations and this
allows to translate the stability of an homogeneous vector bundle on P2 in terms of the
stability of some representations of the quiver QP2 .

This equivalence is the key ingredient to prove our second main result. In particular
we focus on a special case of Fibonacci bundles, which we call almost square bundles. We
describe explicitly the representation of the quiver associated to an almost square bundle
and by studying all the possible subrepresentations we are able to prove the stability of
the bundles we are dealing with. In this way we follow the approach of [14] and [19],
where the authors investigate certain families of bundles whose associated representations
admit a simple description. In our case the main difficulty is that the representations
associated to our bundles are quite complicated and so we need several technical steps in
order to get our result.

According to the results so far obtained, we are led to investigate the same kind of
problems in more generality, for example for all the Fibonacci bundles on P2 or for some
special families of bundles on Pn for n ≥ 2. Some of these problems will be discussed in
a forthcoming paper.

Next we outline the structure of the paper. In section 2 we recall some preliminary
definitions and results concerning homogeneous bundles and the theory of representation
of quivers with relations. In particular we state the relation between homogeneous vec-
tor bundles on P2 and representations of a certain quiver with relations (QP2 ,RP2). In
section 3 we introduce the principal objects that we will study in subsequent sections:
the Fibonacci bundles (Definition 3.4) and the almost square bundles on P2 (Definition
3.6). We also introduce a family of representations Rd of the quiver (QP2 ,RP2), which will
be proved (in Theorem 5.1 and Proposition 5.8 ) to be the representations associated to
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almost square bundles. In section 4, we deal with the G-exceptionality of these bundles,
proving that any almost square bundle on P2 is simple and that any Fibonacci bundle is
G-exceptional. In the proof we use cohomological methods, inspired by [4]. Section 5 is
devoted entirely to prove that any almost square bundle on P2 is stable. We first develop
some technical lemmas that allows us to control the slope of the subrepresentation T of
Rd. Then, in Theorem 5.7, we show that any subrepresentation T of Rd has slope less
that the slope of Rd. This allows us to prove in Theorem 5.10 that any almost square
bundle is stable.

Notation 1.1. Thoughtout this paper, we will work over the complex numbers. If there
is no confusion, we will denote by H i(E) the i-th cohomology group of a vector bundle E
on a smooth projective variety X and by hi(E) its dimension. Analogously, for any two
vector bundles E and F , we will denote by hom(E,F ) (resp. exti(E,F )) the dimension of
Hom(E,F ) (resp. Exti(E,F )) as complex vector spaces and we will denote by χ(E,F ) :=∑

i(−1)iexti(E,F ).
We will write P2 = P(V ∗) for some 3-dimensional complex vector space V and thus

we will have H0(OP2(1)) = V ∗ and for any integer d > 0, H0(OP2(d)) = SdV ∗. We will
denote by O := OP2 when there is no confusion.

2. Homogeneous vector bundles and representations of quivers

The goal of this section is to collect the results concerning homogeneous vector bundles
and representations of quivers that we will use through this paper.

• Homogeneous vector bundles:

We recall here some well known facts on homogeneous vector bundles on rational ho-
mogeneous varieties. See [7] for more details on representation theory. In this paper we
are mostly interested in the case of complex projective spaces Pn, and in particular in the
case n = 2, anyway the results we present here hold in much more generality.

It is well known that the complex projective space Pn can be realized as a rational
homogeneous variety G/P , where G = SL(n + 1) and P is a parabolic subgroup. In the
sequel when we will work on Pn, we will assume G = SL(n+ 1).

A rank r vector bundle E on Pn is called G-homogeneous (or simply homogeneous) if for
any g ∈ G, g∗E ∼= E. It is well known that any homogeneous bundle on Pn is associated to
a representation ρ of the parabolic subgroup P . The irreducible homogeneous bundles Eλ

are defined to be the homogeneous bundles associated to the irreducible representations
of P with highest weight λ.

The irreducible homogeneous bundles on the projective plane P2 are classified and they
are of the form SlQ(t) for some l ∈ N and t ∈ Z, where Q := TP2(−1) is the tangent
bundle on P2 twisted by OP2(−1)

Remark 2.1. Any homogenous vector bundle E on Pn admits a filtration

0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E

where each Ei/Ei−1 is irreducible. The graded vector bundle gr(E) :=
⊕

iEi/Ei−1 does
not depend on the filtration.
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Given a sheaf E on Pn of rank rk(E) ≥ 1, we define the slope of E as

µ(E) :=
c1(E)

rk(E)
,

where we denote by c1(E) the integer such that OPn(c1(E)) is the first Chern class of E.
A vector bundle E on Pn is called semistable (in the sense of Mumford-Takemoto) if and
only if for all non-zero subsheaves F ⊂ E with rk(F ) < rk(E) we have

µ(F ) ≤ µ(E)

and if strict inequality holds, then E is said to be stable.

We say that an homogeneous vector bundle E on Pn is multistable if it is the tensor
product of a stable homogenous bundle and an irreducible G-representation. It follows
immediately by the definition that if a vector bundle is multistable and simple, then it is
also stable.

A basic result is the following criterion for the stability of homogeneous vector bundles
on Pn (see [18] and [6]):

Theorem 2.2. A homogeneous bundle E on Pn is semistable (resp. multistable) if and
only if µ(F ) ≤ µ(E) (resp. µ(F ) < µ(E)) for any homogeneous subbundle F of E
associated to a subrepresentation of the P -representation associated to E.

Given a vector bundle E on Pn, we recall that it is called simple if satisfiesHom(E,E) ∼=
C, and exceptional if it is simple and satisfies Exti(E,E) = 0 for any i > 0. A vector
bundle satisfying Ext1(E,E) = 0 is called rigid. It is known that a rigid bundle is also
homogeneous.

Given two homogenous bundles E and F on Pn, we denote by Exti(E,F )G the G-
invariant part of the G-module Exti(E,F ), that is the G-submodule where G acts triv-
ially. We also denote χ(E,F )G :=

∑
i(−1)iexti(E,F )G, where exti(E,F )G stands for the

dimension of Exti(E,F )G.

Definition 2.3. Let E be a homogeneous vector bundle on an homogeneous variety
G/P . We say that E is G-simple if Hom(E,E)G ∼= C, G-rigid if Ext1(E,E)G = 0 and
G-exceptional if it is G-simple and Exti(E,E)G = 0 for any i > 0.

Clearly, if a vector bundle E is exceptional, then it is also G-exceptional. Of course,
the converse is not true.

Remark 2.4. It is clear that by definition exti(E,E)G equals to the number of copies of
the trivial representation C contained in the G-module Exti(E,E) ∼= H i(E ⊗ E∗).

• Representations of quivers:

Now we will recall the definitions and state the main results that we will use concerning
quivers and representations of quivers associated to homogeneous bundles. We will focus
in particular on the case of P2.
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This theory has been introduced by Bondal and Kapranov in [2] and generalized by
Hille in [8] and [9]. We will adopt the same notation as in [15] and [14].

