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Abstract. Given a smooth prime Fano threefold X of genus 7 we consider
its homologically projectively dual curve Γ and the natural integral functor

Φ! : Db(X) → Db(Γ).

We prove that, for d ≥ 6, Φ! gives a birational map from a component of
the moduli scheme MX(2, 1, d) of rank 2 stable sheaves on X with c1 = 1,

c2 = d to a generically smooth (2 d − 9)-dimensional component of the Brill-

Noether variety W 2 d−11
d−5,5 d−24 of stable vector bundles on Γ of rank d − 5 and

degree 5 d− 24 with at least 2 d− 10 sections.

This map turns out to be an isomorphism for d = 6, and the moduli space
MX(2, 1, 6) is fine. For general X, this moduli space is a smooth irreducible

threefold.

1. Introduction

Let X be a smooth complex projective variety of dimension 3, with Picard num-
ber one, and assume that the anticanonical divisor KX is ample. Then X is called
a Fano threefold, and one defines the index iX of X as the greatest integer i such
that −KX/i lies in Pic(X). We are interested in the Maruyama moduli scheme
MX(2, c1, c2) of semistable sheaves of rank 2 and Chern classes c1, c2, and with
c3 = 0, defined on a Fano threefold X.

The maximum value of iX is 4, and in this case X must be isomorphic to P3.
The study of the moduli space MP3(2, c1, c2) was pioneered by Barth in [Bar77], and
pursued later by several authors. Roughly speaking, the main questions concern
rationality, irreducibility and smoothness of these moduli spaces; many of them
are still open. Among the main tools to study the problem, we recall monads and
Beilinson’s theorem, see [BH78], [Bei78] and [OSS80].

The next case is iX = 3. Then X has to be isomorphic to a quadric hypersurface.
This case was considered by Ein and Sols ([ES84]) and later by Ottaviani and
Szurek, see [OS94].

In the case iX = 2, there are 5 deformation classes of Fano threefolds as it results
from Iskovskikh’s classification, see [IP99]. Perhaps the most studied among them
is the cubic hypersurface V3 in P4. The geometry of these threefolds is deeply linked
to the properties of the families of curves they contain. A cornerstone in this sense
is the paper [CG72] of Clemens and Griffiths on V3. For a survey of results about
moduli spaces of vector bundles on V3 we refer to [Bea02]. In particular we mention
[Dru00], [MT01] and [BMR94].

In the case iX = 1, we say that X is a prime Fano threefold. Then, one defines
the genus of X as the integer g = −K3

X/2 + 1. The genus satisfies 2 ≤ g ≤ 12,
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g 6= 11, and there are 10 deformation classes of prime Fano threefolds. Their bira-
tional geometry has been extensively studied as well, see [IP99]. The geometry of
the moduli spaces of rank 2 vector bundles on X has been more recently investi-
gated by several authors, for instance in the papers [IM00b] (for genus 3), [IM04a],
[IM07c] (for genus 7), [IM07], [IM00a] (for genus 8), [IR05] (for genus 9), [AF06]
(for genus 12). Among the main tools we mention the Abel-Jacobi map and Serre’s
correspondence between rank 2 vector bundles and curves contained in X.

The purpose of the present paper is to investigate the properties of the moduli
spaces of rank 2 bundles on a smooth prime Fano threefold X, making use of
homological methods. We first observe that (under a mild generality assumption
on X), given any integer d ≥ g/2 + 1, the moduli space MX(2, 1, d) contains a
generically smooth component M(d) of dimension 2 d− g − 2, such that its general
element F is a stable locally free sheaf with H1(X,F (−1)) = 0, see Theorem 3.12.

Then, we focus on genus 7, where an analogue of Beilinson’s theorem is provided
by the semiorthogonal decomposition of the bounded derived category Db(X) ob-
tained by Kuznetsov in [Kuz05]. We use this decomposition to study the component
M(d). More precisely, we consider the homologically projectively dual curve Γ in
the sense of [Kuz06], and the corresponding integral functor Φ! : Db(X) → Db(Γ).
Making use of the canonical resolution of a general element of M(d), we show that
Φ! gives a birational map ϕ from M(d) to a component of W 2 d−11

d−5,5 d−24 (Theorem
5.8), where we denote by W s

r,c the Brill-Noether variety of stable vector bundles on
Γ of rank r and degree c with at least s+ 1 independent global sections.

We prove that the map ϕ is in fact an isomorphism in the case d = 6. In partic-
ular the moduli space MX(2, 1, 6) is fine and isomorphic to a connected threefold
(Theorem 5.10, part A). If X is general enough, the moduli space MX(2, 1, 6) is
actually smooth and irreducible (5.10, part B). We also exhibit an involution of
MX(2, 1, 6) which interchanges the set of sheaves which are not globally generated
with the one of those which are not locally free. Finally we show that, if S is a
general hyperplane section surface, the space MX(2, 1, 6) embeds as a Lagrangian
subvariety of MS(2, 1, 6) with respect to the Mukai form, away from finitely many
double points (Theorem 5.18).

The paper is organized as follows. In Section 2 we review the geometry of Fano
threefolds X of genus 7 and the structure of their derived category. In Section 3
we construct (under mild generality assumptions) a generically smooth component
M(d) of MY (2, 1, d), over a smooth prime Fano threefold Y , and we recall some
basic facts concerning bundles with minimal c2. In Section 4, we prove that the
functor Φ! provides an isomorphism between the Hilbert scheme H 0

3 (X) and the
symmetric cube Γ(3), see Theorem 4.4). Section 5 contains our main results.

Acknowledgments. We are grateful to Kieran O’Grady for pointing out the paper
by Tyurin, and to Dimitri Markushevich for helping us in making more precise the
generality assumption in Theorem 5.10. We would like to thank the referee for
several helpful comments, in particular for suggesting Corollary 2.9 and a shorter
proof of Lemma 5.15.

2. Preliminaries

Let us introduce some basic material. The main notions we will need concern
moduli spaces of semistable sheaves, smooth Fano threefolds, Brill-Noether varieties
and a bit of homological algebra.

2.1. Notation and preliminary results. Given a smooth complex projective
n-dimensional polarized variety (X,HX) and a sheaf F on X, we write F (t) for
F ⊗OX(tHX). Given a subscheme Z of X, we write FZ for F ⊗OZ and we
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denote by IZ,X the ideal sheaf of Z in X, and by NZ,X its normal sheaf. We
will frequently drop the second subscript. Given a pair of sheaves (F,E) on X,
we will write extk

X(F,E) for the dimension of the group Extk
X(F,E), and simi-

larly hk(X,F ) = dim Hk(X,F ). The Euler characteristic of (F,E) is defined as
χ(F,E) =

∑
k(−1)k extk

X(F,E) and χ(F ) is defined as χ(OX , F ). We denote by
p(F, t) the Hilbert polynomial χ(F (t)) of the sheaf F . The dualizing sheaf of X is
denoted by ωX . We define also the natural evaluation:

eE,F : HomY (E,F )⊗E → F.

If X is a smooth projective subvariety of Pm, we say that X is ACM (for arith-
metically Cohen-Macaulay) if its coordinate ring is Cohen-Macaulay. A locally free
sheaf F on an ACM variety X of dimension n ≥ 1 is called ACM if it has no inter-
mediate cohomology, i.e. if Hk(X,F (t)) = 0 for all integer t and for any 0 < k < n.
This is equivalent to ⊕t∈Z H0(X,F (t)) being a Cohen-Macaulay module over the
coordinate ring of X.

2.1.1. Semistable sheaves and their moduli spaces. We refer to the book [HL97] for
a detailed account of all the notions introduced here. We recall that a torsion-free
coherent sheaf F on X is (Gieseker) semistable if for any coherent subsheaf E, with
0 < rk(E) < rk(F ), one has p(E, t)/ rk(E) ≤ p(F, t)/ rk(F ) for t� 0. The sheaf F
is called stable if the inequality above is always strict.

The slope of a sheaf F of positive rank is defined as µ(F ) = deg(c1(F ) ·
Hn−1

X )/ rk(F ), where c1(F ) is the first Chern class of F . We recall that a
torsion-free coherent sheaf F is µ-semistable if for any coherent subsheaf E, with
0 < rk(E) < rk(F ), one has µ(E) ≤ µ(F ). The sheaf F is called µ-stable if the
above inequality is always strict. We recall that the discriminant of a sheaf F is
∆(F ) = 2rc2(F ) − (r − 1)c1(F )2, where the k-th Chern class ck(F ) of F lies in
Hk,k(X). Bogomolov’s inequality, see for instance [HL97, Theorem 3.4.1], states
that if F is µ-semistable, then we have:

(2.1) ∆(F ) ·Hn−2
X ≥ 0.

Recall that by Maruyama’s theorem, see [Mar80], if dim(X) = n ≥ 2 and F is a
µ-semistable sheaf of rank r < n, then its restriction to a general hypersurface of
X is still µ-semistable.

We introduce here some notation concerning moduli spaces. We denote by
MX(r, c1, . . . , cn) the moduli space of S-equivalence classes of rank r torsion-free
semistable sheaves on X with Chern classes c1, . . . , cn. The Chern class ck will
be denoted by an integer as soon as Hk,k(X) has dimension 1. We will drop the
last values of the classes ck when they are zero. We denote by Ms

X(r, c1, . . . , cn)
the subset of stable sheaves of MX(r, c1, . . . , cn). The point of Ms

X(r, c1, . . . , cn)
represented by a sheaf F will be denoted by [F ] or sometimes simply by F .

We denote by H g
d (X) the union of components of the Hilbert scheme of closed

subschemes Z ofX with Hilbert polynomial p(OZ , t) = dt+1−g, containing integral
curves of degree d and arithmetic genus g.

We use the following terminology: any claim referring to a general element in
a given parameter space P , will mean that the claim holds for all elements of P ,
except possibly for those who lie in a union of Zariski closed subsets of P .

2.1.2. Homological algebra. As a basic tool, we will use the bounded derived cat-
egory of coherent sheaves. Namely, given a smooth complex projective variety X,
we will consider the derived category Db(X) of complexes of sheaves on X with
bounded coherent cohomology. For definitions and notation we refer to [GM96]
and [Wei94]. In particular we write [j] for the j-th shift to the right in the derived
category.
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Let Z be a local complete intersection subvariety of a smooth projective vari-
ety X. In view of the Fundamental Local Isomorphism (see [Har66, Proposition
III.7.2]), we have the natural isomorphisms:

E xtkX(OZ ,OZ) ∼= E xtk−1
X (IZ ,OZ) ∼=

k∧
NZ ,(2.2)

T orX
k (OZ ,OZ) ∼= T orX

k−1(IZ ,OZ) ∼=
k∧
N∗

Z .(2.3)

We will also use the following spectral sequences:

Ep,q
2 = Extp

X(H−q(a), A) =⇒ Extp+q
X (a,A),(2.4)

Ep,q
2 = Extp

X(B,Hq(b)) =⇒ Extp+q
X (B, b),(2.5)

Ep,q
2 = Hp(X,E xtqX(A,B)) =⇒ Extp+q

X (A,B).(2.6)

where a, b are complexes of sheaves on X, and A,B are sheaves on X. Recall that
the maps in the E2 term of these spectral sequences are differentials:

dp,q
2 : Ep,q

2 → Ep+2,q−1
2 .

