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Abstract. A smooth prime Fano threefold X of genus 9 is associated
to a surface P(V), ruled over a smooth plane quartic Γ. We consider the
natural integral functor Φ! : Db(X) → Db(Γ).

We prove that for every c2 ≥ 7, the functor Φ! gives a birational map
from a component of the Maruyama moduli space M(2, 1, c2) of stable
rank 2 sheaves F with c1(F ) = 1, c2(F ) = c2 to a generically smooth
component of the Brill-Noether locus of stable bundles F on Γ of rank
c2 − 6 and degree c2 − 5, with h0(Γ,V ⊗F) ≥ c2 − 6.

Moreover if c2 = 7, we prove that the moduli space MX(2, 1, 7) is
isomorphic to the blowing-up of the Picard variety Pic2(Γ) along the
curve parameterizing lines contained in X.

1. Introduction

Let X be a smooth projective threefold, whose Picard group is generated
by an ample divisor HX . We consider Maruyama’s coarse moduli scheme
MX(r, c1, c2) of HX -semistable rank r sheaves F on X with ci(F ) = ci.

Little is known about this space in general, but many results are available
in special cases. For instance, rank 2 bundles on P3 have been intensively
studied since [Bar77].

Since [AHDM78] and [AW77], the case which has attracted most attention
is that of instanton bundles, i.e. stable rank 2 bundles F with c1(F ) =
0, H2(P3, F (−2)) = 0. Their moduli space is known to be smooth and
irreducible for c2(F ) ≤ 5, see [KO03], [CTT03] and references therein. The
starting points in the investigation of this case are Beilinson’s theorem and
the notion of monad, see [BH78], [OSS80].

Now, if one desires to set up a similar analysis over a threefold X other
than P3, one direction is to look at Fano threefolds. Recall that if the
anticanonical divisor −KX is linearly equivalent to iXHX , for some positive
integer iX , then the variety X is called a Fano threefold of index iX . These
varieties are in fact completely classified by Iskovskih and later by Mukai,
see [IP99] and references therein.

Our aim is to study the moduli space MX(2, c1, c2) on a Fano threefold
X of index iX = 1. Recall that the genus of a Fano threefold X of index
1 is defined as g = H3

X/2 + 1. Notice that, since the rank of a sheaf F
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in MX(2, c1, c2) is 2, one can assume c1 ∈ {0, 1}. Accordingly, we speak of
bundles with odd or even determinant. If c1 = 1, one sees that MX(2, 1, c2)
is empty for c2 < mg = dg/2 + 1e. The case of minimal c2 = mg is well
understood (see for instance [IM04a] for genus 7, [IR05] for genus 9, [Kuz96]
for genus 12). For higher c2, we are aware of the results contained in [IM07b],
[AF06], [IM07a], [BF07], where only the last two papers study also the
boundary of MX(2, 1, c2). Even less is known in the case of even determinant.
We refer to [BF08b], where the space MX(2, 0, 4) is studied for X of genus
7.

This paper, together with [BF07] and [BF08a] is devoted to the study of
the space MX(2, 1, c2) for c2 > mg, with a special emphasis on c2 = mg + 1.
Our main idea is to make use of Kuznetsov’s semiorthogonal decomposition
of the derived category of X (see [Kuz06]), to develop a suitable homological
method, thus rephrasing the language of monads and Beilinson’s theorem.

More precisely, in this paper we focus on Fano threefolds X of genus 9.
Recall that, by a result of Mukai, [Muk88], [Muk89], the variety X is a
linear section of the Lagrangian Grassmannian sixfold Σ. We consider the
orthogonal plane quartic Γ, and the integral functor Φ! : Db(X) → Db(Γ),
according to Kuznetsov’s theorem, [Kuz06]. The functor is the right adjoint
to the fully faithful functor Φ, provided by the universal sheaf E on X × Γ
for the fine moduli space Γ ∼= MX(2, 1, 6). Recall that the threefold X
is associated to a rank 2 stable bundle V on Γ, in such a way that P(V)
is isomorphic to the Hilbert scheme H 0

2 (X) of conics contained in X, see
[Ili03].

For any d ≥ 7, we proved in [BF07] that there exists a component
M(d) of MX(2, 1, d), whose general element is a vector bundle F with
Hk(X,F (−1)) = 0, for all k. Here we investigate in details the properties of
M(d).

The main result of this paper is the following.

Theorem. The map ϕ : F 7→ Φ!(F ) gives:

A) for any d ≥ 8, a birational map of M(d) to a generically smooth (2d−11)-
dimensional component of the Brill-Noether locus:

{F ∈ MΓ(d− 6, d− 5) |h0(Γ,V ⊗F) ≥ d− 6};

B) an isomorphism of MX(2, 1, 7) with the blowing up of Pic2(Γ) along a
curve isomorphic to the Hilbert scheme H 0

1 (X) of lines contained in X.
The exceptional divisor consists of the sheaves in MX(2, 1, 7) which are
not globally generated.

Note that this result closely resembles that of [Dru00], [IM00] [MT01],
regarding rank 2 sheaves on a smooth cubic threefold in P4. Their method
relies on the Abel-Jacobi mapping.

The paper is organized as follows. In the following section we set up
some notation. Then, in Section 3, we review the geometry of prime Fano
threefolds X of genus 9, and we interpret some well-known facts concerning
lines and conics contained in X in the language of vector bundles. In Section
4, we state and prove part (A) of the theorem above. Section 5 is devoted
to part (B).
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2. Preliminary definitions and results

Given a smooth complex projective n-dimensional polarized variety
(X,HX) and a sheaf F on X, we write F (t) for F ⊗OX(tHX). Given a
subscheme Z of X, we write FZ for F ⊗OZ and we denote by IZ,X the ideal
sheaf of Z in X, and by NZ,X its normal sheaf. We will frequently drop
the second subscript. Given a pair of sheaves (F,E) on X, we will write
extk

X(F,E) for the dimension of the Čech cohomology group Extk
X(F,E),

and similarly hk(X,F ) = dim Hk(X,F ). The Euler characteristic of (F,E) is
defined as χ(F,E) =

∑
k(−1)k extk

X(F,E) and χ(F ) is defined as χ(OX , F ).
We denote by p(F, t) the Hilbert polynomial χ(F (t)) of the sheaf F . The
degree deg(L) of a divisor class L is defined as the degree of L ·Hn−1

X . The
dualizing sheaf of X is denoted by ωX .

If X is an smooth n-dimensional subvariety of Pm, whose coordinate ring
is Cohen-Macaulay, then X is said to be arithmetically Cohen-Macaulay
(ACM). A locally free sheaf F on an ACM variety X is called ACM (arith-
metically Cohen-Macaulay) if it has no intermediate cohomology, i.e. if
Hk(X,F (t)) = 0 for all integer t and for any 0 < k < n. The corresponding
module over the coordinate ring of X is thus a maximal Cohen-Macaulay
module.

Let us now recall a few well-known facts about semistable sheaves on
projective varieties. We refer to the book [HL97] for a more detailed account
of these notions. We recall that a torsionfree coherent sheaf F on X is
(Gieseker) semistable if for any coherent subsheaf E, with 0 < rk(E) <
rk(F ), one has p(E, t)/ rk(E) ≤ p(F, t)/ rk(F ) for t � 0. The sheaf F is
called stable if the inequality above is always strict.