Definition 2.5. A quiver is an oriented graph Q = (Q0,Q1), where Q0 is the set of
vertices and Q1 is the set of arrows. We define two maps t, h : Q1 → Q0 such that for
any arrow a ∈ Q1, t(a) is the tail of a and h(a) is the head of a. A path in Q is a formal
composition of arrows βm · · · β1 such that the tail of an arrow βk is the head of βk−1. A
relation in Q is a linear combination of paths of Q with common head and common tail.

A representation of a quiver Q = (Q0,Q1) is a set of vector spaces {Xv}v∈Q0 and a set
of linear maps {φβ}β∈Q1 where φβ : Xh(β) → Xt(β). Given a set of relation R in Q, a
representation of a quiver Q with relations R is a representation of Q such that∑

k

λkφβi1
· · ·φβik

= 0

for any relation
∑

k λkβi1 · · · βik ∈ R. A morphism between two representations of the
quiver Q, (Xv, φβ)v∈Q0,β∈Q1 and (Yv, ψβ)v∈Q0,β∈Q1 is a set of linear maps {fv : Xv → Yv}
such that, for every β ∈ Q1 from v to w, we have

ψβ ◦ fv = fw ◦ φβ.

A subrepresentation of a representation (Xv, φβ)v∈Q0,β∈Q1 of a quiver Q is a represen-
tation (Yv, ψβ)v∈Q0,β∈Q1 of Q such that for any v ∈ Q0, Yv ⊂ Xv is a subvector space and
for any arrow β ∈ Q1 from v to w, ψβ = φβ|Yv . A representation Y = (Yv, ψβ)v∈Q0,β∈Q1 of
a quiver Q is called quotient representation of a representation X = (Xv, φβ)v∈Q0,β∈Q1 of
the same quiver if there is a surjective morphism from X to Y .

For a later use, we need to introduce the following terminology and notation. Notice
that our definition of support is not standard.

Definition 2.6. We say that a representation X = (Xv, φβ)v∈Q0,β∈Q1 has multiplicity m
at a point v of Q0 if dimXv = m and we will denote it by mX

v . We call support of a
representation X of a quiver Q, the subset of Q0 containing the vertices where X has
positive multiplicity. More precisely Supp(X) := {v ∈ Q0|mX

v ≥ 1}. We call support with
multiplicities, and we denote by Suppm(X) the data Supp(X) and (mX

v )v∈Supp(X).

We will use the following notation concerning the support with multiplicities of given
representations of a quiver Q.

(a) Given two representations X and Y , such that mX
v ≥ mY

v for any v ∈ Q0, we
denote by X \ Y the set of vertices of the support of X with multiplicities (mX

v −
mY

v )v∈Supp(X).
(b) Given two representations X and Y , we will say that a set of vertices with multi-

plicities, that is a subset S ⊂ Q0 and a collection of nonnegative integers (nv)v∈S, is
the disjoint union of Suppm(A) and Suppm(B), if we have S = Supp(A)∪Supp(B)
and for each vertex v ∈ S, we have nv = mX

v +mY
v . If Z is a representation such

that Suppm(Z) = S, (nv)v∈S, we will also say that Z is the disjoint union of X
and Y and we will write Z = X t Y.
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(c) Given two representations X and Y , we denote by X ∩ Y the set of vertices with
multiplicities given by the intersection Supp(X) ∩ Supp(Y ) and by the multiplic-
ities min{m(Av),m(Bv)}, for any v ∈ Supp(X) ∩ Supp(Y ).

Definition 2.7. From now on we denote by QP2 the quiver (Q0,Q1) such that:

Q0 := {SlQ(t)|l ∈ N, t ∈ Z},
i.e. each vertex is identified with an irreducible homogeneous bundle on P2. The set of
arrows Q1 is defined in the following way: there is an arrow β from the vertex v ∈ Q0

corresponding to SlQ(t) to the vertex w ∈ Q0 corresponding to SpQ(q) if and only
if Ext1(SlQ(t), SpQ(q))G 6= 0. This happens if and only if (p, q) = (l − 1, t − 1) or
(p, q) = (l + 1, t− 2).

It is easily seen that the quiver QP2 has three connected components Q(1)

P2 , Q(2)

P2 and

Q(3)

P2 , given by the congruence class modulo 3
2

of the slope of the homogeneous bundles
corresponding to the vertices of the connected component. Every homogeneous bundle
E on P2 splits as E = ⊕iE

(i) where the sum is over the connected components of QP2

and gr(E(i)) contains only irreducible vector bundles corresponding to vertices of the

connected component labeled by i. For convenience, we identify this component Q(1)

P2

with the following subset of Z2

◦

��~
~

~
~

◦
O(3)
oo

��

Q(4)

◦

��~
~

~
~

◦
O
oo

��

◦
Q(1)
oo

��

S2Q(2)

◦

��~
~

~
~

◦
O(−3)
oo

��

◦
Q(−2)
oo

��

◦
S2Q(−1)

oo

��

S3Q

◦

��

◦
O(−6)
oo

��

◦
Q(−5)
oo

��

◦
S2Q(−4)

oo

��

◦
S3Q(−3)

oo

��

S4Q(−2)

◦ ◦oo ◦oo ◦oo ◦oo
S5Q(−4)

Definition 2.8. We define RP2 as the set of relations on QP2 given by the commutativity
of the squares. More precisely, denoting by βw,v the arrow from v to w, the relations in
RP2 are:

β(x−1,y−1),(x−1,y)β(x−1,y),(x,y) − β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x, y) ∈ Q(i)

P2 ∈ Z2 for some i, such that (x− 1, y) ∈ QP2 and

β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x, y) ∈ Q(i)

P2 ∈ Z2 for some i, such that (x− 1, y) /∈ QP2 .

Any homogeneous bundle E on P2 defines an associated representation of the quiver
QP2 with relations RP2 , in the following way:
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Definition 2.9. Given a homogeneous vector bundle E on P2, according to Remark 2.1
we have the graded

gr(E) =
⊕

λ

Eλ ⊗ Vλ

where Eλ = SlQ(t) for some l ∈ N and t ∈ Z and where Vλ is a k-dimensional complex
vector space, being k ≥ 0 the number of times that the irreducible homogenous bundle
SlQ(t) occurs in the graded bundle gr(E). To the vertex of QP2 corresponding to Eλ =
SlQ(t) we associate the vector space Vλ = Ck. To any arrow λ→ λ′ of the quiver QP2 we
associate a linear map Vλ → Vλ′ , defined by the G-invariant element of Ext1(gr(E), gr(E))
associated to the action of the nilpotent algebra on gr(E). See e.g. [15] for more details.

A key result is the following equivalence of categories due to Bondal-Kapranov and in
a much more general setting due to Hille (see [2] and also [8], [9], [10]).

Theorem 2.10. The category of homogeneous bundles on P2 is equivalent to the category
of finite dimensional representations of the quiver QP2 with the relations RP2.

According to Theorem 2.10, we will identify an homogeneous bundle E on P2 with its
associated representation of the quiver (QP2 ,RP2). In particular we will use the name
support of a vector bundle E to refer the support with multiplicities of the representation
associated to E.