2.1.3. Brill-Noether loci for vector bundles on a smooth projective curve. We recall
here some basic results in Brill-Noether theory, for definitions and notations we
refer for instance to [TiB91]. Let Γ be a smooth projective curve of genus g. The
Brill-Noether locus W s

r,c ⊂ Ms
Γ(r, c) is defined to be the subvariety consisting of

rank r stable bundles of degree c on Γ having at least s + 1 independent global
sections. The expected dimension of this variety is:

ρ(r, c, s) = r2(g − 1)− (s+ 1) (s+ 1− c+ r(g − 1)) + 1.

Consider a stable rank r vector bundle F on Γ, with deg(F) = c and h0(Γ,F) =
s+ 1. We define the Gieseker-Petri map as the natural linear application:

(2.7) πF : H0(Γ,F)⊗H0(Γ,F∗⊗ωΓ) → H0(Γ,F ⊗F∗⊗ωΓ).

The map πF is injective if and only if [F ] is a non-singular point of a component of
W s

r,d of dimension ρ(r, d, s). We will use more frequently in the sequel the transpose
of the Petri map which we write in the form:

(2.8) π>F : Ext1Γ(F ,F) → H0(Γ,F)∗⊗H1(Γ,F)

In fact the tangent space to W s
r,d at the point [F ] can be interpreted as the kernel

of π>F , while the space of obstructions at [F ] is identified with the cokernel of π>F .

2.1.4. Smooth prime Fano threefolds. Let now X be a smooth projective variety of
dimension 3. Recall that X is called Fano if its anticanonical divisor class −KX is
ample. A Fano threefoldX is said to be prime if its Picard group is generated by the
class of KX . These varieties are classified up to deformation, see for instance [IP99,
Chapter IV]. The number of deformation classes is 10, and they are characterized
by the genus, which is the integer g such that deg(X) = −K3

X = 2 g − 2. Recall
that the genus of a prime Fano threefold take values in {2, . . . , 10, 12}. If −KX is
very ample, we say that X is non-hyperelliptic. In this case we have g ≥ 3.

If X is a prime Fano threefold of genus g, the Hilbert scheme H 0
1 (X) of lines

contained in X is a scheme of dimension 1. It is known by [Isk78] that the normal
bundle of a line L ⊂ X splits either as OL ⊕ OL(−1) or as OL(1) ⊕ OL(−2). The
Hilbert scheme H 0

1 (X) contains a component which is non-reduced at any point
if and only if the normal bundle of a general line L in that component splits as
OL(1) ⊕ OL(−2). In this case, the threefold X is said to be exotic (see [Pro90]).
On the other hand, we say that X is ordinary if it contains a line L with normal
bundle OL ⊕OL(−1), equivalently if H 0

1 (X) has a generically smooth component.
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Recall that, if X is general enough, H 0
1 (X) is in fact a smooth irreducible curve

see [IP99, Theorem 4.2.7], and references therein.
Let us remark that a non-hyperelliptic prime Fano threefold X is exotic if and

only if it contains infinitely many non-reduced conics (see [BF08]). For g ≥ 9,
the results of [GLN06] and [Pro90] imply that X is non-exotic unless g = 12 and
X is the Mukai-Umemura threefold, see [MU83]. In fact, the only other known
examples of exotic prime Fano threefolds besides Mukai-Umemura’s case are those
containing a cone. For instance if X is the Fermat quartic threefold in P4 (g = 3),
then H 0

1 (X) is a curve with 40 irreducible components, each of multiplicity 2 (see
[Ten74]). We do not know if there exist exotic prime Fano threefolds of genus
7. In view of a result of Iliev-Markushevich (restated in Lemma 4.1 further on),
this amounts to ask whether there are non-tetragonal smooth curves Γ of genus 7
admitting infinitely many divisors L of type g1

5 such that KΓ − 2L is effective (see
Remark 4.2).

Remark that the cohomology groups Hk,k(X) of a prime Fano threefold X of
genus g are generated by the divisor class HX (for k = 1), the class LX of a line
contained in X (for k = 2), the class PX of a closed point of X (for k = 3). Hence
we will denote the Chern classes of a sheaf on X by the integral multiple of the
corresponding generator. Recall that H2

X = (2 g − 2)LX .
Applying the theorem of Riemann-Roch to a sheaf F on X, of (generic) rank r

and with Chern classes c1, c2, c3, we obtain the following formulas:

χ(F ) = r +
11 + g

6
c1 +

g − 1
2

c21 −
1
2
c2 +

g − 1
3

c31 −
1
2
c1 c2 +

1
2
c3,(2.9)

χ(F, F ) = r2 − 1
2
∆(F ),

and, in case r = 2 and g = 7, formula (2.9) becomes:

χ(F ) = 2 + 3 c1 + 3 c21 −
1
2
c2 + 2 c31 −

1
2
c1 c2 +

1
2
c3.(2.10)

Recall also that a smooth projective surface S is a K3 surface if it has trivial
canonical bundle and irregularity zero. Note that a general hyperplane section of a
smooth non-hyperelliptic prime Fano threefold of genus g is a K3 surface S whose
Picard group is generated by the restriction HS of HX to S, and whose (sectional)
genus equals g. We consider stability with respect to HS . Given a stable sheaf F
of rank r on a K3 surface S with Chern classes c1, c2, the dimension at [F ] of the
moduli space MS(r, c1, c2) is:

(2.11) ∆(F )− 2 (r2 − 1).

For this equality we refer for instance to [HL97, Part II, Chapter 6].

Remark 2.1. Assume that X is a smooth prime Fano threefold, and let L be a
line contained in X, with NL

∼= OL ⊕ OL(−1). Then we have:

ext1X(OL,OL) = 1, ext2X(OL,OL) = 0.

One can easily check this statement, using (2.2) and (2.6).

Remark 2.2. Let X be a smooth prime Fano threefold, and L a line contained in
X. Then by the well-known Hartshorne-Serre correspondence (for instance, by an
adaptation of [Har80, Theorem 4.1] to our setup) we can associate to L a rank 2
vector bundle FL, with c1(FL) = −1 and c2(FL) = 1 (see also [Mad02]). Moreover
we have the following exact sequence:

(2.12) 0 → OX → FL → IL(−1) → 0.
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2.2. Geometry of Fano threefolds of genus 7. We recall here the construction
of a Fano threefold of genus 7 as a section of the spinor 10-fold, outlined by Mukai
in [Muk88], [Muk89]. See also [Muk92], [Muk95a], [IM04a].

Let V be a 10-dimensional C-vector space, equipped with a non-degenerate qua-
dratic form. The algebraic group Spin(V ) corresponds to a Dynkin diagram of type
D5. It admits two 16-dimensional irreducible representations S+ and S−, called
the half-spin representations, having maximal weight respectively λ+ = λ4 and
λ− = λ5. These representations are naturally dual to each other.

The corresponding roots α+ = α4 and α− = α5 give rise to the Hermitian
symmetric spaces Σ+ and Σ−, defined by Σ± = Spin(10)/P(α±). These can be
seen as the components of the orthogonal Grassmann variety GQ(P4,P(V )) of 4-
dimensional isotropic linear subspaces P4 contained in the smooth quadric hyper-
surface Q in P9 = P(V ) corresponding to the quadratic form on V . We denote by
U± the restriction of the tautological subbundle on GQ(P4,P(V )) to Σ±. We have
thus the universal exact sequence:

(2.13) 0 → U± → V ⊗OΣ± → U∗± → 0.

The hyperplane divisors HΣ± provide natural equivariant embeddings of Σ± into
P(S±). Given a subvariety Y ⊂ Σ±, we denote by HY the restriction of HΣ± to Y .

Now choose a 9-dimensional vector subspace A of S+, and consider its (7-
dimensional) orthogonal space B = A⊥ ⊂ S− under the duality (S+)∗ ∼= S−.
We define:

X = Σ+ ∩ P(A) ⊂ P(S+),(2.14)

Γ = Σ− ∩ P(B) ⊂ P(S−).(2.15)

If the subspace A is general enough, then X is a smooth prime Fano threefold
of genus 7, and any such threefold is obtained in this way. In particular we have
KX = −HX , H3

X = 12. In turn, the curve Γ is a smooth canonical curve of genus
7, called the homologically projective dual curve of X. By [Muk95a, Table 1], we
know that the curve Γ is not trigonal nor tetragonal and W 2

1,6 is empty. Moreover,
a general curve of genus 7 is of this kind.

2.2.1. Semiorthogonal decomposition of the derived category of X. Here we briefly
sketch the construction due to Kuznetsov [Kuz05], of the semiorthogonal decom-
position of Db(X). We consider the product variety X × Γ, together with the two
projections p : X × Γ → X, q : X × Γ → Γ.

The symmetric form on V provides the following natural exact sequence on
X × Γ ⊂ Σ+ × Σ−:

(2.16) 0 → E ∗ → U− → U∗+
α−→ E → 0

(here U± denotes also the pull-back of U± to X×Γ). It turns out that E is a locally
free sheaf on X × Γ with the following invariants:

c1(E ) = HX +HΓ,(2.17)

c2(E ) =
7
12
HX HΓ + 5L+ η,(2.18)

where η sits in H3(X,C)⊗H1(Γ,C) and satisfies η2 = 14.
In view of the results of [Muk01], [Muk95b], [Kuz05] and [IM04a], the vector

bundle E is a universal object for moduli functors on X and Γ in the sense specified
as follows.
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Theorem 2.3 (Mukai, Iliev-Markushevich, Kuznetsov). Let A ⊂ S+ be chosen so
that X defined by (2.14) is a smooth threefold of Picard number 1, and define Γ
and E as in (2.15), (2.16). Then:

i) the curve Γ is isomorphic to MX(2, 1, 5),
ii) the manifold X is isomorphic to the Brill-Noether locus of stable bundles E on

Γ with rk(E) = 2, det(E) ∼= HΓ, h0(Γ, E) = 5,
iii) the bundle E universally represents both moduli problems (i) and (ii),
iv) for all y ∈ Γ, the sheaf Ey is a globally generated ACM vector bundle.

Given points x ∈ X, y ∈ Γ, and given a vector bundle F on X×Γ, we denote by
Fy (resp. Fx) the bundle over X (resp. over Γ) obtained restricting F to X×{y}
(resp. to {x} × Γ). We still denote by U+ (resp. U−) the restriction of U± to X
(resp. to Γ). The vector bundles U+ and U− have rank 5. We have c1(U−) = −2HΓ

and:

c1(U+) = −2, c2(U+) = 24, c3(U+) = −14.

We define the following exact functors:

Φ : Db(Γ) → Db(X), Φ(−) = Rp∗(q∗(−)⊗E ),(2.19)

Φ! : Db(X) → Db(Γ), Φ!(−) = Rq∗(p∗(−)⊗E ∗(HΓ))[1],(2.20)

Φ∗ : Db(X) → Db(Γ), Φ∗(−) = Rq∗(p∗(−)⊗E ∗(−HX))[3].(2.21)

We recall that Φ is fully faithful, Φ∗ is left adjoint to Φ, and Φ! is right adjoint
to Φ. The main result of [Kuz05] provides the following semiorthogonal decompo-
sition:

(2.22) Db(X) ∼= 〈OX ,U∗+,Φ(Db(Γ))〉.
This decomposition will be used to write a canonical resolution of a given sheaf

over X. In view of [Gor90], given a sheaf F over X, the decomposition (2.22)
provides a functorial exact triangle:

(2.23) Φ(Φ!(F )) → F → Ψ(Ψ∗(F )),

where Ψ is the inclusion of the subcategory 〈OX ,U∗+〉 in Db(X) and Ψ∗ is the left
adjoint functor to Ψ. The k-th term of the complex Ψ(Ψ∗(F )) can be written as
follows:

(2.24) (Ψ(Ψ∗(F )))k ∼= Ext−k
X (F,OX)∗⊗OX ⊕ Ext1−k

X (F,U+)∗⊗U∗+.