The slope of a sheaf F of positive rank is defined as µ(F ) =
deg(c1(F ))/ rk(F ), where c1(F ) is the first Chern class of F . We recall
that a torsionfree coherent sheaf F is µ-semistable if for any coherent sub-
sheaf E, with 0 < rk(E) < rk(F ), one has µ(E) < µ(F ). The sheaf F is
called µ-stable if the above inequality is always strict. We recall that the
discriminant of a sheaf F is ∆(F ) = 2rc2(F ) − (r − 1)c1(F )2, where the
k-th Chern class ck(F ) of F lies in Hk,k(X). Bogomolov’s inequality, see for
instance [HL97, Theorem 3.4.1], states that if F is also µ-semistable, then
we have:

(2.1) ∆(F ) ·Hn−2
X ≥ 0.

Recall that by Maruyama’s theorem, see [Mar80], if dim(X) = n ≥ 2 and
F is a µ-semistable sheaf of rank r < n, then its restriction to a general
hypersurface of X is still µ-semistable.

We introduce here some notation concerning moduli spaces. We denote
by MX(r, c1, . . . , cn) the moduli space of S-equivalence classes of rank r
torsionfree semistable sheaves onX with Chern classes c1, . . . , cn. The Chern
class ck will be denoted by an integer as soon as Hk,k(X) has dimension 1.
We will drop the last values of the classes ck when they are zero. The moduli
space of µ-semistable sheaves is denoted by Mµ

X(r, c1, . . . , cn).
Let us review some notation concerning the Hilbert scheme. Given a

numerical polynomial p(t), we let Hilbp(t)(X) be the Hilbert scheme of closed
subschemes of X with Hilbert polynomial p(t). In case p(t) has degree one,
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we let H g
d (X) be the union of components of Hilbp(t)(X) containing integral

curves of degree d and arithmetic genus g.
As a basic technical tool, we will use the bounded derived category.

Namely, given a smooth complex projective variety X, we will consider
the derived category Db(X) of complexes of sheaves on X with bounded
coherent cohomology. For definitions and notation we refer to [GM96] and
[Wei94]. In particular we write [j] for the j-th shift to the right in the
derived category.

We use the following terminology. Any claim referring to a general element
in a given parameter space P , shall mean that the claim holds true for all
elements of P , but for those who lie in a Zariski closed subset of P .

Let nowX be a smooth projective variety of dimension 3. Recall thatX is
called Fano if its anticanonical divisor class −KX is ample. A Fano threefold
X is prime if its Picard group is generated by the class ofKX . These varieties
are classified up to deformation, see for instance [IP99, Chapter IV]. The
number of deformation classes is 10, and they are characterized by the genus,
which is the integer g such that deg(X) = −K3

X = 2 g − 2. Recall that the
genus of a prime Fano threefold take values in {2, . . . , 10, 12}.

If X is a prime Fano threefold of genus g, the Hilbert scheme H 0
1 (Y ) of

lines contained in X is a scheme of pure dimension 1. It contains a nonre-
duced irreducible component if and only if the normal bundle of a general
line in that component L ⊂ X splits as OL ⊕ OL(−1). The threefold X is
said to be exotic if the Hilbert scheme H 0

1 (Y ) has a nonreduced component.
It turns out that any threefold of genus 9 is not exotic, see [GLN06].

Recall also that a smooth projective surface S is a K3 surface if it has
trivial canonical bundle and irregularity zero.

Remark that the cohomology groups Hk,k(X) of a prime Fano threefold
X of genus g are generated by the divisor class HX (for k = 1), the class LX

of a line contained in X (for k = 2), the class PX of a closed point of X (for
k = 3). Hence we will denote the Chern classes of a sheaf on Y by the integral
multiple of the corresponding generator. Recall that H2

X = (2 g−2)LX . We
use an analogous notation on a K3 surface S of genus g.

We recall by [HL97, Part II, Chapter 6] that, given a stable sheaf F of
rank r on a K3 surface S of sectional genus g, with Chern classes c1, c2, the
dimension at [F ] of the moduli space MS(r, c1, c2) is:

(2.2) ∆(F )− 2 (r2 − 1).

We recall finally the formula of Hirzebruch-Riemann-Roch, in the case of
prime Fano threefolds of genus 9. Let F be a rank r sheaf on a prime Fano
threefold X of genus 9 with Chern classes c1, c2, c3. Then we have:

χ(F ) = r +
10
3
c1 + 4 c21 −

1
2
c2 +

8
3
c31 −

1
2
c1 c2 +

1
2
c3,

χ(F, F ) = r2 − 1
2
∆(F ).

3. Geometry of prime Fano 3-folds of genus 9

Throughout the paper we will denote by X a smooth prime Fano threefold
of genus 9. In this section, we briefly sketch some of the basic features of
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X. For detailed account on the geometry of these varieties, and the related
Sp(3)-geometry, we refer to the papers [Muk88], [Muk89], [Ili03], [IR05].

By a result of Mukai, the threefold X is isomorphic to a 3-codimensional
linear section of the Lagrangian Grassmannian Σ of 3-dimensional subspaces
of a 6-dimensional vector space V which are isotropic with respect to a skew-
symmetric 2-form ω. The divisor class HX embeds X in P10 as an ACM
variety. It is well known that a general hyperplane section S of X is a
smooth K3 surface polarized by the restriction HS of HX to S, with Picard
number 1 and sectional genus 9.

The manifold Σ is homogeneous for the complex Lie group Sp(3), which
acts on V preserving ω. The Lie algebra of this group has dimension 21,
its Dynkin diagram is of type C3 and the manifold Σ is Sp(3)/P(α3). In
fact, Σ is a Hermitian symmetric space. It is equipped with a universal
homogeneous rank 3 subbundle U , fitting in the universal exact sequence:

(3.1) 0 → U → V ⊗OX → U∗ → 0.

Let us review the properties of the vector bundle U . Its Chern classes
satisfy c1(U) = −1, c2(U) = 8, c3(U) = −2. The bundle U is exceptional by
[Kuz06]. Moreover, we have the following lemma.

Lemma 3.1. The bundle U is stable and ACM. The same is true for its
restriction US to a smooth hyperplane section surface S with Pic(S) = 〈HS〉.

Proof. Consider the Koszul complex:

0 → ∧3B⊗OΣ(−3) → · · · → B⊗OΣ(−1) → OΣ → OX → 0,

and tensor it with U .
By Bott’s theorem we know that, for any t, the homogeneous vector

bundles U(t) on Σ have natural cohomology. Using Riemann-Roch’s formula
on Σ, we get χ(U(−t)) = 0, for t = 0, . . . , 3. We obtain:

Hk(Σ,U(−t)) = 0, for

 all k and t = 0, . . . , 3,
k 6= 0 and t < 0,
k 6= 6 and t > 3.

It easily follows that U is ACM on X. Since ∧2U ∼= U∗(−1), by Serre
duality we get H0(X,∧2U) = 0, so U is stable by Hoppe’s criterion, see
[Hop84, Lemma 2.6], or [AO94, Theorem 1.2].

To check the statement on S, consider the defining exact sequence:

(3.2) 0 → OX(−1) → OX → OS → 0.

Since the bundle U is ACM on X, tensoring (3.2) by U(−t), and using
H0(X,U) = 0, we get:

H1(S,U(t)) = 0, for t ≥ 0, and H0(S,U) = 0.

Tensoring (3.2) by U∗(−t), since we have proved H0(X,U∗(−1)) = 0, and
since U is ACM on X, making use of Serre duality we obtain:

H1(S,U(t)) = 0, for t ≥ 1, and H0(S,U∗(−1)) = 0.