Remark 2.11. Notice that the first Chern class of a homogeneous vector bundle E can
be computed as the sum of the first Chern classes of the irreducible bundles corresponding
to the vertices of the support of E multiplied by the multiplicities. Analogously, the rank
of E is the sum of the ranks of the irreducible bundles corresponding to such vertices
multiplied by the multiplicities.

The previous remark lead us to pose the following definition:

Definition 2.12. We define the slope (resp. first Chern class, rank) of a set of vertices
with multiplicities as the slope (resp. first Chern class, rank) of the vector bundle whose
support is that set of vertices with multiplicities.

The equivalence between the category of homogeneous bundles on P2 and the category
of the representations of the quiver (QP2 ,RP2) implies that any homogeneous subbundle F
of a homogeneous bundle E on P2 is associated to a subrepresentation of the representation
associated to E. Hence in view of Theorem 2.2 in order to prove the multistability of a
homogeneous bundle E, it is enough to check that the slope of any subrepresentation of
the representation associated to E is less than the slope of E.

It is immediate to see from the definition that the following holds:

Lemma 2.13. Let E be a homogeneous vector bundle on P2 such that the set of ver-
tices of the support of E is disjoint union of the sets of vertices of the supports of two
representations X and Y . The following holds:
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(a) If µ(X) = µ(Y ), then µ(E) = µ(X) = µ(Y ).
(b) If µ(X) < µ(Y ), then µ(X) < µ(E) < µ(Y ).

3. Fibonacci bundles and almost square bundles

In this section we introduce some families of homogeneous vector bundles and we de-
scribe the associated representation of the quiver. In particular we will recall the definition
of syzygy bundles (Definition 3.1), of Fibonacci bundles (Definition 3.4) and we will in-
troduce the almost square bundles (Definition 3.6). In next sections, we will study the
G-exceptionality and the stability of such bundles.

Definition 3.1. For any integer d > 0, we denote by Syzd the vector bundle on P2 defined
as the cokernel of the evaluation map O(−d) → Hom(O(−d),O)∗ ⊗ O, that is by the
exact sequence

(3.1) 0 → O(−d) → SdV ⊗O → Syzd → 0.

The vector bundle Syzd is called a syzygy bundle.

It is well known that syzygy bundles are stable homogeneous vector bundles: see for
instance [1], [16] and [17].

Lemma 3.2. The graded vector bundle of Syzd is given by

(3.2) gr(Syzd) = ⊕d
i=1S

iQ(i− d)

and the representation of the quiver (QP2 ,RP2) associated to Syzd is given by

◦ ◦
Q(−d+1)

oo ◦
S2Q(−d+2)

oo ◦ ◦
Sd−2Q(−2)

oo ◦
Sd−1Q(−1)

oo
SdQ

with all the multiplicities equal to one and all the maps different from zero.

Proof. By [14]; Remark 23 it is easy to check that the graded bundle of SdV ⊗O is

gr(SdV ⊗O) = ⊕d
i=0S

iQ(i− d),

and thus we get (3.2), since by definition Syzd is the quotient of SdV ⊗O by O(−d). The
maps in the representation are all different from zero,because otherwise the associated
bundle would be decomposable, and this is impossible because Syzd is stable. �

Remark 3.3. Any syzygy bundle on P2 is G-exceptional. Indeed, Syzd is simple and
hence G-simple. Moreover one can see that it is G-rigid by looking at the representation
associated and observing that, since all the multiplicities in the representation are one,
all the possible choices of the nonzero maps give isomorphic representations.

The syzygy bundles are special cases of the so called Fibonacci bundles. Following [4],
we call Fibonacci bundles a family of homogeneous bundles defined by means of mutations,
which can be characterized from the fact that they admit a resolution whose coefficients
are related to the numbers of Fibonacci. Let us recall the definition of the Fibonacci
bundles.
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Definition 3.4. The Fibonacci bundles (associated to the pair (OP2(−d),OP2)) are the
vector bundles Ck defined recursively as follows: C0 = O(−d), C1 = O and

0 → Ck−1
ik−→Ck ⊗ Hom(Ck−1, Ck) → Ck+1 → 0, for k ≥ 1

where ik is the natural evaluation map. Notice that C2 = Syzd. It is possible to see that
Hom(Ck−1, Ck) ∼= SdV ∗ if k is odd, Hom(Ck−1, Ck) ∼= SdV if k is even.

We refer the reader to [4] for the details of the construction and the definition in a more
general context (see also [21]).

Remark 3.5. We recall the following characterization which explain the relation be-
tween these bundles and the Fibonacci numbers. The Fibonacci bundle Ck on P2 has the
following resolution

0 → O(−d)ak−1 → Oak → Ck → 0

where the sequence is defined as follows

a0 = 0, a1 = 1, ak+1 =

(
d+ 2

2

)
ak − ak−1.

In [4], the first author proved that these bundles are exceptional if and only if d = 1, 2,
while for d ≥ 3 a general deformation of Ck is simple, but Ck is not rigid.

Now we are going to concentrate our attention on the Fibonacci bundles on P2 of
type C3, that we will also call almost square bundles. Also in this case, as in case of
syzygy bundles, we are able to describe their corresponding representation of the quiver
(QP2 ,RP2).

Definition 3.6. Let d ≥ 1 be an integer. According to Definition 3.4, the Fibonacci
bundle C3 is the cokernel of the natural map:

O → Hom(O, Syzd)
∗ ⊗ Syzd

∼= SdV ∗ ⊗ Syzd.

We call almost square bundle the dual of such bundles, that is the bundle Ed
∼= C∗

3 given
by the exact sequence

(3.3) 0 → Ed → SdV ⊗ Syz∗d → O → 0.

The choice of the name is motivated by the shape of the associated representation, see
Definition 3.8 below.

Lemma 3.7. The graded vector bundle associated to SdV ⊗ Syz∗d is

gr(SdV ⊗ Syz∗d) = ⊕d
j=1 ⊕d

i=0

(
⊕min(i,j)

k=0 Si+j−2k(k + i− 2j)
)
.

Proof. By [14]; Remark 23 the graded bundle of SdV ⊗O is

gr(SdV ⊗O) = ⊕d
i=0S

iQ(i− d).

On the other hand, gr(Syz∗d) = gr(Syzd)
∗ and thus by Lemma 3.2

gr(Syzd)
∗ = ⊕d

j=1(S
jQ(j − d))∗ = ⊕d

j=1S
jQ(d− 2j)
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where the last equality follows from the fact that since Q is a rank two vector bundle with
c1(Q) = 1 then Q∗ ∼= Q(−1). Thus,

gr(SdV ⊗ Syz∗d) = gr(SdV ⊗O)⊗ gr(Syz∗d)
= (⊕d

i=0S
iQ(i− d))⊗ (⊕d

j=1S
jQ(d− 2j))

= ⊕d
j=1 ⊕d

i=0

(
⊕min(i,j)

k=0 Si+j−2k(k + i− 2j)
)

where the last equality follows by Pieri’s formula. �

We define now a representation Rd of the quiver QP2 . In Theorem 5.1 and Proposition
5.8 below we will prove that this representation Rd is exactly the unique representation
associated to an almost square bundle Ed on P2.