Remark 2.4. Given a sheaf F on X, one can describe more explicitly the map
F → Ψ(Ψ∗(F )). We do this here, in order to show that the complex Ψ(Ψ∗(F ))
is minimal, i.e. the only non-zero maps in the complex are from copies of OX to
copies of U∗+. In other words, for any k, the differential dk from the (k− 1)-st term
to the k-th term is strictly upper triangular.

We consider the productX×X and the projections q1 and q2 onto the two factors.
One has a natural map ε : U+�U+ → OX×X with cok(ε) ∼= O∆, obtained restricting
the standard resolution of the diagonal on the Grassmannian, see [Kap88]. We
denote by U the complex on X × X given as OX×X [3] → U∗+ � U∗+[3], where the
differential is the transpose of ε and OX×X sits in degree −3. So, there is a natural
map O∆(1) → U. Then, given a sheaf F on X, the complex Ψ(Ψ∗(F )) is given
by Rq2∗(q∗1(F (−1))⊗U), and the map F → Ψ(Ψ∗(F )) is induced by O∆(1) → U.
Finally, we recall the vanishing Extk

X(U∗+,OX) = Extk
X(OX ,U∗+) = 0 for any k > 0.

Having this in mind, one can easily prove the minimality statement, indeed
[Kap88, Lemma 1.6] applies, and we can use [AO89, Lemma 3.2] to deduce that
the differentials between the graded pieces of Rq2∗(q∗1(F (−1))⊗U∗+ �U∗+) are zero,
as well as differentials between the graded pieces of Rq2∗(q∗1(F (−1))).
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Remark 2.5. Given an object F of Db(X), we have an exact triangle:

F → Ψ(Ψ∗(F )) → Φ(Φ!(F ))[1],

so we may think of Φ(Φ!(F ))[1] as the right mutation functor R〈OX ,U∗+〉 with re-
spect to the subcategory 〈OX ,U∗+〉 of Db(X) see [Gor90]. Note that is in fact an
autoequivalence of ⊥〈OX ,U∗+〉.

2.2.2. Some lemmas on universal bundles. We close this section with some lemmas
regarding the image via the integral functors defined above of some natural sheaves
on X and Γ. These results will be needed further on. From the sequence (2.16) we
obtain:

0 → E ∗ → U− → G → 0,(2.25)

0 → G → U∗+ → E → 0,(2.26)

where G is a rank 3 vector bundle with c1(G ) = HX −HΓ.

Lemma 2.6. The vector bundles U+ and Gy, for any y ∈ Γ, are stable and ACM.
Moreover, we have H0(Γ,Gx) = 0 for any x ∈ X.

Proof. Let us prove first that H0(Γ,Gx) = 0 for any x ∈ X. Notice that Gx
∼=

∧2G ∗
x (−1), because Gx has rank 3 and c1(Gx) ∼= −HΓ. Let us dualize (2.25) and

restrict it to {x} × Γ. We obtain an inclusion:

∧2G ∗
x (−1) ↪→ ∧2U∗−(−1).

Then we have H0(Γ,Gx) ⊂ H0(Γ,∧2U∗−(−1)). So it suffices to show that the latter
space is 0. To prove this, one can tensor by ∧2U∗−(−1) the Koszul complex:

0 → ∧9A⊗OΣ−(−9) → · · · → A⊗OΣ−(−1) → OΣ− → OΓ → 0,

and the conclusion follows applying Bott’s theorem on Σ− to the homogeneous
vector bundles ∧2U∗−(−t), for t = 1, . . . , 10.

Let us now turn to U+. Consider the Koszul complex:

0 → ∧7B⊗OΣ+(−7) → · · · → B⊗OΣ+(−1) → OΣ+ → OX → 0,

and tensor it with U+. Applying Bott’s theorem on Σ+ we obtain that, for any t,
the homogeneous vector bundles U+(t) on Σ have natural cohomology and more
precisely we get:

Hk(Σ,U+(−t)) = 0, for

 all k and t = 0, . . . , 7,
k 6= 0 and t < 0,
k 6= 10 and t > 7.

Then it easily follows that U+ is an ACM bundle on X and

Hk(X,U+) = 0, for all k.

Applying the same argument to ∧2U+, we obtain the following:

Hk(X,∧2U+) = 0, for k 6= 1, and h1(X,∧2U+) = 1.

In particular, Serre duality implies:

(2.27) H0(X,∧4U+(1)) = 0, H0(X,∧3U+(1)) = 0.

By Hoppe’s criterion, see [AO94, Theorem 1.2] and [Hop84, Lemma 2.6], this proves
stability of U+.

Recall that the dual of an ACM vector bundle is also ACM. Therefore, the dual
bundles of U+ and Ey are ACM by (iv) of Theorem 2.3. This easily implies, by
(2.25) and (2.26), that the bundle Gy is ACM. To prove that Gy is stable, by Hoppe’s
criterion it is enough to show that the groups H0(X,G ∗

y ), H0(X,Gy(−1)) both
vanish. We consider the restriction to X×{y} of (2.26). Since U∗+(−1) ∼= ∧4U+(1),
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we obtain the latter vanishing by (2.27). Dualizing the same exact sequence and
using H1(X,E ∗

y ) = 0, we get the former. �

Lemma 2.7. Given an object F in Db(Γ) and an object F in Db(X) we have the
following functorial isomorphisms:

RH omX(Φ(F),OX) ∼= Φ(RH omΓ(F ,OΓ))⊗ OX(−1)[1],(2.28)

RH omΓ(Φ!(F ),OΓ) ∼= Φ!(RH omX(F,OX))⊗ ω∗Γ[1].(2.29)

Proof. By Grothendieck duality, (see [Har66, Chapter III], or [Con00]), given a
complex K on X × Γ, we have:

RH omX(Rp∗(K ), OX) ∼= Rp∗(ωΓ⊗RH omX×Γ(K , OX×Γ))[1],(2.30)

RH omΓ(Rq∗(K ), OΓ) ∼= Rq∗(ωX ⊗RH omX×Γ(K , OX×Γ))[3],(2.31)

and the isomorphisms are functorial. Recall that ωX
∼= OX(−1) and ωΓ

∼= OΓ(HΓ).
So by (2.17) we have E ∗⊗ωΓ

∼= E ⊗OX(−1). Then, setting K = q∗(F)⊗E
in (2.30), we get (2.28). Setting K = p∗(F )⊗E ∗⊗ωΓ[1] in (2.31), we obtain
(2.29). �

Lemma 2.8. The following relations hold on Γ, for each point y ∈ Γ:

Φ∗(OX) ∼= U−, Φ∗(U∗+) ∼= OΓ, Φ∗(Ey) ∼= Oy,(2.32)

Φ!(OX) = 0, Φ!(U∗+) = 0, Φ!(Ey) ∼= Oy,(2.33)

and on X:

H0(Φ(OΓ)) ∼= U∗+, H1(Φ(OΓ)) ∼= U+(1),(2.34)

Hk(Φ(OΓ)) = 0, for k 6= 0, 1,

Φ(Oy) ∼= Ey.(2.35)

Proof. The isomorphism (2.35) follows immediately from the definition of Φ. Since
the functor Φ is fully faithful we easily obtain also the relations Φ∗(Ey) ∼= Φ!(Ey) ∼=
Oy. It is clear that Φ!(OX) = Φ!(U∗+) = 0.

The isomorphism Φ∗(U∗+) ∼= OΓ is proved in [Kuz05, Lemma 5.6]. Twisting
(2.25) by OX×Γ(−HX) and taking Rq∗, we get Φ∗(OX) ∼= U−. Indeed, we have
Hk(X,Gy(−HX)) = 0 for any integer k, since the vanishing for k = 1, 2 follows from
the fact that Gy is ACM (by Lemma 2.6), and the vanishing for k = 0, 3 follows
from the fact that Gy is stable (again by Lemma 2.6).

Given x ∈ X, we restrict (2.26) to {x} × Γ and taking global sections we get
(U∗+)x ⊂ H0(Γ,Ex), by Lemma 2.6. Notice that dim(U∗+)x = 5 and by Brill-Noether
theory we know that the bundle Ex cannot have more than 5 sections, see [BF98].
Hence U∗+,x

∼= H0(Γ,Ex) for all x ∈ X. We obtain the isomorphism H0(Φ(OΓ)) ∼=
U∗+. By (2.28) we get:

H1(Φ(OΓ))∗ ∼= H0(Φ(OΓ))⊗OX(−1).

This gives the isomorphism H1(Φ(OΓ)) ∼= U+(1). �

The following corollary of Lemma 2.7 has been pointed out by the referee. We
set τ for the functor F 7→ RH omΓ(F , ωΓ) defined on Db(Γ).

Corollary 2.9. Set T for the functor F 7→ Φ(Φ!(RH omX(F,OX)))[1]. Then T
is an autoequivalence of ⊥〈OX ,U∗+〉. Moreover, we have Φ! ◦ T = τ ◦Φ!.

Proof. It is clear that the image of T is contained in the image Φ of the subcat-
egory ⊥〈OX ,U∗+〉. Moreover, we have T (F ) = 0, for any object F in 〈OX ,U∗+〉,
since T (OX) = T (U∗+) = 0. Using Lemmas 2.7 and 2.8. it is easy to show that
T (Ey) ∼= Ey[−1] for all y ∈ Γ. Note that ⊥〈OX ,U∗+〉 = Φ(Db(Γ)), and Φ(Oy) ∼= Ey.
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Therefore, the natural isomorphism T (Ey) ∼= Ey[−1] proves that T is an autoequiv-
alence of Φ(Db(Γ)).

To prove Φ! ◦ T = τ ◦Φ!, it suffices to use (2.29). �

3. Rank 2 stable sheaves on prime Fano threefolds

In this section we present some results concerning rank 2 stable sheaves F with
c1(F ) = 1 on a smooth non-hyperelliptic prime Fano threefold Y , with special
attention to the case g ≥ 6. We will first analyze the cases of minimal c2 (see the
next subsection) and then look for bundles with higher c2.

3.1. Rank 2 stable sheaves with c1 = 1 and minimal c2. We provide a lower
bound on c2(F ) for the existence of F , namely MY (2, 1, c2) is non-empty if and only
if c2(F ) ≥ mg = d g+2

2 e. Then we describe some properties of F in the cases c2 = mg

(see Proposition 3.5) and c2 = mg + 1 (see Proposition 3.7). This description is
deeply inspired on the analysis of the case g = 8 pursued by Iliev and Manivel in
[IM07].

Lemma 3.1. Let Y be a smooth non-hyperelliptic Fano threefold of genus g, and
let F be a rank 2 stable sheaf on Y with c1(F ) = HY . Then we have:

(3.1) c2(F ) ≥ g + 2
2

.