This proves that the bundle US is ACM and that it is stable again by
Hoppe’s criterion. �
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3.1. Universal bundles and the decomposition of Db(X). Here we re-
view the structure of the derived category of a smooth prime Fano threefold
X of genus 9, in terms of the semiorthogonal decomposition provided by
[Kuz06]. We will need to interpret this decomposition in terms of the uni-
versal vector bundle of the moduli space MX(2, 1, 6). In view of the results
of [IR05], and recalling [BF08a, Lemma 3.4], the moduli space MX(2, 1, 6)
is fine and isomorphic to a smooth plane quartic curve Γ. This curve can
be obtained as an orthogonal linear section of Σ and is also called the ho-
mologically projectively dual curve to X. Let us denote by E the universal
vector bundle on X × Γ, and by p and q respectively the projections to X
and Γ.

We have the integral functor Φ associated to E , and its right and left
adjoint functors Φ! and Φ∗, which are defined by the formulas:

Φ : Db(Γ) → Db(X), Φ(−) = Rp∗(q∗(−)⊗E ),(3.3)

Φ! : Db(X) → Db(Γ), Φ!(−) = Rq∗(p∗(−)⊗E ∗(ωΓ))[1],(3.4)

Φ∗ : Db(X) → Db(Γ), Φ∗(−) = Rq∗(p∗(−)⊗E ∗(−HX))[3].(3.5)

The topological invariants of E are the following:

c1(E ) = HX +N, c2(E ) = 6LX +HXM + η,

where N and M are divisor classes on Γ, and η sits in H3(X,C)⊗H1(Γ,C).

Lemma 3.2. We have η2 = 6 and deg(N) = 2 deg(M)− 1.

Proof. Recall that the bundle E is the universal for MX(2, 1, 6), and write Ey

for the bundle on X corresponding to the point y ∈ Γ. By [BF08a, Lemma
3.3], we have Extk

X(Ey,Ez) = 0 if k ≥ 2, for all y, z ∈ Γ. Moreover we have:

homX(Ey,Ey) = ext1X(Ey,Ey) = 1, for all y ∈ Γ,

homX(Ey,Ez) = ext1X(Ey,Ez) = 0, for all y 6= z ∈ Γ.

This gives Φ!(Ey) ∼= Oy. By [BF07, Proposition 3.4], for any y ∈ Γ, the
bundle Ey satisfies:

Hk(X,E ∗
y ) = 0, for all k ∈ Z,

hence we have Φ!(OX) = 0. Plugging the equations χ(Φ!(OX)) = 0 and
χ(Φ!(Ey)) = 1 into Grothendieck-Riemann-Roch’s formula, we get our claim.

�

By Kuznetsov’s theorem, [Kuz06], we have the semiorthogonal decompo-
sition:

Db(X) = 〈OX ,U∗,Θ(Db(Γ))〉,
where Θ is the integral functor associated to a sheaf F on X × Γ, flat over
Γ. We would like to see that Θ actually agrees with Φ. We do this in a
rather indirect way, in the following lemma.

Lemma 3.3. The sheaf F is isomorphic to (a twist) of E .

Proof. It follows by [Kuz06, Appendix A] that Fy fits into a long exact
sequence:

0 → OX → U∗ → Fy → OZ → 0,
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where Z is the intersection of a 3-dimensional quadric contained in Σ with
a codimension 2 linear section of Σ. Note that Fy is torsionfree of rank
2. Since X does not contain planes or 2-dimensional quadrics, Z must be
a conic. Therefore, we have c1(OZ) = 0, c2(OZ) = −2, c3(OZ) = 0. Thus
we calculate c1(Fy) = 1, c2(Fy) = 6, c3(Fy) = 0, and we easily check
that Fy is a stable sheaf, i.e. Fy sits in MX(2, 1, 6). Note that, by [BF07,
Proposition 3.4], Fy must be a vector bundle. Since E is a universal vector
bundle for the fine moduli space Γ = MX(2, 1, 6), we have thus that F is
the twist by a line bundle on Γ of a pull-back of E via a map f : Γ → Γ.

Note that if f is not constant, then it is an isomorphism and we are done.
Now, in view of [Bri99], it is easy to prove that f is not constant since Θ is
fully faithful. Indeed, the sheaf F must satisfy:

Extk
X(Fy,Fz) = 0, for all k if y 6= z ∈ Γ.

But if f was constant, we would have homX(Fy,Fz) = 1, for any y, z ∈
Γ. �

The semiorthogonal decomposition of Db(X) can be thus rewritten as:

(3.6) Db(X) = 〈OX ,U∗,Φ(Db(Γ))〉.

Then, given a sheaf F over X, we have a functorial exact triangle:

(3.7) Φ(Φ!(F )) → F → Ψ(Ψ∗(F )),

where Ψ is the inclusion of the subcategory 〈OX ,U∗+〉 in Db(X) and Ψ∗ is
the left adjoint functor to Ψ. The k-th term of the complex Ψ(Ψ∗(F )) can
be written as follows:

(3.8) (Ψ(Ψ∗(F )))k ∼= Ext−k
X (F,OX)∗⊗OX ⊕ Ext1−k

X (F,U+)∗⊗U∗+.

Remark 3.4. The universal bundle E is determined up to twisting by the
pull-back of a line bundle on Γ. In order to simplify some computations, we
adopt the convention:

deg(N) = deg(Ex) = 5.

Remark 3.5. Making use of mutations, one can easily write down the
following semiorthogonal decomposition of Db(X):

(3.9) Db(X) = 〈Φ0(Db(Γ)),U ,OX〉,

where Φ0 : Db(Γ) → Db(X) is defined as Φ0 = Rp∗(q∗(−)⊗E (−HX)).
Let Φ∗

0 be the left adjoint of the functor Φ0.
Let q1 and q2 be the projections of X×X onto the two factors, and denote

by U the complex on X ×X defined by the natural map U � U → OX×X ,
where OX×X has cohomological degree 0. Then the projection onto the
subcategory 〈U ,OX〉 is given by the functor Rq2∗(q∗1(−)⊗U).

Lemma 3.6. We have the natural isomorphisms:

H0(Φ(Φ∗(U∗))) ∼= U∗,
H1(Φ(Φ∗(U∗))) ∼= U(1).
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Proof. Note that, for any object F of Db(X), we have Φ∗
0(F (−1)) ∼= Φ∗(F ),

and for any object F of Db(Γ), we have Φ(F)(−1) ∼= Φ0(F). In particular,
we get a natural isomorphism Φ0(Φ∗

0(U∗(−1)))(1) ∼= Φ(Φ∗(U∗)).
By the decomposition (3.9), we get a distinguished triangle:

(3.10) Rq2∗(q∗1(U∗(−1))⊗U) → U∗(−1) → Φ0(Φ∗
0(U∗(−1))).

Since we have Hk(X,U∗(−1)) = 0 for all k, and Hk(X,U∗⊗U(−1)) = 0
for k 6= 3, h3(X,U∗⊗U(−1)) = 1, the lefthandside in (3.10) is iso-
morphic to U [−2]. Thus we have H0(Φ0(Φ∗

0(U∗(−1)))) ∼= U∗(−1) and
H1(Φ0(Φ∗

0(U∗(−1)))) ∼= U . This finishes the proof. �

3.2. Lines and conics contained in X. In this section we review some
facts concerning the geometry of lines and conics contained in X. Along
the way (Proposition 3.11), we reprove here a result of Iliev, see [Ili03]. We
outline a different proof, since some of the arguments will be used further
on. This proof is valid for all smooth prime Fano threefolds of genus 9.

Lemma 3.7. Let C be any conic contained in X. Then we have:

h0(X,U ⊗OC) = 1, h1(X,U ⊗OC) = 0,(3.11)

homX(U , IC) = 1, extk
X(U , IC) = 0, for k 6= 1(3.12)

Proof. By Riemann-Roch we have χ(U∗⊗IC) = 1, and one can easily prove
Extk

X(U , IC) = 0, for k ≥ 2. So there is at least a nonzero global section s
of U∗ which vanishes on the curve C. Note that s lifts to a section s̃ of U∗
on Σ, and C is contained in the vanishing locus of s̃. This locus is a smooth
3-dimensional quadric Q ⊂ Σ.