Definition 3.8. Let Rd = (Ud
i,j, ϕ

d
i,j, ψ

d
i,j) be a representation of the quiver QP2 defined

as follows. The support of Rd is contained in a square with the vertices corresponding to
O, Sd+1Q(d+1),Sd(−2d), S2dQ(−d). For any fixed d we label the vertices (i, j) denoting
by (1, 1) the vertex S2dQ(−d), by (1, d + 1) the vertex SdQ(−2d), by (d, 1) the vertex
Sd+1Q(d− 2), by (d+ 1, 2) the vertex Sd−1Q(d− 1) and by (d+ 1, d+ 1) the vertex O.

|
|

|
|

O ◦

���
�

�
�

◦
d−1
oo

��

◦
d−1
oo

��

d−2
◦

��

◦
3
oo

��

◦
2
oo

��

1

Sd−1Q(d−1)

Sd+1Q(d−2)

◦

��

◦
d

oo

��

◦
d

oo

��

d−1
◦

��

◦
4
oo

��

◦
3
oo

��

◦
2
oo

��

1

◦ ◦
d−1
oo ◦

d−1
oo ◦ ◦

4
oo ◦

3
oo ◦

2
oo

1

◦

��

◦
4
oo

��

◦
4
oo

��

◦

��

◦
4
oo

��

◦
3
oo

��

◦
2
oo

��

1

◦

��

◦
3
oo

��

◦
3
oo

��

◦

��

◦
3
oo

��

◦
3
oo

��

◦
2
oo

��

1

◦

��

◦
2
oo

��

◦
2
oo

��

◦

��

◦
2
oo

��

◦
2
oo

��

◦
2
oo

��

1

◦
SdQ(−2d)

◦
1

oo ◦
1
oo ◦ ◦

1
oo ◦

1
oo ◦

1
oo

S2dQ(−d) 1
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We denote by Ud
i,j the vector space corresponding to the vertex (i, j), for 1 ≤ i, j ≤ d+1.

The dimensions of such vector spaces are as follows:

(3.4)

ad
i,j := dimUd

i,j =

{
i for 1 ≤ i ≤ j ≤ d
j for 1 ≤ j < i ≤ d,

ad
d+1,j := dimUd

d+1,j =

{
d− 1 for j = d+ 1
j − 1 for 1 ≤ j ≤ d.

In the picture, we have written the dimension ai,j of the vector space corresponding to
the vertex (i, j). We denote by ϕd

i,j the horizontal map from Ud
i,j to Ud

i,j+1 and by ψd
i,j the

vertical map from Ud
i,j to Ud

i−1,j. Moreover these maps satisfy the following conditions:

any map has maximal rank,(3.5)

any possible composition of maps has maximal rank,(3.6)

the direct sum of the maps ϕd
d,1 and ψd

d+1,2 has rank 2.(3.7)

4. G-exceptional vector bundles

The main goal of this section if to prove the G-exceptionality of the Fibonacci bundles
on P2. We will prove that a Fibonacci bundle on P2 is G-exceptional, in spite it is not
exceptional. Moreover, we will prove that any almost square bundle on P2 is also simple,
and not only G-simple.

Remark 4.1. Since the anticanonical line bundle on P2 is ample, it is easy to see, by
Serre duality, that any G-simple bundle E satisfies also Ext2(E,E)G = 0.

Theorem 4.2. Any almost square bundle Ed is simple and G-exceptional.

Proof. In the cases d = 1, 2, by [4] we know that Ed is exceptional. So, we can assume
that d ≥ 3. We want to prove that Hom(Ed, Ed) ∼= C. Applying the functor Hom(−, Ed)
to the sequence (3.3), we get

Hom(SdV ⊗ Syz∗d, Ed) → Hom(Ed, Ed) → Ext1(O, Ed).

We show first that the group Hom(Syz∗d, Ed) vanishes. Indeed applying the functor
Hom(Syz∗d,−) to the sequence (3.3) we get

0 → Hom(Syz∗d, Ed) → SdV ∗ ⊗Hom(Syz∗d, Syz
∗
d)

f−→Hom(Syz∗d,O).

Since the bundle Syzd is simple and the map f in this sequence is the canonical isomor-
phism SdV ∗ ∼= H0(Syzd), we get Hom(Syz∗d, Ed) = 0.

On the other hand, we prove now that Ext1(O, Ed) ∼= C and the simplicity of Ed will
follow. Taking the cohomology of the sequence (3.3) we get

SdV ⊗H0(Syz∗d) → H0(O) → H1(Ed) → SdV ⊗H1(Syz∗d)

By the sequence in Definition 3.4 it is easy to check that

H0(Syz∗d) = H1(Syz∗d) = 0
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and so we conclude that

Ext1(O, Ed) ∼= H1(Ed) ∼= H0(O) ∼= C.

This proves thatHom(Ed, Ed) ∼= C. By Remark 4.1, it also follows that Ext2(Ed, Ed) = 0.
We want to prove now that Ext1(Ed, Ed)

G = 0. Since we have Hom(Ed, Ed)
G ∼= C

and Ext2(Ed, Ed)
G = 0 it is enough to prove that χ(Ed, Ed)

G = 1. By applying again the
functor Hom(−, Ed) to the sequence (3.3), we have

χ(Ed, Ed)
G = χ(SdV ⊗ Syz∗d, Ed)

G − χ(Ed)
G.

We have showed that H1(Ed) ∼= C. In the same way it is easy to prove that

H0(Ed) = H2(Ed) = 0,

and so it follows that

χ(Ed) = χ(Ed)
G = −1.

We want to prove now that χ(SdV ⊗ Syz∗d, Ed)
G = 0. Applying now the functor

Hom(SdV ⊗ Syz∗d,−) to the sequence (3.3), we get

χ(SdV ⊗ Syz∗d, Ed)
G = χ(SdV ⊗ Syz∗d, S

dV ⊗ Syz∗d)
G − χ(SdV ⊗ Syz∗d,O)G.

Since we know that Syzd is a G-exceptional bundle, we have

χ(SdV ⊗ Syz∗d, S
dV ⊗ Syz∗d)

G = 1.

Hence, it only remains to prove that χ(SdV ⊗ Syz∗d,O)G ∼= χ(SdV ∗ ⊗ Syzd)
G = 1.

Tensoring by SdV ∗ the sequence defining Syzd we get

0 → O(−d)⊗ SdV ∗ → O⊗ SdV ⊗ SdV ∗ → SdV ∗ ⊗ Syzd → 0.

Clearly

H i(O ⊗ SdV ⊗ SdV ∗) = 0 for i = 1, 2,
H0(O ⊗ SdV ⊗ SdV ∗) ∼= SdV ⊗ SdV ∗,
Hj(O(−d)⊗ SdV ∗) = 0 for i = 0, 1,

and since d ≥ 3, by Serre’s duality

H2(O(−d)⊗ SdV ∗) ∼= H0(O(d− 3)⊗ SdV )∗ ∼= Sd−3V ⊗ SdV ∗.