Proof. Let S ⊂ Y be a general hyperplane section surface. Since Y is non-
hyperelliptic, by Moishezon’s theorem [Mŏı67], we have Pic(S) ∼= Z = 〈HS〉. Con-
sider the restriction FS = F ⊗OS and notice that the sheaf FS is still torsion-free.
Moreover it is semistable by Maruyama’s theorem ([Mar81]), hence stable since
c1(FS) = HS and Pic(S) = 〈HS〉. Since S is a K3 surface, the dimension of the
moduli space MS(2, 1, c2(FS)) equals 4 c2(FS)− 2 g − 4. So this number has to be
non-negative, and we obtain (3.1). �

In view of the previous lemma we define:

(3.2) mg =
⌈
g + 2

2

⌉
.

Lemma 3.2. Let C be a curve in H 0
d (Y ), with d < mg Then C is Cohen-Macaulay

and we have Hk(Y, IC) = 0 for all k.

Proof. First observe that the curve C has no isolated or embedded points. In-
deed, the purely 1-dimensional piece C̃ of C is a curve of degree d and arithmetic
genus `, where ` is the length of the zero-dimensional piece of C. In order to see
that, for ` > 0, this leads to a contradiction, one notes that since H0(Y, IC̃) = 0,
we have h2(Y, IC̃) ≥ χ(IC̃) = `. Thus we would have a non-zero element of
Ext1Y (IC(1),OY ), corresponding to a rank 2 sheaf F with c1(F ) = 1, c2(F ) = d. It
is easy to see that the sheaf F would be stable. Indeed, assuming that there exists
a destabilizing torsion-free subsheaf K, then it is easy to check that rk(K) = 1 and



BUNDLES ON FANO THREEFOLDS OF GENUS 7 11

c1(K) = 1 and we have the following commutative diagram:

0

��

0

��

K

��

K

��

0 // OY
// F //

��

IC(1) //

��

0

0 // OY
// S //

��

T //

��

0

0 0

where T has rank 0 and c1(T ) = 0. This implies that T is supported at a subva-
riety Z ⊂ Y of dimension less than or equal to 1. It follows that Ext1Y (T,OY ) ∼=
H2(Z, T (−1))∗ = 0 and so S ∼= OY ⊕T . Since the map OY → S is the composition
of injective maps and T is a torsion sheaf, it easily follows that F must contain OY

as direct summand. This means that the exact sequence in the middle of the above
diagram splits, a contradiction.

Hence the sheaf F is stable, thus contradicting Lemma 3.1. The above argument
implies that the group H2(Y, IC) vanishes. Note that this implies the statement by
Riemann-Roch. �

Definition 3.3. A zero-dimensional subscheme Z of a smooth K3 surface S of
Picard number 1 and sectional genus g is of type Zk

` if it is locally a complete
intersection, and if len(Z) = `,h1(S, IZ(1)) = k and h0(S, IZ(1)) = (g+ 1)− `− k.

Lemma 3.4. Let S be a K3 surface of Picard number 1 and sectional genus g, and
let m = mg be defined by (3.2). Then S contains no subscheme of type Zk

` for any
k ≥ 1 and for any ` ≤ m+k− 2. Moreover if g ≥ 6, then S contains no subscheme
of type Zk

` for any k ≥ 2 and any ` ≤ m+ k − 1.

Proof. We split the induction argument in two steps.

Step 1. There are no subschemes of S of type Z1
` for any ` ≤ m− 1.

It is easy to see that a point must be of type Z0
1 , and that there exists no scheme

of type Zk
1 for k ≥ 1. Now consider a subscheme Z ⊂ S of type Z1

` for ` ≥ 2, and
the sheaf F on S associated to Z by the non-trivial extension

(3.3) 0 → OS → F → IZ(1) → 0.

Notice that c1(F ) = 1, c2(F ) = `. If F is locally free, then it is stable since F (−1)
has no non-zero global sections. Hence we get ` ≥ m, since the quantity (2.11) must
be non-negative. If F is not locally free, then the pair (O(1), Z) does not satisfy the
Cayley-Bacharach property (see [HL97]) and so there exists a subscheme Z ′ ⊂ Z
of type Z1

`−1. Iterating this argument on Z ′ we obtain either that ` ≥ m or that
there is a scheme of type Z1

1 which is impossible.
By induction on k ≥ 1 one easily proves that there are no subschemes of S of

type Zk
` with ` ≤ m+ k − 2.

Step 2. We assume now that g ≥ 6 and we prove that there are no subschemes of
S of type Z2

m+1. Suppose that Z is a subscheme of type Z2
m+1. Let F be the rank

3 sheaf associated to Z by the extension:

(3.4) 0 → OS ⊗H1(S, IZ(1)) → F → IZ(1) → 0.

Since by the previous step there exists no subscheme of type Z2
m, it follows that

F is locally free. By (3.4), it follows that H1(S, F ) = H2(S, F ) = 0. It is easy to
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see that the groups H0(S, F ∗) and H0(S, F (−1)) vanish, hence F is a rank 3 stable
bundle on S with c1(F ) = 1 and c2(F ) = m + 1. By (2.11), the dimension of the
moduli space MS(3, 1, c2(F )) equals 6 c2(F )− 4 g− 12 and for g ≥ 6 this dimension
is negative, a contradiction.

Finally by induction on k ≥ 2 one easily proves that there are no subschemes of
S of type Zk

` with ` ≤ m+ k − 1.

�

The following proposition is essentially due to Iliev and Manivel, see [IM07].

Proposition 3.5 (Iliev-Manivel). Let Y be a smooth non-hyperelliptic Fano three-
fold of genus g and set m = mg. Let F be a rank 2 stable sheaf on Y , with c1(F ) = 1,
c2(F ) = m, c3(F ) ≥ 0. Then F is a locally free sheaf and satisfies:

Hk(Y, F (−1)) = 0, Hj(Y, F ) = 0, for all k ∈ Z and for all j ≥ 1.

Moreover if g ≥ 6, then F is also globally generated and ACM.

Proof. First of all one proves H2(Y, F ) = 0. Indeed any non-trivial element of
H2(Y, F )∗ ∼= Ext1Y (F,OY (−1)) provides an extension of the form:

0 → OY (−1) → F̃ → F → 0,

where F̃ is a rank 3 sheaf which is easily seen to be semistable. This sheaf satisfies
c1(F̃ ) = 0 and c2(F̃ ) = m− (2g−2) < 0, which contradicts Bogomolov’s inequality
(2.1). Since χ(F ) = g + 3 −m ≥ 0, it follows that there exists a non-zero global
section of F .

Fix now a general hyperplane section S of Y . We set E = F ∗∗ and ES = E⊗OS .
We can assume that ES is locally free on S. It is easy to see that E is a rank 2
stable sheaf with c1(E) = 1, and this implies H0(Y,E(−1)) = 0 by stability and
H3(Y,E(−1)) = H3(Y,E) = 0 by Serre duality and stability. Since h0(Y, F ) 6= 0,
one sees that h0(Y,E) 6= 0. Let Z be the zero locus of a general section of ES .
Note that Z has dimension zero and len(Z) = m, and recall the exact sequence:

(3.5) 0 → OS → ES → IZ(1) → 0.

It is easy to prove that H0(S,ES(−1)) = 0, hence ES is stable by Hoppe’s cri-
terion. In particular we get H2(S,ES)∗ ∼= H0(S,E∗

S) = 0, so the induced map
H1(S, IZ(1)) → H2(S,OS) is surjective.

We can now prove that F is locally free. Indeed, assume the contrary, and write
down the double dual exact sequence:

(3.6) 0 → F → E → T → 0,

where T is a torsion sheaf with c1(T ) = 0 and c2(T ) ≤ 0. By the minimality of
m, we must have c2(E) ≥ c2(F ) and so we get c2(T ) = c2(E)− c2(F ) ≥ 0. Hence
c2(T ) vanishes. Thus the sheaf T is supported on a subscheme of codimension 3 and
c3(T ) = c3(E)− c3(F ) ≥ 0. By Lemma 3.4 the subscheme Z must be of type Z1

m,
hence from (3.5), using H1(S,OS) = 0 and H2(S,ES) = 0, we get H1(S,ES) = 0.
Then we consider the exact sequence:

(3.7) 0 → E(−1) → E → ES → 0.

One can show H2(Y,E) = 0, by the same argument that we used for F . Then,
taking global sections, we obtain H2(Y,E(−1)) = 0, so:

(3.8) χ(E(−1)) = −h1(Y,E(−1)) ≤ 0.

Since E is reflexive, by a straightforward generalization of [Har80, Proposition 2.6],
we also have χ(E(−1)) = c3(E)/2 ≥ 0. We deduce c3(E) = 0, so E is locally
free. Moreover, from (3.8) we also obtain H1(Y,E(−1)) = 0. Note incidentally
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that, using (3.7), this implies also H1(Y,E) = 0. Let us now observe that, since
c3(E) = 0, the assumption c3(F ) ≥ 0 forces c3(T ) = 0. We have thus proved that
T = 0, so the sheaf F is isomorphic to E, hence it is locally free. Moreover, since
F ∼= E, we have proved the desired vanishing results too.

Now let us assume that g ≥ 6 and show that F is globally generated. Following
[IM07, Proposition 5.4] one reduces to show that for any point x ∈ Y and for a
general surface S′ through x, the vector bundle FS′ = F ⊗OS′ is globally generated.
Clearly it is enough to prove that IZ(1) is globally generated, where we denote again
by Z the zero locus of a general global section of FS′ . This amounts to show that
Z is cut out scheme-theoretically by its linear span, in other word that Z cannot
be contained in a subscheme Z ′ ⊂ S′ of type Z2

m+1. But no such subscheme exists
by Lemma 3.4, as soon as g ≥ 6.

It remains to show that F is ACM, and this follows by Griffith’s theorem, [SS85,
Theorem 5.52], since F is globally generated. �

Remark 3.6. Note that if F is an ACM bundle on a smooth prime Fano threefold
Y and S is a hyperplane section surface, then the restriction FS is ACM too. In
particular if Y is a prime Fano threefold of genus 7, the bundle Ey, introduced in
the previous section, is ACM for any y ∈ MY (2, 1, 5) and its restriction to S is
ACM too.

Proposition 3.7 (Iliev-Manivel). Let Y be a smooth non-hyperelliptic Fano three-
fold of genus g ≥ 6 and set m = mg. Let F be a rank 2 stable sheaf on Y , with
c1(F ) = 1, c2(F ) = m+1, c3(F ) ≥ 0. Then either F is a locally free sheaf or there
exists an exact sequence:

(3.9) 0 → F → E → OL → 0,

where E is as in Proposition 3.5 and L is a line contained in Y . Moreover, we
have:

(3.10) Hk(Y, F (−1)) = Hk(Y, F ) = 0, for k = 1, 2.

Proof. We work as in the previous proposition. First of all we prove that H2(Y, F ) =
0, (since m+1 < 2g− 2 as soon as g > 3). If F is not locally free, then we consider
the sheaves E = F ∗∗ and T = E/F and the exact sequence (3.6). Recall that no
subscheme of type Zk

m+1 for k ≥ 2 exists by Lemma 3.4 since g ≥ 6. So the same
argument we used in the previous proof to establish the property of being locally
free this time proves that c2(E) = m and c2(T ) = −1. Since E is reflexive (and thus
c3(E) ≥ 0), Proposition 3.5 implies that E is locally free and globally generated.