It is easy to see that the restriction of U to Q splits as OQ ⊕ S , where
S is the spinor bundle on Q. It is well-known that S is a stable bundle on
Q with rk(S ) = 2 and c1(S ) = −HQ. Moreover, the bundle S is ACM on
Q. See for instance [Ott88].

The conic C is the complete intersection of two hyperplanes in Q, hence
we have the Koszul complex:

(3.13) 0 → OQ(−2HQ) → OQ(−HQ)2 → OQ → OC → 0.

Tensoring (3.13) by S , since S is stable and ACM on Q, we get
Hk(C,S ) = 0 for all k. This implies (3.11). Using (3.1), one easily gets
(3.12). �

Lemma 3.8. Let F be a sheaf in MX(2, 1, 6), and let α be any nonzero
element in HomX(U∗, F ). Then α gives the long exact sequence:

(3.14) 0 → OX
β−→ U∗ α−→ F → OC → 0,

for some conic C contained in X and β is a global section of U∗.

Proof. Let I be the image of a nonzero map α : U∗ → F . Recall by Lemma
3.1 that U is stable. Thus, by stability of F we get rk(kerα) = 1 and
c1(kerα) = 0. Since kerα is reflexive, it must be invertible and we get an
exact sequence of the form:

(3.15) 0 → OX → U∗ → I → 0.
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Note that I is easily proved to be stable. To get (3.14), observe that the
cokernel T of I ↪→ F satisfies c1(T ) = 0, c2(T ) = −2, c3(T ) = 0. Hence
T agrees with OC , for some conic C ⊂ X, as soon as it has no isolated
or embedded points. But from (3.15) we get H1(X, I(−1)) = 0 and, since
H0(X,F (−1)) = 0 by stability, it follows H0(X,T (−1)) = 0 which implies
our claim. �

Lemma 3.9. Let F be a sheaf in MX(2, 1, 6). Then we have:

homX(U∗, F ) = 2,

extk
X(U∗, F ) = 0, for all k ≥ 1.(3.16)

Proof. Let us prove (3.16). For k = 3, in view of Serre duality, the vanishing
of Ext3X(U∗, F ) is easily obtained by stability of U∗ and F .

For k = 2, recall by [BF07, Proposition 3.4] that F is a globally generated
vector bundle, and we have thus an exact sequence:

(3.17) 0 → K → O6
X → F → 0.

We can prove, as in the proof of [BF08a, Lemma 3.3], that K is a stable
vector bundle. This gives, since U∗ is ACM:

Ext2X(U∗, F ) ∼= Ext3X(U∗,K) ∼= HomX(K,U∗(−1))∗ = 0,

where the last vanishing takes place by stability.
Let us now consider the case k = 1. Observe that HomX(U∗, F ) 6= 0

since by Riemann-Roch we have χ(U∗, F ) = 2 and we have proved (3.16) for
k = 2. A nonzero map α : U∗ → F must give rise to (3.14) by Lemma 3.8.
Tensoring (3.14) by U , since U is an exceptional ACM bundle by Lemma
3.1, we obtain (3.16) for k = 1, by virtue of (3.11). �

Lemma 3.10. Let F be a sheaf in MX(2, 1, 6). Then we have
Extk

X(U , F ∗) = 0 for all k.

Proof. Recall that F is a globally generated ACM bundle. Clearly, we have
H0(F ∗⊗U) = 0. Now, dualize the exact sequence (3.17), and tensor it by
U . Note that µ(K∗⊗U) = −1/12, so H0(X,K∗⊗U) = H1(X,F ∗⊗U) = 0
by stability. Similarly, we obtain H3(X,F ∗⊗U) = 0. By Riemann-Roch we
compute χ(F ∗⊗U) = 0, so the group H2(X,F ∗⊗U) vanishes too, and our
statement is proved. �

The following result was already proved by Iliev, [Ili03].

Proposition 3.11 (Iliev). Let X be a smooth prime Fano threefold of genus
9. Then the sheaf V = q∗(p∗(U)⊗E ) is a rank 2 vector bundle on Γ with
deg(V) = 1, and we have a natural isomorphism:

(3.18) V∗ ∼= Φ∗(U∗).

The Hilbert scheme H 0
2 (X) is isomorphic to the projective bundle P(V)

over the curve Γ.

Proof. In view of Lemma 3.9, we have Rkq∗(p∗(U)⊗E ) = 0, for k ≥ 1, and
V is a locally free sheaf on Γ of rank h0(X,U ⊗Ey) = 2.
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By an instance of Grothendieck duality, see [Har66, Chapter III], given a
sheaf P on X × Γ, we have:
(3.19) RHomΓ(Rq∗(P),OΓ) ∼= Rq∗(OX(−1)⊗RHomX×Γ(P,OX×Γ))[3],

and the isomorphism is functorial. Setting P = p∗(U)⊗E in (3.19), we
get (3.18).

Consider now an element ξ of the projective bundle P(V). It is uniquely
represented by a pair ([α], y), where y is a point of Γ, and [α] is an element
of P(H0(X,U ⊗Ey)). By Lemma 3.8, the morphism α gives (3.14). Applying
the functor H omX(−,OX) to (3.14), one can easily write down the exact
sequence:

(3.20) 0 → E ∗
y

α>−−→ U β>−−→ IC → 0.

Given two elements ξ1 = ([α1], y1) and ξ2 = ([α2], y2) we have thus two
ideal sheaves IC1 and IC2 . We want to show that if we have IC1

∼= IC2 ,
then ξ1 = ξ2. Note that an isomorphism γ : IC1 → IC2 lifts to a nontrivial
map γ̃ : U → U as soon as:

(3.21) Ext1X(U ,E ∗
y2

) = 0,

which in turn is given by Lemma 3.10. Thus, by the simplicity of U , the
map γ̃ must be a multiple of the identity, and we have an isomorphism
γ̂ : Ey1 → Ey2 with γ̃ ◦ α1 = α2 ◦ γ̂.

Summing up, we have an injective map ϑ : P(V) ↪→ H 0
2 (X). Since the

variety P(V) is a projective surface and H 0
2 (X) is an irreducible surface, we

conclude that ϑ is surjective.
To prove that ϑ is a local isomorphism, we show that the tangent space

Ext1X(IC , IC) is naturally identified with the tangent space to Tξ(P(V)) to
P(V) at the point ξ = ϑ−1([C]). Applying HomX(−, IC) to (3.20), we obtain
for each k an isomorphism:

Extk+1
X (IC , IC) ∼= Extk

X(E ∗
y , IC).

Therefore, tensoring now (3.20) by Ey and taking global sections we get
Ext1X(IC , IC) = 0. We also obtain the top row in the following commutative
exact diagram:

(3.22) 0 // H0(X, E ∗
y ⊗ Ey) //

��

H0(X,U ⊗ Ey) //

��

Ext1X(IC , IC) //

��

H1(X, E ∗
y ⊗ Ey) //

��

0

0 // OΓ,y
// Vy // Tξ(P(V)) //// Ty(Γ) // 0.

Here the bottom row is the natural exact sequence of the tangent spaces
for the P1-bundle P(V ) → Γ, and the first, second and fourth vertical maps
are clearly isomorphisms. Hence we have Ext1X(IC , IC) ∼= Tξ(P(V)) and we
are done. �

Lemma 3.12. We have a natural isomorphism Φ!(U(1))[−1] ∼= Φ∗(U∗). In
particular, we get det(V∗) ∼= ωΓ(−N), where c1(E ) = HX +N .