Hence, since by the Littlewood-Richardson rule, for any d ≥ 3, the SL(V )-module Sd−3V⊗
SdV ∗ does not contain C and SdV ⊗ SdV ∗ contains one copy of C, we obtain

H2(O(−d)⊗ SdV ∗)G = 0 and dimH0(O ⊗ SdV ⊗ SdV ∗)G = 1.

Then, we conclude that χ(O(−d)⊗ SdV ∗)G = 0 and χ(O ⊗ SdV ⊗ SdV ∗)G = 1 and this
implies

χ(SdV ⊗ Syz∗d,O)G = 1

which concludes our proof. �
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Remark 4.3. The same kind of computations as in the proof of the previous theorem
allows us to show that

Ext1(Ed, Ed) ∼= SdV ⊗ Ad(SdV )⊗ Sd−3V

and for this reason Ed is not rigid (hence not exceptional) as soon as d ≥ 3. Nevertheless
Ext1(Ed, Ed) as an SL(V )-module does not contain any summand isomorphic to C and
so we have Ext1(Ed, Ed)

G = 0.

The following technical lemma will be useful to prove the G-exceptionality of any Fi-
bonacci bundle on P2.

Lemma 4.4. For any k ≥ 1, let Ck be a Fibonacci bundle on P2. Then the following
holds:

(i) χ(Ck, Ck)
G = 1,

(ii) χ(Ck ⊗ SdV,Ck−1)
G = 0 for k odd, χ(Ck ⊗ SdV ∗, Ck−1)

G = 0 for k even,
(iii) χ(Ck−1, Ck ⊗ SdV )G = 1 for k odd, χ(Ck−1, Ck ⊗ SdV ∗)G = 1 for k even.

Proof. We will prove it by induction on k. Recall that C0 = O(−d), C1 = O, C2 = Syzd

and C3 = E∗
d . It is easy to check directly that the relations (i), (ii), (iii) hold for k = 1, 2.

Now assume that the relations hold for Ch and Ch−1 with h ≤ k. Assume k odd, then
the Fibonacci bundle Ck+1 is defined by the exact sequence:

(4.1) 0 → Ck−1 → Ck ⊗ SdV → Ck+1 → 0.

Applying the functor Hom(Ck ⊗ SdV,−) to this sequence we get

χ(Ck ⊗ SdV,Ck+1)
G = χ(Ck ⊗ SdV,Ck ⊗ SdV )G − χ(Ck ⊗ SdV,Ck−1)

G

and by induction hypotheses (i) and (ii) we get

χ(Ck ⊗ SdV,Ck+1)
G = 1− 0 = 1,

that is condition (iii) in case k+ 1 (even). Applying now the functor Hom(−, Ck ⊗ SdV )
to the sequence (4.1) we get

χ(Ck+1, Ck ⊗ SdV )G = χ(Ck ⊗ SdV,Ck ⊗ SdV )G − χ(Ck−1, Ck ⊗ SdV )G.

Since by hypothesis of induction

χ(Ck ⊗ SdV,Ck ⊗ SdV )G = 1 and χ(Ck−1, Ck ⊗ SdV )G = 1,

we get
χ(Ck+1, Ck ⊗ SdV )G = 0

which proves condition (ii) in case k + 1 (even). Let us apply now Hom(Ck−1,−) to the
same sequence (4.1) and we get

χ(Ck−1, Ck+1)
G = χ(Ck−1, Ck ⊗ SdV )G − χ(Ck−1, Ck−1)

G = 1− 1 = 0

where we have used once again hypothesis of induction.
Finally applying the functor Hom(−, Ck+1) we get

χ(Ck+1, Ck+1)
G = χ(Ck ⊗ SdV,Ck+1)

G − χ(Ck−1, Ck+1)
G = 1− 0

and this proves equality (i) in case k + 1. The case k even is analogous. �
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The following result proves that any Fibonacci bundle Ck on P2 is G-exceptional.

Theorem 4.5. For any k ≥ 1, let Ck be a Fibonacci bundle on P2. Then the following
holds:

(i) hom(Ck, Ck)
G = 1, exti(Ck, Ck)

G = 0 for i = 1, 2
(ii) ext2(Ck ⊗Wk, Ck−1)

G = 0,
(iii) hom(Ck−1, Ck ⊗Wk)

G = 1, exti(Ck−1, Ck ⊗Wk)
G = 0, for i = 1, 2

where Wk
∼= SdV if k is odd and Wk

∼= SdV ∗ if k is even.

Proof. The proof is by induction on k. If k = 1, 2 it is easy to check directly the statements.
Now assume that the relations hold for Ch and Ch−1 with h ≤ k. Assume k odd, let

Ck+1 be the Fibonacci bundle defined by the exact sequence:

0 → Ck−1 → Ck ⊗ SdV → Ck+1 → 0.

Applying the functor Hom(Ck⊗SdV,−) to this sequence and using induction hypotheses
(i) and (ii) we get ext1(Ck ⊗ SdV,Ck+1)

G = 0 and ext2(Ck ⊗ SdV,Ck+1)
G = 0. Since by

Lemma 4.4 we know that χ(Ck⊗SdV,Ck+1)
G = 1, it follows that hom(Ck⊗SdV,Ck+1)

G =
1. Thus we obtain the statement (iii) in case k + 1.

Applying now the functor Hom(−, Ck ⊗ SdV ) to the same sequence we get

Ext1(Ck−1, Ck ⊗ SdV )G → Ext2(Ck+1, Ck ⊗ SdV )G → Ext2(Ck ⊗ SdV,Ck ⊗ SdV )G

and the statement (ii) in case k + 1 immediately follows by the assumptions (i) and (iii).
ApplyingHom(Ck−1,−) to the sequence, we get hom(Ck−1, Ck+1)

G = 0 and exti(Ck−1, Ck+1)
G =

0 for i = 1, 2.
Finally applying the functor Hom(−, Ck+1) and using condition (iii) we obtain equality

(i) in case k + 1. The case k even is analogous. �

From Theorem 4.5 we immediately get that

Corollary 4.6. For any k ≥ 1, the Fibonacci bundle Ck on P2 is G-exceptional.

5. Stability of the almost square bundles

The main goal of this section is to prove that any almost square bundle Ed on P2 is
stable. As a key ingredient, we will use the fact that we are able to describe exactly the
representation of the quiver (QP2 ,RP2) associated to the homogeneous bundle Ed. Indeed
we have:

Theorem 5.1. The representation of the quiver (QP2 ,RP2) associated to any almost
square bundle Ed on P2 is of type Rd.

Proof. Let R′ be the representation associated to Ed given by the correspondence stated
in Definition 2.9. By Lemma 3.7, the graded vector bundle associated to SdV ⊗ Syz∗d is

gr(SdV ⊗ Syz∗d) = ⊕d
j=1 ⊕d

i=0

(
⊕min(i,j)

k=0 Si+j−2k(k + i− 2j)
)
.
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Thus, it is easily seen that the support with multiplicities of R′ is equal to the support
with multiplicities of a representation of type Rd. Let us adopt for the arrows and the
vector spaces of R′ the same notation as in Definition 3.8.