Therefore the support of T is a line L ⊂ Y , and we may take a general hyperplane
section S such that L ∩ S = x, a point of Y . A general global section of FS

(respectively, of ES) vanishes on a subscheme Z ′ ⊂ S (respectively, Z ⊂ S), the
scheme Z is of type Z1

m, and we have:

(3.11) 0 → IZ′(1) → IZ(1) → Ox → 0.

Since the sheaf E is globally generated, IZ(1) is too, hence Z is cut sheaf-
theoretically by hyperplanes. Then the map H0(S, IZ′(1)) → H0(S, IZ(1)) induced
by (3.11) is not an isomorphism. We obtain h1(S, IZ′(1)) = 1, which easily implies
H1(S, FS) = 0. At this point, following the argument of the previous proposition,
one can easily prove the following chain of implications:

H2(Y, F ) = H1(S, FS) = 0 ⇒ H2(Y, F (−1)) = 0 ⇒ c3(F ) = 0 ⇒
⇒ H1(Y, F (−1)) = 0 ⇒ H1(Y, F ) = 0.

This proves the vanishing (3.10).
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Now we mimic a technique of Druel, see [Dru00]. Namely, since H1(Y, F (−1)) =
0, we have H0(Y, T (−1)) = 0. It follows that T is a Cohen-Macaulay curve and by
a Hilbert polynomial computation we obtain T ∼= OL for a certain line L ⊂ Y . �

3.2. A good component of the moduli space MY (2, 1, d). Throughout this
section we will assume that Y is an ordinary, non-hyperelliptic smooth prime Fano
threefold. In particular we assume that the Hilbert scheme H 0

1 (Y ) has a generically
smooth component.

We first restate a result concerning the moduli space MY (2, 1,mg), see [BF08,
Proposition 3.5]. Recall that the non-emptyness of this space is derived from a case
by case analysis, going back to [Mad00] for g = 3, [Mad02] for g = 4, 5, [Gus82] for
g = 6, [IM04a], [IM07c], [Kuz05], for g = 7, [Gus83], [Gus92], [Muk89] for g = 8,
[IR05] for g = 9, [Muk89] for g = 10, [Kuz96] (see also [Sch01], [Fae07]) for g = 12.

Theorem 3.8. Let Y be a smooth ordinary non-hyperelliptic prime Fano three-
fold of genus g and let F be a sheaf in MY (2, 1,mg). Then F is locally free and
ACM. Furthermore, the moduli space MY (2, 1,mg) contains a sheaf F satisfying
the conditions:

Ext2Y (F, F ) = 0,(3.12)

F ⊗OL
∼= OL ⊕ OL(1), for some line L with NL

∼= OL ⊕ OL(−1).(3.13)

The dimension of MY (2, 1,mg) equals 0 if g is even and 1 if g is odd.

Now, we construct inductively a component of MY (2, 1, d), for all d ≥ mg. This
component is generically smooth of the expected dimension and its general element
F is locally free and satisfies H1(Y, F (−1)) = 0.

Lemma 3.9. Let Y be a smooth ordinary prime Fano threefold of genus g, let
L ⊂ Y be a line belonging to a generically smooth irreducible component H of
H 0

1 (Y ) and choose an irreducible component M of MY (2, 1, d), with dim(M) = n.
Assume that, for a given locally free sheaf E lying in M, with homY (E,OL) = 1,
we have an exact sequence of the form:

(3.14) 0 → F → E → OL → 0.

Then the set of sheaves F fitting in (3.14) with [E] ∈ M and [L] ∈ H is an
irreducible (n+ 1)-dimensional subvariety of MY (2, 1, d+ 1).

Proof. It is easy to see that F is a rank 2 stable (non-reflexive) sheaf with c1(F ) = 1,
c2(F ) = d+ 1, c3(F ) = 0. Note that a surjective map E → OL exists if and only if
E⊗OL is isomorphic to OL⊕OL(1), which happens if and only if homY (E,OL) = 1.
This is equivalent to the condition Ext1Y (E,OL) = 0. This vanishing takes place
for general [L] ∈ H and for general [E] ∈ M.

Note that the condition homY (E,OL) = 1, implies that the map σ : E → OL is
unique up to a non-zero scalar, so the kernel of σ is determined (up to isomorphism)
by E and L. Therefore we have a rational map M × H → MY (2, 1, d + 1) which
associates to the general member of M×H the sheaf F = ker(σ), where σ generates
HomY (E,OL). This map is generically injective, since E is recovered as F ∗∗ and
OL as the quotient F/F ∗∗. Note that both M and H are irreducible, respectively
of dimension n, and 1. Thus the image of the rational map above is irreducible of
dimension n+ 1. �

Remark 3.10. Let Y be a smooth ordinary prime Fano threefold and d be an
integer. If a sheaf F in MY (2, 1, d) satisfies H1(Y, F (−1)) = 0, then we have
Hk(Y, F (−1)) = 0 for any k. Indeed the cases k = 0, 3 follow by stability and
Serre duality. By (2.9) it is easy to compute that χ(F (−1)) = 0, and this implies
the vanishing for k = 2.
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Remark 3.11. Let Y be a smooth prime Fano threefold and d be an integer. If a
sheaf F in MY (2, 1, d) satisfies H1(Y, F (−1)) = 0, then we have H1(Y, F (−t)) = 0,
for any t ≥ 1. Indeed taking a general hyperplane section S of Y we have the
restriction exact sequence, for any integer t,

(3.15) 0 → F (−1− t) → F (−t) → FS(−t) → 0.

Note that the sheaf FS is semistable, by Maruyama’s theorem. This implies
H0(Y, FS(−t)) = 0 for any t ≥ 1. Then, taking cohomology of (3.15), we deduce
that H1(Y, F (−t)) = 0, for any t ≥ 1.

Theorem 3.12. Let Y be a smooth ordinary prime Fano threefold of genus g, set
m = mg, L ⊂ Y be a line in Y with NL

∼= OL ⊕ OL(−1), and x be a point of L.
Then, for any integer d ≥ m, there exists a rank 2 stable locally free sheaf Fd with
c1(Fd) = 1, c2(Fd) = d, and satisfying:

Ext2Y (Fd, Fd) = 0,(3.16)

H1(Y, Fd(−1)) = 0,(3.17)

H0(L,Fd(−2x)) = 0.(3.18)

The sheaf Fd thus belongs to a generically smooth component of MX(2, 1, d) of
dimension 2d− g − 2.

Proof. We work by induction on d ≥ m. For d = m, the sheaf F provided by
Theorem 3.8 is satisfies all our requirements. Indeed, the only property that we
need to check in this case is (3.18), but this is clear by (3.13).

Let us now construct a sheaf Fd in MX(2, 1, d). By induction we can choose
a rank 2 locally free sheaf Fd−1 with c1(Fd−1) = 1 (so that F ∗d−1

∼= Fd−1(−1)),
c2(Fd−1) = d − 1, satisfying Ext2Y (Fd−1, Fd−1) = 0, H1(Y, Fd−1(−1)) = 0, and
H0(L,Fd−1(−2x)) = 0. From the last vanishing it easily follows that Fd−1⊗OL

∼=
OL ⊕ OL(x). Therefore there exists a (unique up to a non-zero scalar) surjective
morphism Fd−1⊗OL → OL. Then we get a projection σ as the composition of
surjective morphisms: Fd−1 → Fd−1⊗OL → OL. We denote by Fd the kernel of σ
and we have the exact sequence:

(3.19) 0 → Fd → Fd−1
σ→ OL → 0.

We claim that the sheaf Fd lies in MX(2, 1, d) and satisfies (3.16), (3.17) and
(3.18). In view of Lemma 3.9, Fd is a stable torsion-free sheaf with c1(Fd) = 1 and
c2(Fd) = d. We have H1(Y, Fd(−1)) = 0 since H1(Y, Fd−1(−1)) = 0 by induction
and H0(Y,OL(−1)) = 0. So (3.17) holds.

In order to prove (3.16), let us apply the functor HomY (Fd,−) to (3.19). This
gives the exact sequence:

Ext1Y (Fd,OL) → Ext2Y (Fd, Fd) → Ext2Y (Fd, Fd−1).

We will prove that both the first and the last terms of the above sequence vanish.
To prove the vanishing of the latter, apply HomY (−, Fd−1) to the exact sequence
(3.19). We get the exact sequence:

Ext2Y (Fd−1, Fd−1) → Ext2Y (Fd, Fd−1) → Ext3Y (OL, Fd−1).

By induction, we have Ext2Y (Fd−1, Fd−1) = 0. Serre duality yields:

Ext3Y (OL, Fd−1)∗ ∼= H0(Y,OL⊗F ∗d−1(−1)) ∼= H0(L,Fd−1(−2x)) = 0.

Therefore we obtain Ext2Y (Fd, Fd−1) = 0. To show the vanishing of the group
Ext1Y (Fd,OL), we apply the functor HomY (−,OL) (3.19). We are left with the
exact sequence:

Ext1Y (Fd−1,OL) → Ext1Y (Fd,OL) → Ext2Y (OL,OL).



16 MARIA CHIARA BRAMBILLA AND DANIELE FAENZI

The rightmost term vanishes by Remark 2.1. By Serre duality on L we get
Ext1Y (Fd−1,OL) ∼= H1(L,F ∗d−1) ∼= H0(L,Fd−1(−2x))∗. But this group van-
ishes by induction. We have thus established (3.16). Note that, since clearly
HomY (Fd, Fd) = Ext3Y (Fd, Fd) = 0 by stability, Riemann-Roch gives:

(3.20) ext1Y (Fd, Fd) = 2 d− g − 2,

Now let us prove property (3.18). Tensoring (3.19) by OL we get the following
exact sequence of sheaves on L

(3.21) 0 → T orY
1 (OL,OL) → Fd⊗OL → Fd−1⊗OL → OL → 0.

By (2.3) we know that T orY
1 (OL,OL) ∼= N∗

L
∼= OL ⊕ OL(x), since L is general

in H 0
1 (Y ) and Y is ordinary. Now we twist (3.21) by OL(−2x) and take global

sections. By induction H0(L,Fd−1(−2x)) = 0, so our claim (3.18) follows easily.

Finally, we would like to flatly deform the sheaf Fd to a stable vector bundle
F , and we claim that (3.17), (3.16), (3.18) will hold for F too. Indeed, (3.17)
and (3.16) will still hold on F by semicontinuity (see [Har77, Theorem 12.8] and
[BPS80, Satz 3 (i)]). For (3.18), we notice that, by stability of Fd and by Remark
3.11, we have H0(Y, Fd⊗OL(−2)) ∼= H1(Y, Fd⊗IL(−2)). Now let FL be the vector
bundle associated to L as in Remark 2.2. Tensoring by Fd(−1) the sequence (2.12)
and taking cohomology, since H1(Y, Fd(−1)) = H2(Y, Fd(−1)) = 0 by Remark 3.10,
we get H1(Y, Fd ⊗ IL(−2)) ∼= H1(Y, Fd ⊗ FL(−1)). Hence we conclude that a
deformation of Fd will satisfy property (3.18) by semicontinuity of the dimension
of the cohomology group H1(Y, Fd ⊗ FL(−1)). We have thus proved (3.17), (3.16),
and (3.18) for F . We note further that the equality ext1Y (F, F ) = 2 d−g−2 implies
here that [F ] lies in a generically smooth component of MX(2, 1, d) of dimension
2d− g − 2.