Proof. By Grothendieck duality (3.19), we get a natural isomorphism:

V ∼= Φ∗(U∗)∗ ∼= Φ!(U(1))⊗ω∗Γ(N)[−1],

and since V has rank 2, the second statement thus follows from the first one.
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In view of Proposition 3.11, the rank 2 bundle Φ∗(U∗) is stable. Thus we
only need to show that there is a nonzero morphism from Φ!(U(1))[−1] to
Φ∗(U∗). Thus we compute:

HomΓ(Φ!(U(1))[−1],Φ∗(U∗)) ∼= HomX(U(1),Φ(Φ∗(U∗))[1]) ∼=
∼= HomX(U(1),U(1)),

where the last isomorphism follows from Lemma 3.6. This concludes the
proof. �

Remark 3.13. In view of the previous results, we can identify V with
a twist of the stable rank 2 bundle of degree 3 defined by Iliev in [Ili03,
Section 5]. Let KΓ = c1(ωΓ) and recall that by Mukai’s theorem ([Muk01])
X is isomorphic to the type II Brill-Noether locus:

MΓ(2,KΓ, 3V) = {F ∈ MΓ(2, c1(V) +KΓ) |h0(Γ,F ⊗V∗) ≥ 3}.
Therefore, the bundle E is universal also for the moduli space X ∼=

MΓ(2,KΓ, 3V).

Lemma 3.14. Let L be a line contained in X. Then we have a functorial
exact sequence:

(3.23) 0 → OX → AL⊗U∗
ζL−→ Φ(Φ!(OL(−1))) → OL(−1) → 0,

where AL = H1(L,U∗(−2)) has dimension 2. Moreover, the map

ψ : L 7→ Φ!(OL(−1))

gives an isomorphism of the Hilbert scheme H 0
1 (X) onto a component W

of the locus:

(3.24) {L ∈ Pic2(Γ) |h0(Γ,V ⊗L) ≥ 2}.

Proof. Recall that, for each y ∈ Γ, the sheaf Ey is a globally generated
bundle with c1(Ey) = 1. Thus, it splits over L as OL ⊕ OL(1). It follows
that Φ!(OL(−1)) is a sheaf concentrated in degree 0, and its rank equals
h0(L,E ∗

y ) = 1. Its degree is computed by Grothendieck-Riemann-Roch for-
mula.

To get (3.23), we use (3.7) and (3.8). We have thus to compute the
cohomology groups:

Extk
X(OL(−1),OX),(3.25)

Extk
X(OL(−1),U),(3.26)

and note that U∗ splits over L as O2
L ⊕ OL(1). So, using Serre du-

ality, we see that both (3.25) and (3.26) vanish for k 6= 2, while for
k = 2 (3.25) has dimension 1 and (3.26) has dimension 2. Setting
AL = H1(L,U∗(−2)) ∼= Ext2X(OL(−1),U)∗, we obtain the functorial res-
olution (3.23) and dim(AL) = 2.

Set L = Φ!(OL(−1)), and recall the isomorphism (3.18). Applying the
functor HomX(U∗,−) to the long exact sequence (3.23), since U is excep-
tional, and both HomX(U∗,OX) and HomX(U∗,OL(−1)) vanish, we get a
natural isomorphism:

HomΓ(V∗,L) ∼= HomX(U∗,Φ(L)) ∼= AL.
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Therefore, the line bundle L lies in the locus defined by (3.24), and actu-
ally we have h0(Γ,V ⊗L) = 2. Moreover, up to multiplication by a nonzero
scalar, the morphism ζL coincides with the natural evaluation of maps from
U∗ to Φ(L). Thus, the mapping L 7→ Φ!(OL(−1)) is injective, since OL(−1)
can be recovered as cok(ζL).

Now we shall identify the tangent space of H 0
1 (X) at the point [L] with

that of the component W , at the point [L]. Note that the morphism Φ∗(ζL)
must agree with the natural evaluation

(3.27) AL⊗V∗ → L

of maps from V∗ to L. Remark also that the tangent space to W at the
point [L] is computed as the kernel of the map obtained applying the functor
Ext1Γ(−,L) to (3.27).

Applying the functor HomX(−,OL(−1)) to (3.23), and using the obvious
vanishing Hk(L,OX(−1)) = 0 for all k, we obtain a commutative exact
diagram:

(3.28) Ext1X(Φ(L),OL(−1))
Ext1(ζL,OL(−1))

//

∼=
��

A∗L⊗Ext1X(U∗,OL(−1))

∼=
��

Ext1Γ(L,L)
Ext1(ev,L)

// A∗L⊗Ext1Γ(V∗,L).

Here, the kernel (respectively, the cokernel) of Ext1(ζL,OL(−1)) is nat-
urally identified with the tangent space T[L]H

0
1 (X) ∼= Ext1X(OL,OL), (re-

spectively, with the obstruction space Ext2X(OL,OL)). Thus, the diagram
(3.28) allows to identify the tangent space (and the obstruction space) of
H 0

1 (X) at [L] with those of W at L. �

Remark 3.15. Let L be a line contained in X and set L = Φ!(OL(−1)).
Note that the normal sheaf NW at the point [L] to the subscheme W
of Pic2(Γ) is naturally identified with A∗L⊗Ext1Γ(V∗,L), where AL is
canonically isomorphic to HomΓ(V∗,L). Since dim(AL) = 2 and since
ext1Γ(V∗,L) = h1(L,U∗(−1)) = 1, the sheaf NW is in fact locally free of
rank 2, and its fibre over [L] can be identified (up to twist by a line bundle
on W ) with A∗L.

Remark 3.16. It is well-known that, if X is general, then the scheme
H 0

1 (X) is a smooth irreducible curve, and hence so is W .

Lemma 3.17. Let L be a line contained in X. Then we have a natural
isomorphism:

(3.29) HomX(U , IL) ∼= A∗L.

The set SL of surjective morphisms γ : U → IL is open and dense in
P(AL). The subscheme P(AL) \ SL is in natural bijection with the length
5 scheme of reducible conics D ⊂ X which contain L. For a map γ with
[γ] ∈ P(AL) \ SL, we have Im(γ) = ID.
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Proof. To get the first statement, we use (3.1) and we obtain the following
natural isomorphisms:

HomX(U , IL) ∼= H0(X, IL⊗U∗) ∼= H1(X, IL⊗U) ∼=
∼= H0(L,U) ∼= H1(L,U∗(−2))∗ = A∗L.

Let now γ be a map in HomX(U , IL). By stability, Im(γ) must be a
subsheaf of IL with trivial determinant. Thus ker(γ) is a reflexive sheaf of
rank 2 with c1 = −1, hence c3(ker(γ)) ≥ 0. It is easy to see that ker(γ)
is stable, so c2(ker(γ)) ≥ 6. On the other hand, we have c2(ker(γ)) =
8 − c2(Im(γ)) ≤ 7, so c2(ker(γ)) equals 6 or 7. If c2(ker(γ)) = 7 implies
c3(Im(γ)) ≤ −1 so γ is surjective. Then we can assume c2(ker(γ)) = 6 and,
by [BF07, Proposition 3.4], we have that ker(γ) is a locally free sheaf, so
c3(ker(γ)) = 0. This gives c3(Im(γ)) = 0, so Im(γ) ∼= ID, for some conic D.
This proves the last statement.