Now we will show that the maps of the representation R′ must verify all the properties
(3.5), (3.6), (3.7). In order to do this we will show that if the maps of R′ do not satisfy
one of these conditions, then there exists a nontrivial subrepresentation of R′, which is
also a quotient representation of R′. This will imply that such representation is a direct
sum of R′ and so, the vector bundle Ed splits, and this contradicts the simplicity of Ed.

Assume first that R′ does not satisfy property (3.7). In that case, we can consider a
subrepresentation which has multiplicity 1 at any vertex of the support of R′ and all the
maps different from zero. Indeed, it is enough to take at the vertex (d, 2) a 1-dimensional
subspace containing the image of ϕd

d,1 ⊕ ψd
d+1,2, and then restrict all the vector spaces at

the following vertices to the corresponding images. By the commutativity of the diagram,
we get everywhere 1-dimensional spaces. It is easy to see that such subrepresentation is
also a quotient representation, and we are done.

Assume now that a map χ : V → W of R′ does not have maximal rank, thus contra-
dicting property (3.5). Assume dimV ≤ dimW . Then if the map χ is not injective, we
can take a subrepresentation supported at 0 6= ker(χ) ⊂ V and we consequently restrict
all the vector spaces of the support of R′ to the corresponding images and preimages
with respect to all the maps. By the commutativity of the diagram we get a nontrivial
subrepresentation, which is also a quotient representation, that is a direct summand of R′

and we get a contradiction as above. Assume now that dimV ≥ dimW . If the map χ is
not surjective, we can take a subrepresentation supported at V and at 0 6= Im(χ) ⊂ W .
Restricting all the other spaces to the corresponding images and preimages, we conclude
as above.

From property (3.5) it follows immediately that the property (3.6) holds for any com-
position of maps, except possibly for the compositions χj of the following form:

χj := ψd
j,j ◦ . . . ◦ ψd

d,j ◦ ψd
d+1,j : Ud

d+1,j → Ud
j−1,j for some 2 ≤ j ≤ d, or(5.1)

χd+1 := ψd
d+1,d+1 ◦ ψd

d,d+1 : Ud
d+1,d+1 → Ud

d−1,d+1(5.2)

Assume then that χj is not injective, for some 2 ≤ j ≤ d+ 1. Then we can consider a
subrepresentation of R′ supported at 0 6= ker(χ) ⊂ Ud

d+1,j. By consequently restricting all
the vector spaces of the support of R′ to the images and to the preimages with respect to all
the maps, we will obtain a subrepresentation, which in particular, by the commutativity
of the diagram, has multiplicity 0 at the vertex (j − 1, j) for 2 ≤ j ≤ d and at the vertex
(d, d+1) for j = d+1. Moreover such a subrepresentation is also a quotient representation,
and this concludes the proof. �

The next basic lemma characterize the subrepresentations of a representation Rd.

Lemma 5.2. Let {bi,j} be a collection of integers for 1 ≤ i, j ≤ d + 1 such that: bi,j ≤
ad

i,j = dimUd
i,j. Then there exists a subrepresentation of Rd whose support has multilicities

{bi,j} if and only if the following conditions hold:

(5.3) bd,2 ≥ bd,1 + bd+1,2
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and for any (i, j) we have

(5.4) bi,j ≤ bi,j+1 and bi,j ≤ bi−1,j + 1.

Moreover the equality bi,j = bi−1,j + 1 is possible only in the following cases:

(i) i < j, (i, j) 6= (d, d+ 1),
(ii) i = j ≤ d− 1, if bd+1,j ≤ bi−1,j,
(iii) (i, j) = (d, d), if bd+1,k ≤ bd−1,d, for k = d, d+ 1,
(iv) (i, j) = (d, d+ 1), if bd+1,d+1 ≤ bd−1,d+1.

Proof. We first prove that the conditions listed in the statement are necessary. Assume
that {Vi,j} is the support of a subrepresentation of Rd and set bi,j = dimVi,j.

By definition the representation Rd satisfies condition (3.5). In particular the horizontal
maps ϕd

i,j : Ud
i,j → Ud

i,j+1 are injective. The vertical maps ψd
i,j : Ud

i,j → Ud
i−1,j are injective

if i > j or if (i, j) = (d+ 1, d+ 1), while if i ≤ j and i 6= d+ 1 we have dim ker(ψd
i,j) = 1.

It follows immediately that the conditions (5.4) hold. Moreover (5.3) follows from the
property (3.7).

Assume now that bi,j = bi−1,j + 1. Clearly, since the space Vi,j contains ker(ψd
i,j) 6= 0,

we have i ≤ j and i 6= d+ 1. From the property (3.6) it follows that the maps χj defined
by (5.1) and (5.2) are injective. Hence it immediately follows that if i = j ≤ d− 1, then
we have dimVd+1,j ≤ dimVi−1,j, namely we have (ii). Analogously we prove case (iv). In
order to check (iii), we also note that the maps ϕd

d+1,d and ϕd
d,d are surjective and, since

the diagram is commutative, then we have dimVd+1,k ≤ dimVd−1,d, for k = d, d+ 1.
Now we need to check that the conditions above are also sufficient. Assume that {bi,j} is

a collection of integers as above. Then it is easy to see that there exists a subrepresentation
whose support has multiplicities (bi,j). Indeed, starting from the vertex (1, d+ 1) we can
choose a subspace V1,d+1 of Ud

1,d+1 of dimension b1,d+1. Then we choose V2,d+1 and V1,d, such
that their images are contained in V1,d+1, and using the commutativity of the diagram we
can go on and choose all the other subspaces Vi,j ⊆ Ud

i,j of dimension bi,j. The conditions
on the integers bi,j allow us to choose these spaces Vi,j for any i, j such that

ϕi,j(Vi,j) ⊆ Vi,j+1 and ψi,j(Vi,j) ⊆ Vi−1,j + 1,

and

ker(ψd
i,j) ⊆ Vi,j

whenever bi,j = bi−1,j +1. This clearly implies that the collection {Vi,j} can be the support
of a subrepresentation of Rd.

�

Now we are going to state some definitions and prove some technical lemmas that we
will needed later on.

Definition 5.3. Let Sd be the representation of (QP2 ,RP2) such that the support of Sd

is the support of Rd with all multiplicities equal to one and all the maps are non-zero
constants (and thus equal to one). For any 2 ≤ k ≤ d, let P k

d be the representation of
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(QP2 ,RP2) such that the support of P k
d is the support of Sd with the following multiplic-

ities. For any vertex (i, j):

m(i, j) =


1 i = 1
1 j = 1
1 i = d+ 1, 2 ≤ j ≤ k
2 elsewhere.

Remark 5.4. (a) It follows from [14]; Lemma 40 that the vector bundle Fd associated to
Sd is multistable, that is, that any subrepresentation of Sd has slope less than the slope
of Sd.

(b) By [14]; Remark 23 and the Four Terms Lemma, the vector bundle Fd can be seen
as the kernel of the natural projection

S2d,dV ⊗O π−→SdQ(d)

where S2d,dV is an irreducible Schur representation (see for instance [7]).