Thus it only remains to check that a general deformation F of Fd in MY (2, 1, d)
is a locally free sheaf. In order to show this, we consider the double dual exact
sequence:

(3.22) 0 → F → F ∗∗ → T → 0,

where T is a torsion sheaf whose support W has dimension at most 1. We would like
to prove T = 0. Is is easy to see that F ∗∗ is stable. This implies H0(Y, F ∗∗(−1)) = 0
which in turn gives H0(Y, T (−1)) = 0, so W contains no isolated or embedded
points, i.e. it is a Cohen-Macaulay curve.

We will now argue that the exact sequence (3.22) is not of the form (3.19).
Indeed, recall that the variety MY (2, 1, d− 1) is smooth at the point corresponding
to the locally free sheaf Fd−1, since Ext2Y (Fd−1, Fd−1) = 0 by induction hypothesis.
Let M be the component of MY (2, 1, d−1) containing [Fd−1] and H the component of
H 0

1 (Y ) containing [L]. The dimension of M equals ext1Y (Fd−1, Fd−1) = 2 d− g− 4.
So by Lemma 3.9, the set of sheaves fitting as kernel of (3.19), with the middle
term lying in M, has dimension 2 d− g − 3. Now, if for a general element [F ] in an
irreducible open neighborhood of Fd, the sequence (3.22) was of the form (3.19),
then the sheaf [F ∗∗] would lie in M (for F ∗∗ specializes to Fd−1) and the quotient
[T ] would lie in H (for T specializes to OL). But we have proved that the set of such
sheaves F has dimension 2 d − g − 3, while [F ] lies in a component of dimension
one greater (see (3.20)).

Finally, let us show that, assuming T 6= 0, we are lead to a contradiction: this
will finish the proof. To do this, we show that the support W of T must have degree
1. In fact we prove that c2(T ) = −1, and we only need to show c2(T ) ≥ −1. Note
first the equality χ(T (t)) = −h1(Y, T (t)) for any negative integer t. Recall that,
by [Har80, Remark 2.5.1], we have H1(Y, F ∗∗(t)) = 0 for all t� 0. Thus, tensoring
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(3.19) by OY (t) and taking cohomology, we obtain h1(Y, T (t)) ≤ h2(Y, F (t)) for all
t� 0. Further, for any integer t, we can compute:

c1(T (t)) = 0, c2(T (t)) = c2(T ) = d− c2(F
∗∗), c3(T (t)) = c3(F

∗∗)− (2t + 1)c2(T ),

hence by Riemann-Roch:

χ(T (t)) = −c2(T )(t+ 1) +
c3(F ∗∗)

2
.

Since F is a deformation of Fd, semicontinuity gives h2(Y, F (t)) ≤ h2(Y, Fd(t)).
Now, (3.19) provides h2(Y, Fd(t)) = h1(Y,OL(t)) = −χ(OL(t)) = −t− 1. Summing
up we have, for t� 0:

−(t+ 1)c2(T ) +
c3(F ∗∗)

2
≥ t+ 1,

which implies c2(T ) ≥ −1. We have thus proved that T is of the form OL(a), for
some [L] ∈ H 0

1 (Y ), and for some integer a. Then c3(T ) = c3(F ∗∗) = 1+2 a, so a ≥
0, see [Har80, Proposition 2.6]. On the other hand we have seen H0(Y, T (−1)) = 0,
so a ≤ 0. But then T should be of the form OL, a contradiction. �

By Theorem 3.12 and Lemma 3.9 we can pose the following.

Definition 3.13. Choose a component M(mg) of the moduli space MY (2, 1,mg)
containing a sheaf F satisfying the properties listed in Theorem 3.8. Then, for each
d ≥ mg + 1, we recursively define N(d) as the set of non-reflexive sheaves fitting as
kernel in an exact sequence of the form (3.19), with Fd−1 ∈ M(d − 1), and M(d)
as the component of the moduli scheme MY (2, 1, d) containing N(d). In view of
Theorem 3.12 the component M(d) is generically smooth of dimension 2d − g − 2
and contains N(d) as an irreducible divisor.

Remark 3.14. Making use of Theorem 3.12, it is possible to classify all ACM
bundles of rank 2 and c1 = 1 on smooth non-hyperelliptic ordinary prime Fano
threefolds. We refer to [BF08] for a complete investigation.

4. Rational cubics on Fano threefolds of genus 7

LetX be a smooth prime Fano threefold of genus 7, and let Γ be its homologically
projectively dual curve. For 1 ≤ d ≤ 4, the subset of H 0

d (X) containing rational
normal curves is described by the results of [IM07c]. It is known to have dimension
d, and to be isomorphic to W 1

1,5 for d = 1, isomorphic to Γ(2) for d = 2, and
birational to Γ(3) for d = 3. The isomorphism H 0

2 (X) ∼= Γ(2) was also proved by
Kuznetsov, making use of the semiorthogonal decomposition of Db(X).

Here we make more precise the result on cubics, showing that the Hilbert scheme
H 0

3 (X) is in fact isomorphic to the symmetric cube Γ(3).
The following result is due to Iliev-Markushevich, [IM07c]. This reformulation

will be used further on.

Lemma 4.1 (Iliev-Markushevich). Let X be a smooth prime Fano threefold of
genus 7. Then we have the following two bijective morphisms:

H 0
1 (X) →W 1

1,5, L 7→ Φ!(OL)[−1],(4.1)

H 0
1 (X) →W 2

1,7, L 7→ Φ!(OL(−1)).(4.2)

Proof. For any y ∈ Γ, we have E ∗
y ⊗OL

∼= OL ⊕ OL(−1), so h0(X,E ∗
y ⊗OL) = 1.

Indeed Ey is globally generated for each y and has degree 1 on L. SoHk(Φ!(OL))y =
0 for all y ∈ Γ and all k 6= −1. Hence Φ!(OL)[−1] is a line bundle on Γ, and has
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degree 5 by Grothendieck-Riemann-Roch. Now observe that, using (2.34) and the
spectral sequence (2.4), we get:

H0(Γ,Φ!(OL)[−1]) ∼= HomX(Φ(OΓ),OL[−1]) ∼=
∼= HomX(H1(Φ(OΓ)),OL) ∼=
∼= H0(L,U∗+(−1)).

Since U∗+ is globally generated and c1(U∗+) = 2, one sees easily that this space must
have dimension 2. So Φ!(OL)[−1] lies in W 1

1,5. Denote H0(Γ,Φ!(OL)[−1]) by AL.
To show that our map is injective, first observe that Extk

X(OL,OX) = 0 for all
k, while Extk

X(OL,U+) = 0 for k 6= 3, and Ext3X(OL,U+) = A∗L. Making use of the
exact triangle (2.23), this gives the isomorphisms:

Hk(Φ(Φ!(OL))) ∼=

 OL for k = 0,
AL⊗U∗+ for k = −1,
0 otherwise.

(4.3)

Then H0(Φ(Φ!(OL))) ∼= OL, and we have injectivity of (4.1). Surjectivity follows,
since H 0

1 (X) and W 1
1,5 are isomorphic by [IM07c, Proposition 2.1].

Set now L = Φ!(OL)[−1] ∈W 1
1,5. Applying (2.29), since RH omX(OL,OX)[2] ∼=

OL(−1), we obtain the functorial isomorphism:

Φ!(OL(−1)) ∼= L∗⊗ωΓ.

Clearly the degree of L∗⊗ωΓ is 7 and by Serre duality we get h0(Γ,L∗⊗ωΓ) =
h1(Γ,L) = 3, hence the sheaf L∗⊗ωΓ lies inW 2

1,7. This says that the map appearing
in (4.2) is everywhere defined. Hence is it bijective since the map defined by (4.1)
is. �

Remark 4.2. In view of the isomorphism H 0
1 (X) ∼= W 1

1,5, we note that the three-
fold X is exotic if and only if W 1

1,5 has a component which is non-reduced at any
point. It is well-known (see e.g. [ACGH85, Proposition 4.2]) that [L] is a singular
point of W 1

1,5 if and only if the Petri map:

πL : H0(Γ,L)⊗H0(Γ,L∗⊗ωΓ) → H0(Γ, ωΓ).

is not injective. Note that, since the curve Γ is not tetragonal, any line bundle L in
W 1

1,5 is globally generated. Therefore ker(πL) is isomorphic to H0(Γ,L∗⊗L∗⊗ωΓ).
This proves that the threefold X is exotic if and only if Γ admits infinitely many

line bundles L in W 1
1,5 such that L∗⊗L∗⊗ωΓ is effective.

Our next goal is to investigate the Hilbert scheme H 0
3 (X). We will need the

following lemma.

Lemma 4.3. Let C be any Cohen-Macaulay curve of degree d ≥ 3 and arithmetic
genus pa contained in X. Then Φ!(OC) is a vector bundle on Γ of rank d−2+2pa.

Proof. The following argument is inspired on the proof of [Kuz05, Lemma 5.1]. We
have to prove that, for each y ∈ Γ, the group H0(X,E ∗

y ⊗OC) vanishes. By (2.26),
it is enough to prove:

(4.4) H0(C,U+) = 0.

Assume the contrary, and consider a non-zero global section u in H0(C,U+). Let U
be the 1-dimensional subspace spanned by u. By (2.13), we have U ⊂ H0(C,U+) ⊂
H0(C,OX ⊗ V ) ∼= V . Set V ′ = U⊥/U . Then the orthogonal Grassmann variety
GQ(P3,P(V ′)) ⊂ Σ+ is a quadric and clearly the curve C is contained in X ′ :=
GQ(P3,P(V ′)) ∩X. Recall that X is a linear section of Σ+, then X must contain
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either a 2-dimensional quadric or a plane. But this is impossible by Lefschetz
theorem.

This proves that Φ!(OC) is a vector bundle on Γ. By Riemann-Roch formula we
conclude that its rank equals −χ(E ∗

y ⊗OC) = d− 2 + 2pa. �

We are now in position to prove the following result.

Theorem 4.4. Let X be a smooth prime Fano threefold of genus 7, and Γ be
its homologically projectively dual curve. The map ψ : OC 7→ (Φ!(OC))∗⊗ωΓ

gives an isomorphism between H 0
3 (X) and Γ(3). In particular H 0

3 (X) is a smooth
irreducible threefold.

Proof. We have seen in Lemma 4.3 that, for any element C of H 0
3 (X), the sheaf

L = Φ!(OC) is a line bundle on Γ, and L has degree 9 by Grothendieck-Riemann-
Roch. Therefore by stability of Ex for any x ∈ X, we have H1(Γ,L ⊗ Ex) = 0, so
Φ(L) is a locally free sheaf of rank 18 on X. Moreover by Grothendieck-Riemann-
Roch one sees that deg(Φ(L)) = 8.