Given two non proportional maps γ1, γ2 in HomX(U , IL), assuming that
neither is surjective, we get Im(γ1) 6∼= Im(γ2) in view of the vanishing (3.21).
Therefore, up to a nonzero scalar, each non surjective map γ determines
uniquely a conic D ⊃ L. The converse is obvious, so it only remains to
check that the subscheme of these maps has length 5. This is true if L
is general, see [Isk78], so we only need to check that the length is always
finite. But P(AL) contains no infinite proper subschemes, so all elements γ
of Hom(U , IL) should give Im(γ) = ID, so hom(U , ID) = 2, contradicting
Lemma 3.7. �

Lemma 3.18. Let L be a line contained in X. Then Φ!(OL)[−1] is a line
bundle of degree 1 on Γ.

Proof. Recall that, for each y ∈ Γ, the sheaf Ey is a globally generated bundle
with c1(Ey) = 1. Thus, it splits over L as OL⊕OL(1). It follows that Φ!(OL)
is a sheaf concentrated in degree −1, and its rank equals h0(L,E ∗

y ) = 1. Its
degree is computed by Grothendieck-Riemann-Roch. �

4. Stable sheaves of rank 2 with odd determinant

Recall from [BF07] that, for each c2 ≥ 7, there exists a component M(c2)
of MX(2, 1, c2) containing a locally free sheaf F which satisfies:

H1(X,F (−1)) = 0.(4.1)

Ext2X(F, F ) = 0,(4.2)

and the extra assumption H0(X,F ⊗OL(−1)) = 0, for some line L ⊂ X hav-
ing normal bundle OL⊕OL(−1). For c2 = 6, we have M(6) = MX(2, 1, 6) ∼=
Γ. For c2 ≥ 7, M(c2) is defined recursively as the unique component of
MX(2, 1, c2) which contains a sheaf F fitting into:

(4.3) 0 → F → G→ OL → 0,

where G is a general sheaf lying in M(c2 − 1). Here we are going to prove
the following main result.
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Theorem 4.1. For any integer c2 ≥ 7, there is a birational map ϕ, generi-
cally defined by F 7→ Φ!(F ), from M(c2) to a generically smooth (2c2 − 11)-
dimensional component B(c2) of the locus:

(4.4) {F ∈ MΓ(c2 − 6, c2 − 5) |h0(Γ,V ⊗F) ≥ c2 − 6}.

We begin with a series of lemmas.

Lemma 4.2. Let c2 ≥ 7, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then Φ!(F ) is a vector bundle on Γ, of rank c2− 6 and degree c2− 5.

Proof. Using stability of F and Riemann-Roch’s formula we get:

(4.5) Hk(X,F (−1)) = 0, for all k.

By the definition (3.4) of Φ!, the stalk of Hk(Φ!(F )) over the point y ∈ Γ
is given by:

(4.6) Hk+1(X,E ∗
y ⊗F )⊗ωΓ,y.

Let us check that (4.6) vanishes for all y ∈ Γ and for k 6= 0. For k = −1,
the statement is clear. Indeed, by stability, any nonzero morphism Ey → F
would be an isomorphism for Ey is locally free. But c2(Ey) 6= c2(F ).

To check the case k = 1, by Serre duality we can show Ext1X(F,Ey) = 0.
Setting E = Ey in (3.17), and applying HomX(F,−), in view of (4.5) we get:

Ext1k(F,E
∗
y ) = HomX(F,K∗) = 0,

where the last equality holds by stability. Finally, (4.6) holds for k = 2
again by stability.

We have thus proved that Φ!(F ) is a vector bundle on Γ. By Riemann-
Roch we compute its rank as rk(Φ!(F )) = χ(F ⊗Ey) = c2 − 6. Using
Grothendieck-Riemann-Roch’s formula, one can easily compute the degree
of Φ!(F ). �

Lemma 4.3. Let d ≥ 7, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then we have a functorial resolution of the form:

(4.7) 0 → AF ⊗U∗
ζF−→ Φ(Φ!(F )) → F → 0,

where AF = Ext2X(F,U)∗ has dimension c2 − 6.

Proof. To write down (4.7), we use the exact triangle (3.7). We must cal-
culate the groups Extk

X(F,OX) and Extk
X(F,U) for all k. We have proved

that the former vanishes for all k, see (4.5).
If k = 0, 3, we easily get Extk

X(F,U+) = 0 by stability of the sheaves U+

and F . Applying the functor HomX(F,−) to (3.1) we get Ext1X(F,U) ∼=
HomX(F,U∗) = 0, where the vanishing follows from the stability of F and
U . By Riemann-Roch we get ext2X(F,U) = c2 − 6. �

Lemma 4.4. Let c2 ≥ 8, and let F be a sheaf in MX(2, 1, c2), satisfying
(4.1). Then we a natural isomorphism:

AF
∼= HomX(U∗,Φ(Φ!(F ))),(4.8)

Ext1X(U∗, F ) ∼= Ext1X(U∗,Φ(Φ!(F ))).(4.9)

In particular, the natural map ζF in (4.7) is uniquely determined up to a
nonzero scalar.
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Proof. In view of Lemma 4.3, we have the resolution (4.7). We apply to it
the functor HomX(U∗,−), and we recall that U∗ is exceptional. In fact, we
are going to show:

(4.10) Extk
X(U∗, F ) = 0, for k = 0, 2, 3,

where the case k = 0 proves the lemma. By contradiction, we consider
a nonzero map γ : U∗ → F . By the argument of Lemma 3.8 we have
ker(γ) ∼= OX , so c2(Im(γ)) = 8, which is impossible for c2(F ) ≥ 9. For
c2(F ) = 8, note that c3(Im(γ)) = 2 gives c2(cok(γ)) = 0, c3(cok(γ)) = −2
which is also impossible. �

Note that it is now immediate to show (4.10) also for k = 2, 3. Indeed,
for k ≥ 2, we have:

Extk
X(U∗, F ) ∼= Extk

X(U∗,Φ(Φ!(F ))) ∼= Extk
Γ(Φ∗(U∗),Φ!(F )) = 0,

since Φ∗(U∗) and Φ!(F ) are sheaves on a curve.

Lemma 4.5. Let F be a sheaf in MX(2, 1, c2) satisfying (4.1), and set F =
Φ!(F ). Then F satisfies h0(Γ,V ⊗F) = c2−6. Further, if F satisfies (4.2),
then the natural map:

(4.11) H0(Γ,V ⊗F)⊗H0(Γ,V∗⊗F ⊗ωΓ) → H0(Γ,F∗⊗F ⊗ωΓ)

is injective.

Proof. Recall the notation AF = Ext2X(F,U)∗. Note that, by (4.8), (4.9)
and (3.18) we have natural isomorphisms:

AF
∼= HomΓ(V∗,F),

Ext1X(U∗, F ) ∼= Ext1Γ(V∗,F),

and we have seen that AF has dimension c2 − 6.
We have thus proved the first claim, and the map Φ∗(ζF ) must agree up

to a nonzero scalar with the natural evaluation:

(4.12) ev : HomΓ(V∗,F)⊗V∗ → F .

We have thus a commutative exact diagram:

(4.13) Ext1X(Φ(F), F )
Ext1X(ζL,F )

//

∼=
��

A∗F ⊗Ext1X(U∗, F )

∼=
��

Ext1Γ(F ,F)
Ext1Γ(ev,F)

// A∗F ⊗Ext1Γ(V∗,F).

Therefore, we have the natural isomorphisms:

Ext1X(F, F ) ∼= ker(Ext1X(ζL, F )) ∼= ker(Ext1Γ(ev,F)),

Ext2X(F, F ) ∼= cok(Ext1S(ζL, F )) ∼= cok(Ext1Γ(ev,F)).