With the above notations

Lemma 5.5. For any integer d > 0, the following holds:

(a) rk(Rd) =
(

d+2
2

)2 −
(

d+2
2

)
− 1 and c1(Rd) = −d(d+1)(d+2)

2
.

(b) rk(Sd) = d(d+ 1)(d+ 2) and c1(Sd) = −3
2
d(d+ 1).

(c) rk(P k
d ) = d((d+ 1)(d+ 2) + (d−1)(2d+1)

2
) + (d−k)(d−k+1)

2
and

c1(Pd) = −3d(d+ 1)

2
− d(d− 1)(d+ 1)

2
+

(d− k)(d− k + 1)(d− k − 1)

2
.

(d) µ(Rd−1) < µ(Rd) < µ(Sd).
(e) µ(P k

d ) < µ(Rd) for d ≥ 2 and 2 ≤ k ≤ d.

Proof. Once we have proved (a), (b) and (c), the items (d) and (e) follow after a straight-
forward computation, keeping in mind that, by definition, given a representation R we

have µ(R) = c1(R)
rk(R)

. So, we will prove the first three items and we left the proof of the

remaining to the reader.
(a) Since by Theorem 5.1, the representation Rd is associated to the vector bundle Ed,

by definition we have rk(Rd) = rk(Ed) and c1(Rd) = c1(Ed). Recall that the vector bundle
Ed is given by the short exact sequence

(5.5) 0 → Ed → SdV ⊗ Syz∗d → O → 0

where Syzd is the Syzygy bundle on P2 defined by the exact sequence

(5.6) 0 → O(−d) → SdV ⊗O → Syzd → 0.

From the exact sequence (5.6) we get that

rk(Syzd) =

(
d+ 2

2

)
− 1 and c1(Syzd) = d.
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Using this equalities together with the exact sequence (5.5) we obtain:

rk(Rd) =

(
d+ 2

2

)
rk(Syz∗d)− 1 =

(
d+ 2

2

)2

−
(
d+ 2

2

)
− 1

and

c1(Rd) =

(
d+ 2

2

)
c1(Syz

∗
d) = −d(d+ 1)(d+ 2)

2
.

(b) First of all notice that

Rd = Rd−1 t Sd

from which we deduce that

rk(Sd) = rk(Rd)− rk(Rd−1) and c1(Sd) = c1(Rd)− c1(Rd−1).

Thus, using (a) we have

rk(Sd) =

(
d+ 2

2

)2

−
(
d+ 2

2

)
− 1−

(
d+ 1

2

)2

+

(
d+ 1

2

)
+ 1 = d(d+ 1)(d+ 2)

and

c1(Sd) = −d(d+ 1)(d+ 2)

2
+ (d− 1)

(d+ 1)(d)

2
= −3

2
d(d+ 1).

(c) Let R be the rectangle of base d− 1, height d− 2 and Q(−2) as the highest vertex
of the left side and let R′ be the rectangle of base d−k−1, height 0 and O as the highest
vertex of the left side (i.e. R′ is the left hand side of the first row of Rd of length d−k−1).
By construction

P k
d = Sd tR tR′

and therefore

(5.7) rk(P k
d ) = rk(Sd) + rk(R) + rk(R′),

(5.8) c1(P
k
d ) = c1(Sd) + c1(R) + c1(R

′).

By [14], Lemma 28,

rk(R) = d(d− 1)(d+
1

2
) and c1(R) =

−d(d− 1)(d+ 1)

2
,

rk(R′) =
(d− k)(d− k + 1)

2
and c1(R) =

(d− k)(d− k + 1)(d− k − 1)

2
.

Now, we conclude by substituting these equalities together with (b) in (5.8) and in (5.7).
�

Lemma 5.6. For any integer d and any proper subrepresentation G of Sd, the following
inequality holds

µ(G) < µ(Rd).
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Proof. Denote by p and q the vertex corresponding to Sd−1Q(d − 1) and Sd+1Q(d − 2)
respectively and we will denote by the same letter the corresponding representation with
one vertex of multiplicity one. By Lemma 5.5,

µ(Sd) = −3

2

d(d+ 1)

d(d+ 1)(d+ 2)
.

Therefore, since rk(SjQ(l)) = j + 1 and c1(S
jQ(l)) = (2l+j)(j+1)

2
we get

µ(Sd\p) =
−3d2

d(d2 + 3d+ 1)

µ(Sd\q) =
−3(d2 + d− 1)

(d+ 2)(d2 + d− 1)

µ(Sd\(p t q)) = −3

2

(3d2 + d− 2)

(d3 + 3d2 − 2)

and from these equalities together with Lemma 5.5 (1) it is easy to see that

(5.9) µ(Sd\p) < µ(Rd), µ(Sd\q) < µ(Rd) and µ(Sd\(p t q) < µ(Rd).

Now let G be a subrepresentation of Sd. If G contains p and q then G = Sd and it is no a
proper subrepresentation. If G = Sd\p or G = Sd\q or G = Sd\(pt q), then by (5.9) and
Lemma 5.5 (4) we get

µ(G) < µ(Rd) < µ(Sd)

and we are done. If G $ Sd\(p t q), then the inequality

µ(G) < µ(Rd) < µ(Sd)

follows from the fact that by [14]; Theorem 36, Sd\(p t q) is stable and hence

µ(G) < µ(Sd\(p t q)) < µ(Sd).

�

Now we are ready to prove our main technical result.

Theorem 5.7. Given any subrepresentation T of Rd, we have µ(T ) < µ(Rd).

Proof. We will proceed by induction on d ≥ 1. By definition, the representation R1 is the

following:

◦ ◦
Q(−2)

oo
S2Q(−2)

Then the unique subrepresentation T of R1 is given by the vertex corresponding to Q(−2)
and we immediately check that µ(T ) = −3

2
< µ(R1) = −3

5
.

Assume now that Rd−1 satisfies the statement for d ≥ 2 and we are going to prove that
the same is true for Rd.

Now, let T be a subrepresentation of Rd and denote by Vi,j, for 1 ≤ i, j ≤ d + 1, the
vector spaces where T is supported. We consider the following three cases A, B and C
according to the shape of T .
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Case A: There exists at least a pair (i, j), for 1 ≤ i, j ≤ d + 1 and (i, j) 6= (d + 1, 1),
such that Vi,j = 0, and for any 2 ≤ i ≤ d+ 1 and 1 ≤ j ≤ d+ 1, if Vi,j 6= 0, then we have
Vi−1,j 6= 0.

Let T1 be a representation whose support with multiplicities is T ∩ Sd and with all
nonzero maps.

Claim 1: T1 is a proper subrepresentation of Sd.
Proof of Claim 1: Since all the multiplicities of vertices of Sd are one, it is enough to
prove that if Vi,j 6= 0, then Vi−1,j 6= 0 and Vi,j+1 6= 0. But this is clear since T is a
subrepresentation of Rd and we are under the hypotheses of Case A. The fact that T1 is
proper is a direct consequence of the assumptions in this case.