Let us show that Φ(L) lies in W 3
1,9. Note first that, since deg(Φ(L) = 8, we

have H1(Φ(L)) = 0, so the cohomology of the complex (Ψ(Ψ∗(OC))) can appear
only in degree −1 or 0, by the decomposition (2.23) applied to the sheaf OC . By
formula (2.24), we have (Ψ(Ψ∗(OC)))k = 0 for k 6= −1,−2,−3 and

(Ψ(Ψ∗(OC)))−3 = Oa
X ,

(Ψ(Ψ∗(OC)))−2 = Oa+2
X ⊕ U∗b,

(Ψ(Ψ∗(OC)))−1 = U∗b+4,

where a = h0(C,OX(−1)) and b = h0(C,U∗+(−1)), and clearly, by Riemann-Roch
formula, a + 2 = h1(C,OX(−1)) and b + 4 = h1(C,U∗+(−1)). It follows that the
cohomology of the complex (Ψ(Ψ∗(OC))) is concentrated in degree −1. Moreover
since Hk(Ψ(Ψ∗(OC))) = 0 for k = −3 and k = −2, then we have that the differ-
ential d−2 : Oa

X → Oa+2
X ⊕ U∗b is injective and that ker(d−1) = Im(d−2). By the

minimality of the complex (see Remark 2.4), one can now easily prove a = b = 0,
that is

h1(C,OX(−1)) = 2, H0(C,OX(−1)) = 0.(4.5)

h1(C,U∗+(−1)) = 4, H0(C,U∗+(−1)) = 0,(4.6)

and we get the following exact sequence:

(4.7) 0 → O2
X → (U∗+)4

ζC−−→ Φ(L) → OC → 0.

Then we have:

h0(Γ,L) = homΓ(OΓ,L) = homΓ(Φ∗(U∗+),L) = homX(U∗+,Φ(L)) = 4,

where the last equality is obtained applying the functor HomX(U∗+,−) to the exact
sequence (4.7) and using the fact that the group H0(C,U+) vanishes by (4.4). So
L is an element of W 3

1,9.
This implies the map ζC corresponds to the natural evaluation map, and it is

thus uniquely determined. This proves that the mapping ϕ : H 0
3 (X) → W 3

1,9

defined by ϕ(OC) = Φ!(OC) is injective.
Observe that the correspondence τ : L 7→ L∗⊗ωΓ provides an isomorphism

between W 3
1,9 and W 0

1,3. On the other hand note that W 0
1,3

∼= Γ(3), indeed the
curve Γ is not trigonal (see [Muk95a, Table 1]). Since H 0

3 (X) is projective of
dimension at least 3 and Γ(3) is irreducible and of dimension 3, it follows that the
map ϕ : H 0

3 (X) →W 3
1,9 is surjective. We have thus that ψ = τ ◦ ϕ is a bijection.
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We will show now that the tangent space Ext1X(IC , IC) to H 0
3 (X) at [C] is

identified with the tangent space toW 3
1,9 at [L]. By (4.5), we easily get the vanishing

Hk(X, IC(−1)) = 0 for k 6= 2, 3. By (4.6) and since Hk(X,U∗+(−1)) = 0 by Serre
duality and semiorthogonality of OX and U∗+, we get:

Hk(X,U∗+(−1)⊗IC) = 0, for k 6= 2.(4.8)

Moreover by (4.4) and since Hk(X,U+) = 0, we obtain Hk(X,U+⊗IC) = 0, for
k 6= 2. Then by (2.13) and Lemma 3.2, we obtain:

Hk(X,U∗+⊗IC) = 0, for k 6= 1.(4.9)

Set AC = H2(X,U∗+(−1)⊗IC) and BC = H2(X, IC(−1)). Note that the dimension
of AC is 4, the dimension of BC is 2. One also computes h3(X, IC(−1)) = 1, and
h2(X,U+⊗IC) = h1(X,U∗+⊗IC) = 1. Note that Φ!(IC) ∼= Φ!(OC)[−1] = L[−1].
Therefore we have the following exact sequences:

0 → BC ⊗OX → FC → IC → 0,(4.10)

0 → FC → OX ⊕
(
AC ⊗U∗+

) (ςC ,ζC)−−−−−→ Φ(L) → 0,(4.11)

where (4.10) is the universal extension corresponding to Ext1X(IC ,OX), and (4.11)
follows from (2.23) applied to FC , since Φ!(FC) ∼= Φ!(IC). Here the map ςC is
obtained lifting to Φ(L) the projection OX → OC and ζC is given by (4.7). By
Lemma 3.2, we have Extk

X(OX , IC) = 0 for all k. Therefore applying the functor
HomX(−, IC) to (4.10) we obtain, for each k, an isomorphism:

Extk
X(FC , IC) ∼= Extk

X(IC , IC).

Moreover, applying the functor HomX(−, IC) this time to (4.11), we get an exact
sequence:

(4.12) Ext1X(IC , IC) → Ext2X(Φ(L), IC)
ηC−−→ Ext2X(U∗+, IC)⊗A∗

C → Ext2X(IC , IC),

where ηC = Ext2X(ζC , IC). Consider now the curve Γ and denote by e the natural
evaluation map:

eOΓ,L : HomΓ(OΓ,L)⊗OΓ → L.

Observe that the transpose of the Petri map π>L (see 2.8) is obtained applying the
functor Ext1Γ(−,L) to the map e. We have the natural isomorphisms:

Ext2X(Φ(L), IC) ∼= Ext1Γ(L,L),

Ext2X(U∗+, IC) ∼= Ext1Γ(OΓ,L), by (4.8),

AC = Ext2X(U+(1), IC) ∼= HomΓ(OΓ,L), by (4.9).

Remark now that, since ζC is uniquely determined up to a non-zero scalar, we
may assume that it coincides with H0(Φ(e)). Moreover, by (4.8) we must have
ηC = Ext2X(Φ(e), IC). We conclude that:

π>L = Ext1Γ(e,Φ!(IC)[1]) = Ext2X(Φ(e), IC) = ηC .

From this discussion we conclude that, using (4.12), one can identify
Ext2X(IC , IC) with the space of obstructions of W 3

1,9 at L, and Ext1X(IC , IC) with
the tangent space of W 3

1,9 at L. Hence since W 3
1,9 is smooth (being isomorphic to

Γ(3)), then H 0
3 (X) is smooth too, and the map ϕ : H 0

3 (X) → W 3
1,9 is a local

isomorphism between smooth varieties. By [Har92, Theorem 14.9], it follows that
ϕ is an isomorphism, and ψ is an isomorphism too. �
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5. Vector bundles on Fano threefolds of genus 7

In this section, we assume that X is a smooth prime Fano threefold of genus 7,
and we let Γ be its homologically projectively dual curve. We set up a birational
correspondence between the component M(d) of Definition 3.13 and a component
of the Brill-Noether variety W 2 d−11

d−5,5 d−24. This correspondence will turn out to be
an isomorphism for d = 6.

5.1. Vanishing results. In order to setup the correspondence mentioned above,
we will have to prove that various cohomology groups are zero. This is the purpose
of the next series of lemmas.

Lemma 5.1. Let d ≥ 6 and let F be a sheaf in MX(2, 1, d) such that:

(5.1) H1(X,F (−1)) = 0,

then we have:

Extk
X(Ey, F ) = 0, for all y ∈ Γ and for all k 6= 1.

Proof. Notice that for k < 0 and for k > 3 the claim is obvious since X has
dimension 3. For k = 2, the claim amounts to HomX(F,Ey(−1)) = HomX(F,E ∗

y ) =
0, which follows from stability of F and Ey.

For k = −1, we have to show that HomX(Ey, F ) = 0. Assume the contrary,
and remark that any non-trivial map f : Ey → F provides an isomorphism Ey →
F ∗∗. Composing f with the natural injection F ↪→ F ∗∗ ∼= Ey, we would get an
isomorphism since Ey is a stable sheaf. But c2(Ey) = 5, while c2(F ) = d ≥ 6, a
contradiction.

For k = 1, let us show that Ext1X(F,E ∗
y ) = 0. Applying the functor HomX(F,−)

to the restriction of (2.25) to X × {y}, we get:

(5.2) HomX(F,Gy) → Ext1X(F,E ∗
y ) → Ext1X(F,OX)⊗(U−)y.

It is easy to see that the term on the left hand side vanishes by virtue of stability of
Gy and F (see Lemma 2.6). On the other hand, by the assumption H1(X,F (−1)) =
0 we have Ext1X(F,OX) ∼= H2(X,F (−1)) = 0, since χ(F (−1)) = 0. �

Lemma 5.2. Let d ≥ 6 and let F be a sheaf in MX(2, 1, d) satisfying (5.1). Then
the following equalities hold

Extk
X(F,OX) = 0, for any k ∈ Z,(5.3)

Extk
X(F,U+) = 0, for any k 6= 2,(5.4)

ext2X(F,U+) = 2d− 10.(5.5)

Proof. By stability of F , the assumption (5.1) and by the Riemann-Roch formula
(2.10), we get immediately (5.3).

On the other hand if k = 0, 3, then we have Extk
X(F,U+) = 0 by stability of the

sheaves U+ and F . Since Ext1X(F,OX) = 0, by applying the functor HomX(F,−)
to the sequence (2.13) we get Ext1X(F,U+) ∼= HomX(F,U∗+), which vanishes by
stability of F and U+. This proves (5.4). Finally, by the Riemann-Roch formula
(2.10) we obtain the last equality. �

Lemma 5.3. Let d ≥ 7 and let F be a sheaf in MX(2, 1, d) satisfying (5.1). Then
we have

HomX(U∗+, F ) = 0.
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Proof. Fix a point y in Γ. Applying the functor HomX(−, F ) to the exact sequence
(2.26) we obtain an exact sequence:

0 → HomX(Ey, F ) → HomX(U∗+, F ) → HomX(Gy, F ).

By Lemma 5.1 we know that the leftmost term vanishes. Assume that the rightmost
does not, and consider a non-zero map f : Gy → F . Set F ′ = Im(f) and note that,
by stability of the sheaves F and Gy, we must have rk(F ′) = 2 and c1(F ′) = 1. We
have thus an exact sequence:

(5.6) 0 → F ′ → F → T → 0,

where T is a torsion sheaf, with dim(supp(T )) ≤ 1. Note that F ′ is stable, since
any destabilizing subsheaf would destabilize also F . By [Har80, Propositions 1.1
and 1.9], the sheaf ker(f) must be a line bundle of degree zero. This means that
ker(f) ∼= OX , and we have an exact sequence:

0 → OX → Gy → F ′ → 0.

So F ′ satisfies c2(F ′) = 7, c3(F ′) = 2. Hence by (5.6) it follows that d = c2(F ) =
7 + c2(T ) ≤ 7, since c2(T ) is non-negative. Hence we have d = 7 and in this case
we have c2(T ) = 0, and c3(T ) = −2. But this is a contradiction since c3(T ) must
be non-negative. We have thus proved our claim. �

5.2. Canonical resolution of a bundle in MX(2, 1, d). We will show here that
a sheaf F in MX(2, 1, d) which satisfies H1(X,F (−1)) = 0 admits a canonical reso-
lution having two terms, see the formula (5.8) below. Recall that, if the threefold
X is ordinary, such a sheaf exists for all d ≥ 6 by Theorem 3.12.

Proposition 5.4. Let d ≥ 6 and let F be a sheaf in MX(2, 1, d) such that
H1(X,F (−1)) = 0. Then Φ!(F ) is a simple vector bundle on Γ, with:

(5.7) rk(Φ!(F )) = d− 5, deg(Φ!(F )) = 5 d− 24.

Moreover, F admits the following canonical resolution:

(5.8) 0 → Ext2X(F,U+)∗⊗U∗+
ζF−−→ Φ(Φ!(F )) → F → 0,

where Φ(Φ!(F )) is a simple vector bundle.