Thus the map Ext1Γ(ev,F) is surjective as soon as F satisfies (4.2). This
implies our claim, since the map (4.11) is the transpose of Ext1Γ(ev,F). �

We are now in position to prove the main result of this section.
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Proof of Theorem 4.1. Recall that the variety M(c2) contains a vector bun-
dle F satisfying (4.1), hence by semicontinuity Lemma 4.2 applies to an open
dense subset of M(c2). Thus, for any sheaf F in this open set, F = Φ!(F )
is a vector bundle on Γ of rank c2 − 6 and degree c2 − 5, and it satisfies
h0(Γ,V ⊗F) = c2 − 6 by by Lemma 4.5.

Let us now prove that, if F is general in M(c2), then the vector bundle
Φ!(F ) is stable over Γ. In fact we prove that, if F is a sheaf fitting into
(4.3), and G is general in M(c2− 1), then F = Φ!(F ) is stable over Γ. Since
stability is an open property by [Mar76], this will imply that Φ!(F ) is stable
for F general in M(c2). By induction, we may assume that Φ!(G) is a stable
vector bundle, of rank c2 − 7 and degree c2 − 6.

Applying Φ! to (4.3), we get an exact sequence of bundles on Γ:

(4.14) 0 → Φ!(OL)[−1] → F → Φ!(G) → 0,

where Φ!(OL)[−1] is a line bundle of degree 1 by Lemma 3.18. Note that
this extension must be nonsplit, for it corresponds to a nontrivial element
in:

Ext1Γ(Φ!(G),Φ!(OL)[−1]) ∼= HomX(G,OL).
Assume by contradiction that F is not stable, so it contains a subsheaf

K with µ(K) ≥ µ(F) and rk(K) < rk(F). The sequence (4.14) induces an
exact sequence:

0 → K′ → K → K′′ → 0,
with K′′ ⊂ Φ!(G) and K′ ⊂ Φ!(OL[−1]). If K′ = 0, then µ(K) =
µ(K′′) < µ(Φ!(G)) for Φ!(G) is stable and (4.14) is nonsplit. But since
µ(Φ!(G))−µ(F) = 1

(c2−5)(c2−6) , we have that µ(K) cannot fit in the interval
[µ(F), µ(Φ!(G))[. If rk(K′) = 1, one can easily apply a similar argument.

We have thus proved that an open dense subset of M(c2) maps into the lo-
cus defined by (4.4). This locus is equipped with a natural structure of a sub-
variety of the moduli space MΓ(c2−6, c2−5). Its tangent space at the point
[F ] is thus ker(Ext1Γ(ev,F)), while the obstruction sits in cok(Ext1Γ(ev,F)),
where ev is defined by (4.12). Notice that, by Lemma 4.5, the latter space
vanishes if F satisfies (4.2), so B(c2) is generically isomorphic to the (2d−11)-
dimensional variety M(c2). �

5. The moduli space MX(2, 1, 7) as a blowing up of Pic2(Γ)

In this section, we set up a more detailed study of the moduli space
MX(2, 1, 7). This space can be analyzed under no generality assumptions.
In fact, the map ϕ sends the space MX(2, 1, 7) to the abelian variety Pic2(Γ),
In turn, Pic2(Γ) contains a copy of the Hilbert scheme H 0

1 (X), via the map
ψ (see Lemma 3.14), as a subvariety of codimension 2. The relation between
these varieties is given by the main result of this section.

Theorem 5.1. The mapping ϕ : F 7→ Φ!(F ) gives an isomorphism of the
moduli space MX(2, 1, 7) to the blowing up of Pic2(Γ) along the subvari-
ety W = ψ(H 0

1 (X)). The exceptional divisor consists of the sheaves in
MX(2, 1, 7) which are not globally generated.

We will need some lemmas.
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Lemma 5.2. Let F be a sheaf in MX(2, 1, 7). Then, we have:

(5.1) Hk(X,F (−1)) = Hk(X,F ) = 0, for k = 1, 2.

Moreover, either F is a locally free, or there exists an exact sequence:

(5.2) 0 → F → E → OL → 0,

where E is a bundle in MX(2, 1, 6) and L is a line contained in Y .
Furthermore, the following statements are equivalent:
i) the sheaf F is not globally generated;
ii) the group HomX(U∗, F ) is nontrivial;
iii) there exists a line L ⊂ X, a sheaf I in MX(2, 1, 8, 2) and two exact

sequence:

0 → OX → U∗ → I → 0,(5.3)

0 → I → F → OL(−1) → 0.(5.4)

Proof. The first two statements are taken from [BF07, Proposition 3.5].
Clearly condition (iii) implies both conditions (ii) and (i).

Let us prove (ii) ⇒ (iii). Consider a nonzero map γ : U∗ → F . The
argument of Lemma 3.8 implies ker γ ∼= OX and the cokernel T of γ has
c1(T ) = 0, c2(T ) = −1, c3(T ) = −1, so T ∼= OL(−1), for some line L ⊂ X, if
T is supported on a Cohen-Macaulay curve. On the other hand, from (5.3)
we get H1(X, I(−1)) = 0, so by H0(X,F (−1)) = 0, we have H0(X,T (−1)) =
0, and we are done.

It remains to show (i) ⇒ (iii).
(i) ⇒ (5.4): Assume that F is not globally generated, that is the

evaluation map ev : H0(X,F )⊗OX → F is not surjective. Set
K = ker(ev), I = Im(ev) and T = cok(ev). Now it is enough to
prove the following facts:

c2(T ) = −1, c3(T ) = −1,(5.5)

the sheaf T has no isolated or embedded points.(5.6)

The stability of F easily implies rk(I) = 2 and c1(I) = 1. Since T is
a torsion sheaf with c1(T ) = 0, we have c2(T ) = −` ≤ 0. Looking at
the sheaf K, we see that it is reflexive of rank 3 with:

c1(K) = −1, c2(K) = 9− `, c3(K) = c3(T )− 2 + `.

Thus, we are now reduced to prove c3(K) = −2 and ` = 1. By
Riemann-Roch, we compute χ(K) = 1

2c3(K) + 1. By definition of
the evaluation map ev, taking global sections of the composition:

H0(X,F )⊗ OX � I ↪→ F,

we obtain an isomorphism. This implies:

H0(X,K) = H1(X,K) = 0,(5.7)

H0(X,T ) ∼= H1(X, I) ∼= H2(X,K),(5.8)

and one can easily see H3(X,K) = 0.
We postpone the proof of the following claim, and we assume it

for the time being.
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Claim 5.3. We have c2(K) ∈ {8, 9} and H2(X,K) = 0.

Note that the second statement of the above claim proves that
Hk(X,K) = 0 for all k. Hence we have χ(K) = 0, which implies
c3(K) = −2. Then, by the first statement of Claim 5.3, we obtain
` = 1, for otherwise T would be zero. This proves (5.5). Note that
(5.6) follows from the vanishing of (5.8). This finishes the proof.

(i) ⇒ (5.3): Note that χ(U∗,K) = −1. Since Ext3X(U∗,K) = 0 by
stability, we get Ext1X(U∗,K) 6= 0. Applying the functor Hom(U∗,−)
to the sequence:

0 → K → H0(X,F )⊗ OX → I → 0,

one easily obtains that the group HomX(U∗, I) ∼= Ext1X(U∗,K) con-
tains a nontrivial morphism α. Composing α with the injection of I
in F , we see that α is in fact surjective, so we get (5.3).

�

Proof of Claim 5.3. We observe that the restriction of K to a general hy-
perplane section S is stable, using Hoppe’s criterion. Indeed, we have
H0(S,K) = 0 by (5.7), while the group H0(S,∧2K) vanishes since it is
a subgroup of H0(S,K) ⊗ H0(S, F ) = 0. Then from (2.2) it follows that
c2(K) ≥ 8. This proves the first assertion.