Claim 2: There exists a subrepresentation of Rd−1 supported on T2 := T\T1

Proof of Claim 2: We denote by bi,j the multiplicities mT2
i,j of T2 at each vertex (i, j) Notice

that
bi,j ≤ ad−1

i−1,j−1 = dimUd−1
i−1,j−1 = dimUd

i,j − 1.

It is easy to check that all the other conditions of Lemma 5.2 are also satisfied. Hence,
by Lemma 5.2 there exists a subrepresentation of Rd−1 whose support with multiplicities
is T2.

Since T = T1 t T2, if µ(T1) ≤ µ(T2), by Lemma 2.13 we get

µ(T1) ≤ µ(T ) ≤ µ(T2).

On the other hand, since by Claim 2, T2 is a subrepresentation of Rd−1 and by hypothesis
of induction Rd−1 is stable, we have

µ(T2) < µ(Rd−1).

Thus,
µ(T ) < µ(Rd−1) < µ(Rd)

where the last inequality follows from Lemma 5.5, (d).
Assume now µ(T2) < µ(T1). Then, by Lemma 2.13, we have

µ(T2) < µ(T ) < µ(T1).

On the other hand, by Claim 1, T1 is a subrepresentation of Sd. Thus, by Lemma 5.6

µ(T ) < µ(T1) < µ(Rd)

and this finishes the Case A.

Case B: There exists at least a pair (i, j), for 1 ≤ i, j ≤ d+1 and (i, j) 6= (d+1, 1), such
that Vi,j = 0, and there exists at least a Vi,j 6= 0, such that Vi−1,j = 0.

We split this case in two further subcases:

Case B1: Assume V1,j = 0 for all 1 ≤ j ≤ d+ 1.
In that case, we want we prove the following claim.

Claim 3: T is a subrepresentation of Rd−1.
Proof of Claim 3: Indeed it is easy to check that Vi,1 = 0 for any i and since V1,2 = 0
we also have Vd+1,2 = 0. Moreover, if dim(Vi,j) = ad

i,j, then we would have dim(V1,j) = 1
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which is a contradiction. So we have dim(Vi,j) < ad
i,j. Thus the support of T is contained

in the support of Rd−1. Now it is easy to see that T is a subrepresentation of Rd−1 by
using Lemma 5.2.

By hypothesis of induction Rd−1 is stable, thus by Claim 3,

µ(T ) < µ(Rd−1) < µ(Rd)

where the last inequality follows form Lemma 5.5, (d).

Case B2: Assume that there exists a V1,j 6= 0.
Let i0 be the maximal i ≥ 1 such that Vi,1 6= 0 or let i0 = 1 if for any i, Vi,1 = 0.

Let T1 be the maximal staircase contained in T \ (Sd−i0 ∩ T ). Clearly T1 is a proper
subrepresentation of Sd.

Claim 4: There exists a subrepresentation of Rd−1 whose support with multiplicities is
T2 := T\T1.
Proof of Claim 4: Denote by bi,j the multiplicities of T2. First of all notice that

b1,j = 0 and bi,1 = 0

for any i, j. Indeed if b1,j = 1, then it would implies that the staircase T1 has multiplicity
0 at the vertex (1, j). But it is easy to see that this would contradict the maximality of
the staircase T1. On the other hand, we also have

bd+1,2 = 0.

Indeed, if bd+1,2 6= 0 then we would have in particular dimVd+1,2 = 1 but this is impossible
since we are under the assumptions of Case B.

Assume now that bi,j = ad
i,j, which implies dim(Vi,j) = ad

i,j. Then we would have

dimVhk = ad
hk

for any 1 ≤ h ≤ i and j ≤ k ≤ d+ 1. But this in particular implies that the vertex (i, j)
is contained in the staircase T1 and so bi,j = ad

i,j−1 which is a contradiction.
Thus, the support of T2 is contained in the support of Rd−1. In addition, it can be

easily checked that all the assumptions of Lemma 5.2 are satisfied. Hence there is a
subrepresentation of Rd−1 whose support with multiplicities is T2 and the Claim 4 is
proved.

Since T = T1tT2, with T1 a proper subrepresentation of Sd and T2 a subrepresentation
of Rd−1 we conclude with the same arguement as in Case A that

µ(T ) < µ(Rd).

Case C: For any pair (i, j), for 1 ≤ i, j ≤ d+ 1 and (i, j) 6= (d+ 1, 1), we have Vi,j 6= 0.
First of all notice that P d

d ⊂ T . Denote by T1 = T ∩ P 1
d . It is immediate to observe

that there exists some k, 1 ≤ k ≤ d such that

T1 = P d
k .

Thus, by Lemma 5.5, (e)
µ(T1) < µ(Rd).
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Claim 5: There exists a subrepresentation of Rd−1 whose support with multiplicities is
T2 := T\T1.
Proof of Claim 5: It is clear that the support of T2 is contained in the support of Rd−1.
On the other hand, notice that since T1 = P k

d , then dimVd+1,j = 1, for any 2 ≤ j ≤ k+1.
Hence, it is easy to check that all the conditions in Lemma 5.2 are satisfied by the
multiplicities of T2.

Once again, since T = T1tT2, with T2 a subrepresentation of Rd−1 and µ(T1) < µ(Rd),
we conclude as in the above cases A and B. This concludes the proof of the theorem. �

A first consequence of the previous theorem is that the properties of a representation
of type Rd define a unique (up to isomorphism) representation. This implies, by Theorem
5.1, that any representation of type Rd is isomorphic to the representation associated to
the almost square bundle Ed.

Proposition 5.8. Any two representations R and R′ of type Rd are isomorphic.

Proof. Notice that, since the invariant Euler characteristic is a topological invariant and
hence only depends on the support of the representation, we have

χ(R,R′)G = χ(R,R)G = χ(Ed, Ed)
G = 1

where the last equality follows from Theorem 4.2. Let us denote by E (resp. E ′) the
homogeneous vector bundle associated to R (resp. R′). They have the same rank and
Chern classes. Notice that E and E ′ are multistable bundles by Theorems 2.2 and 5.7.
Hence, by Serre duality, we have

ext2(R,R′)G = ext2(E,E ′)G = hom(E ′, E(−3))G = 0.

Then, it follows that hom(R,R′)G ≥ 1 and thus there exists a nontrivial morphism of
representations f : R→ R′. This morphism must be an isomorphism since otherwise the
subrepresentations ker(f) or Im(f) would contradict Theorem 5.7 for R or R′. �

Remark 5.9. The previous proposition also implies that the moduli space of homoge-
neous bundles containing an almost square bundle is a reduced point. For more details
on the moduli problem of homogeneous bundles see [12], and [14]; Section 7.

We are finally in position to prove the main result of this section.

Theorem 5.10. Any almost square bundle on P2 is stable.

Proof. Since by Theorem 4.2 Ed is simple, it is enough to prove that it is multistable.
By Proposition 5.8, we know that Rd is the representation of the quiver QP2 associated
to Ed, hence by Theorem 2.2 to prove that Ed is multistable it is enough to see that for
any subrepresentation T of Rd, µ(T ) < µ(Rd). But this is true by Theorem 5.7 and this
concludes the proof. �
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