Let us now show the second one. Tensoring (3.2) by K(1), we are reduced
to show the vanishing of the groups H2(X,K(1)) and H1(S,K(1)).

Looking at the first one, assume by contradiction that there exists a non-
trivial extension of the form:

0 → OX(−1) → K̃ → K(1) → 0,

where K̃ is a rank 4 vector bundle with c1(K̃) = 1 and c2(K̃) < 0. Then
K̃ is not semistable by Bogomolov’s inequality (2.1). By considering the
possible values of the slope of a destabilizing subsheaf of K̃, one sees that
Harder-Narasimhan filtration has the form 0 ⊂ K1 ⊂ K̃ and Q = K̃/K1 is
semistable, and µ(K1) can be either 1

2 or 1
3 . Then by Bogomolov’s inequality

we have c2(K1) ≥ 0. In any case c1(Q) = 0, so c2(Q) ≥ 0. This contradicts
c2(K̃) < 0.

Let us now turn to the group H1(S,K(1)), and observe that it is dual
to Ext1S(KS(1),OS). Assuming it to be nontrivial, we get a nonsplit exact
sequence on S of the form:

(5.9) 0 → OS → K̃S → KS(1) → 0,

where K̃S is a rank 4 vector bundle on S with c1(K̃S) = 2 and c2(K̃S) ≤ 25.
Then K̃S is not stable by (2.2). This time one can check that the only
possible destabilizing subsheaf K1 must have slope 1

2 . The same happens to
Q = K̃S/K1. By semistability of K1 and Q one has

c2(K̃S) = c2(K1) + c2(Q) + 16 ≥ 28,

a contradiction. �

The following lemma is now straightforward.
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Lemma 5.4. The map ϕ : F → Φ!(F ) sends MX(2, 1, 7) to Pic2(Γ). If the
sheaf F is globally generated, then ϕ is a local isomorphism around F .

Proof. Set F = Φ!(F ). In view of (5.1) and Lemma 4.2, the map ϕ takes
values in Pic2(Γ). Assume now F globally generated. By Lemma 5.2 we
have HomX(U∗, F ) = 0, so by applying the functor HomX(U∗,−) to the
resolution (4.7) we get (4.8), from which it follows that ϕ is injective at F .

Recall that Extk
X(U∗, F ) = 0 for k = 2, 3, and by Riemann-Roch we have

χ(U∗, F ) = 0. Thus we must also have:

Ext1X(U∗, F ) = 0,

and, by the infinitesimal analysis of Lemma 4.5, the differential of ϕ at [F ]
induces an isomorphism:

Ext1X(F, F ) ∼= Ext1X(Φ(F), F ) ∼= Ext1Γ(F ,F) ∼= H1(Γ,OΓ).

�

Recall that we denote by AL the 2 dimensional vector space
HomX(U , IL)∗.

Lemma 5.5. Let L be a line contained in X. Then there is a natural
injective map θ : P(AL) 7→ MX(2, 1, 7) such that any sheaf F in the image
of θ sits into (5.4), for some sheaf I sitting in (5.3).

Proof. Let us define the map θ : P(AL) → MX(2, 1, 7). In view of lemma
3.17, for any element [γ] ∈ P(AL), we have two alternatives:

i) the map γ is surjective;
ii) the image of the map γ is isomorphic to IC , for some reducible conic

C ⊂ X which is the union of L and another line L′ ⊂ X.
If (i) takes place, we define θ([γ]) as the dual of ker(γ). Note that this

correspondence is one to one. Indeed, assuming θ([γ1]) = θ([γ2]), we would
have G1 = ker(γ1) ∼= G2 = ker(γ2). But the isomorphism G1

∼= G2 would
then lift to an isomorphism U → U , for Ext1X(IL,U) = 0. Since both U and
IL are simple, this would then mean that γ1 is a multiple of γ2.

Assume now that (ii) takes place. We have thus an exact sequence of the
form (3.20), with β> = γ. Since C contains L, we have:

(5.10) 0 → OL(−1) → OC → OL′ → 0,

for some line L′ ⊂ X. Dualizing (3.20) one obtains (3.14). We define thus a
surjective map as the composition ker(γ)∗ � OC � OL′ , and we let θ([γ])
be the kernel of this map.

To prove that θ is injective also in this case, observe that the map γ is
determined up to a nonzero scalar by ker(γ) and by L′, since Ext1X(IC ,U) =
0. On the other hand, there is a unique (up to a scalar) surjection ker(γ)∗ →
OL′ , so θ is injective.

Finally, it is clear by the definition that in both cases (i) and (ii), the
sheaf defined by θ([γ]) sits into (5.4). �

Lemma 5.6. Let G be a sheaf in MX(2, 1, 7), and assume that G is not
globally generated. Then the set of sheaves F in MX(2, 1, 7) such that ϕ(F ) =
ϕ(G) is identified with θ(P(AL)), for some line L ⊂ X.
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The subscheme of those sheaves F which are not locally free, and satisfy
ϕ(F ) = ϕ(G), has length 5.

Proof. In view of Lemma 5.2, there exists a line L ⊂ X such that G is not
globally generated over L, i.e. we have the exact sequence (5.4), with F
replaced by G. Applying the functor Φ! to this exact sequence, we get:

(5.11) ϕ(G) = Φ!(G) ∼= Φ!(OL(−1)) = ψ([L]).

Since ϕ is a local isomorphism on the set of globally generated sheaves,
any sheaf F with ϕ(F ) = ϕ(G) must not be globally generated. Dualizing
(5.4) and (5.3) we obtain F ∗ ∼= I∗ and:

0 → F ∗ → U δ−→ OX → E xt1X(I,OX) → 0

0 → E xt1X(F,OX) → E xt1X(I,OX) → OL → 0.(5.12)

We have here the following two alternatives.
a) the sheaf F is locally free, and Im(δ) ∼= IL;
b) we have F/F ∗∗ ∼= OL′ for some line L′ ⊂ X, and by (5.2) this implies:

F ∗(1) ∈ MX(2, 1, 6), Im(δ) ∼= IC ,

for some reducible conic C ⊂ X, and (5.12) becomes of the form (5.10).
We let γ be the restriction of δ to its image IL. Clearly, if (a) takes place,

then F is isomorphic to θ([γ]), and γ is as in case (i) of Lemma 5.5.
Similarly, if (b) takes place, then γ is as in case (ii) of Lemma 5.5, and

F is isomorphic to θ([γ]). The set of sheaves F which are not locally free
and with ϕ(F ) = ϕ(G) is thus in natural bijection with the set of elements
[γ] in P(AL) such that γ is not surjective. By Lemma 3.17, this is identified
with the set of reducible conics which contain L, which has length 5. �

We are now in position to prove our main result.

Proof of Theorem 5.1. We have seen in Lemma 5.4 that ϕ is a local isomor-
phism along the open set of globally generated sheaves.

On the other hand, the map ϕ equips the subscheme of sheaves which
are not globally generated with a structure of P1 bundle over ψ(H 0

1 (X)).
Indeed, if a sheaf G is not globally generated, by (5.11), ϕ(G) lies in W .
Moreover by Lemmas 5.5 and 5.6, if ϕ(G) = ψ([L]), then ϕ(θ(P(AL))) =
ψ([L]).

Thus, it only remains to provide a natural identification of the fibre of
ϕ(G) with the projectivized normal bundle of ψ([L]) in Pic2(Γ). By Remark
3.15 and Lemma 3.14, the latter is functorially identified with P(AL). On
the other hand, by Lemmas 5.5 and 5.6, via the map θ the former is also
naturally identified with the projective line P(AL). This concludes the proof.

�
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