Proof. Consider the stalk over a point y ∈ Γ of the sheaf Hk(Φ!(F )). We have:

(5.9) Hk(Φ!(F ))y
∼= Extk+1

X (Ey, F )⊗ωΓ,y.

Hence by Lemma 5.1 it follows that this group vanishes for all y ∈ Γ and for all
k 6= 0. This implies that Φ!(F ) is a locally free sheaf. By Riemann-Roch we have
−χ(Ey, F ) = χ(F,E ∗

y ) = d − 5, so the rank of Φ!(F ) is d − 5. It follows easily by
Grothendieck-Riemann-Roch that deg(Φ!(F )) = 5 d− 24.

Let us now prove that Φ!(F ) is a simple bundle. If d = 6, then Φ!(F ) is a
line bundle, hence it is obviously simple. For d ≥ 7 we want to prove that the
group HomΓ(Φ!(F ),Φ!(F )) ∼= HomX(Φ(Φ!(F )), F ) is 1-dimensional. Applying
the functor HomX(−, F ) to the sequence (5.8) we obtain

HomX(Φ(Φ!(F )), F ) ∼= HomX(F, F ),

since the term HomX(U∗+, F ) vanishes by Lemma 5.3. Hence Φ!(F ) is simple, for
F is. Since the functor Φ is fully faithful, it follows that also the vector bundle
Φ(Φ!(F )) is simple.

It remains to exhibit the resolution (5.8). Note that, by formula (2.24) and
Lemma 5.2 we get that the complex (Ψ(Ψ∗(F ))) is concentrated in degree −1 and
isomorphic to Ext2X(F,U+)∗⊗U∗+. Hence the exact triangle (2.23) provides the
resolution (5.8) for F . �
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Lemma 5.5. Let d ≥ 7 and let F be as in the previous proposition, and set AF =
Ext2X(F,U+)∗. Then we have the natural isomorphism:

(5.10) AF
∼= H0(Γ,Φ!(F )) ∼= HomX(U∗+,Φ(Φ!(F ))).

In particular h0(Γ,Φ!(F )) = 2d− 10.

Proof. By Lemma 5.3 we know that HomX(U∗+, F ) = 0. Therefore, applying the
functor HomX(U∗+,−) to the resolution (5.8) we obtain:

AF = Ext2X(F,U+)∗ ∼= HomX(U∗+,Φ(Φ!(F ))).

Now we can use the spectral sequence (2.4) to show the isomorphisms:

H0(Γ,Φ!(F )) ∼= HomΓ(OΓ,Φ!(F )) ∼= Ext1X(U+(1), F ) ∼= AF .

Indeed, by Lemma 5.3 we have HomX(U∗+, F ) = 0, and clearly Ext−1
X (U∗+, F ) = 0.

So the last statement follows from (5.5). �

In order to set up our correspondence between M(d) and W 2 d−11
d−5,5 d−24, we have to

prove that a general vector bundle Φ!(F ) is stable. This is done in the next lemma.

Lemma 5.6. For each integer d ≥ 6, there exists a Zariski dense open subset
Ω(d) ⊂ M(d), such that each point Fd of Ω(d) satisfies H1(X,Fd(−1)) = 0, and
Φ!(Fd) is a stable sheaf.

Proof. Let us prove the statement by induction on d ≥ 6. If d = 6, Φ!(F6) is stable
since it is a line bundle. Suppose now d > 6 and assume that Φ!(Fd−1) is stable.
Recall that L = Φ!(OL)[−1] is a line bundle of degree 5 by Lemma 4.1. Applying
the functor Φ! to the sequence (3.19), we get

(5.11) 0 → L → Φ!(Fd) → Φ!(Fd−1) → 0.

Notice that the extension (5.11) is non-trivial because Φ!(Fd) is indecomposable
since it is simple (see Proposition 5.4).

Since, by formulas (5.7), we know that µ(Φ!(Fd)) = 5d−24
d−5 = 5 + 1

d−5 , it is
enough to prove that Φ!(Fd) is semistable. Assume by contradiction that there
exists a subsheaf K destabilizing Φ!(Fd) of rank r < d − 5 and degree c. Since
Φ!(Fd−1) is stable, we must have

5 +
1

d− 5
<
c

r
≤ 5 +

1
d− 6

,

from which we get

0 <
c

r
− 5d− 24

d− 5
≤ 1

(d− 5)(d− 6)
.

It is easy to check that the only possibility is r = d− 6 and c = 5d− 29, and so we
would have K ∼= Φ!(Fd−1) and (5.11) would split, a contradiction. Hence Φ!(Fd) is
stable. Therefore the same holds for a general point of M(d) by Maruyama’s result
[Mar76]. �

Lemma 5.7. Let d ≥ 6 and let F be a locally free sheaf in Ω(d). Then Φ!(F ) is
globally generated and we have the exact sequence

(5.12) 0 → (Φ!(F ))∗ → Ext2X(F,U+)∗⊗OΓ → Φ!(F ) → 0.

Proof. Consider the complex Φ∗(F ). Let us compute the stalk over the point y ∈ Γ
of the sheaf Hk(Φ∗(F )). We obtain:

H−k(Φ∗(F ))y
∼= Extk

X(F,Ey)∗.

For k = 3, this group vanishes by stability of F and Ey. For k = 2, this
group vanishes as well. Indeed, applying the functor HomX(F,−) to (2.26), and
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by stability of Gy, we are reduced to show that Ext2X(F,U∗+) = 0. But this follows
easily applying HomX(F,−) to (2.13).

Now observe that HomX(F,Ey) = 0 as soon as F is locally free. So Φ∗(F )[−1]
is a locally free sheaf. Moreover, applying (2.29) and using the definition of Φ∗ and
Φ!, we get:

Φ∗(F )[−1] ∼= (Φ!(F ))∗.
Remark that, for any sheaf F on the curve Γ, since the functor Φ is fully faithful,

we have:
Φ∗(Φ(F)) ∼= F .

Thus, applying the functor Φ∗ to (5.8), we obtain, in view of (2.32), the exact
sequence (5.12). Hence, the sheaf Φ!(F ) is globally generated. �

In the next section we will study the space MX(2, 1, d), focusing first on the case
d ≥ 7, where we give a birational description. The case d = 6 will be treated in
greater detail afterwards.

5.3. The moduli spaces MX(2, 1, d), with d ≥ 7. Here we show that the com-
ponent M(d) of the variety MX(2, 1, d) containing the sheaves arising from the
construction of Theorem 3.12 is birational to a component W(d) of W 2 d−11

d−5,5 d−24.
Recall that in Lemma 5.6 we have introduced the open set Ω(d) ⊂ M(d). Every
sheaf F ∈ Ω(d) satisfies the following two conditions:

i) the group H1(X,F (−1)) vanishes,
ii) the vector bundle F = Φ!(F ) is stable.

Theorem 5.8. Let X be a smooth ordinary prime Fano threefold of genus 7, and
let F be a sheaf in Ω(d). Then the map

ϕ : Ω(d) →W 2 d−11
d−5,5 d−24 ϕ : F 7→ F = Φ!(F )

is injective. Moreover, denoting by W(d) the irreducible component of W 2 d−11
d−5,5 d−24

containing the image of ϕ, we have that the tangent space (resp. the space of ob-
struction) to W(d) at the point [Φ!(F )] is naturally identified with Ext1X(F, F ) (resp.
with Ext2X(F, F )). Therefore, M(d) and W(d) are birational varieties of dimension
2d− 9.

Proof. Note that the map ϕ is well defined by Proposition 5.4 and Lemmas 5.5,
5.6. Set again AF = Ext2X(F,U+)∗ and F = Φ!(F ). Keep in mind the natural
isomorphism (5.10), and the natural evaluation map:

e = eO,F : AF ⊗OΓ → F .
Recall that the transpose of the Petri map π>F equals the map Ext1Γ(e,F), obtained
applying HomΓ(−,F) to e.

In order to show that ϕ is injective, we consider the resolution (5.8) provided
by Proposition 5.4, and we notice that the map ζF agrees, up to a non-zero scalar,
with the map H0(Φ(e)), obtained taking the cohomology in degree zero of the map
Φ(e). Indeed, by Lemma 5.5 we get HomX(U∗+,Φ(Φ!(F ))) ∼= AF , in particular ζF
is uniquely determined up to a non-zero scalar. This proves that ϕ is injective, for
cok(H0(Φ(e))) ∼= F is the unique preimage of F = Φ!(F ).

Let us now setup the natural identifications of tangent and obstruction spaces.
We have the natural isomorphisms:

Ext1X(Φ(F), F ) ∼= Ext1Γ(F ,F),

Ext1X(U∗+, F ) ∼= Ext1X(Φ(OΓ), F ) ∼= Ext1Γ(OΓ,F).(5.13)

Here, to prove (5.13), by (2.4) and (2.34) it suffices to show Ext2X(U+(1), F ) = 0 and
Ext3X(U+(1), F ) = 0. By Serre duality we have Extk

X(U+(1), F )∗ ∼= Ext3−k
X (F,U+),



BUNDLES ON FANO THREEFOLDS OF GENUS 7 25

which vanishes, for k = 2, 3, by Lemma 5.2. Now, applying the functor HomX(−, F )
to (5.8) we obtain an exact sequence:

Ext1X(F, F ) → Ext1X(Φ(F), F )
ηF−−→ Ext1X(U∗+, F )⊗A∗F → Ext2X(F, F ),

where the map ηF is defined as Ext1X(ζF , F ). But since ζF = Φ(e), we have:

ηF = Ext1X(Φ(e), F ) = Ext1Γ(e,Φ!(F )) = Ext1Γ(e,F) = π>F .

We have thus constructed the required identification of the tangent space to
W 2 d−11

d−5,5 d−24 at the point [F ] (i.e. of ker(π>F )) with Ext1X(F, F ). The same argument
identifies the obstruction space with Ext2X(F, F ).

To finish the proof, recall by Theorem 3.12 that the component M(d) of
MX(2, 1, d) is generically smooth of dimension 2d − 9. Therefore the same holds
for the component of W 2 d−11

d−5,5 d−24 which contains the image of ϕ. We denote by
W(d) this component. We have thus proved that ϕ is a birational map from M(d)
to W(d). �

5.4. Universal sheaves. For any d ≥ 6, we let P(d) be the moduli space of stable
vector bundles on Γ of rank d− 5 and degree 5 d− 24. Thus W(d) is a subvariety of
P(d). Since the rank and the degree are coprime, it is well known that this moduli
space is fine. So we denote by P the universal bundle over Γ×P(d), and by abuse
of notation to the product Γ×W(d).

Theorem 5.9. For d ≥ 7, the moduli space Ω(d) ⊂ M(d) is fine.

Proof. We would like to exhibit a universal sheaf F over X ×Ω(d) such that, for a
given closed point z of Ω(d) representing a stable sheaf F , the restriction of F to
X × {z} is isomorphic to F .

Recall by Theorem 5.8 that ϕ maps Ω(d) ⊂ M(d) to an open subset of W(d).
Consider the projections:

X × Γ× Ω(d)
p×1

vvmmmmmmmm q×ϕ

))RRRRRRRRR

X × Ω(d) Γ× ϕ(Ω(d))

We consider the pull-back to X × Γ × Ω(d) of the map α : U∗+ → E of (2.16).
We tensor this map with (q × ϕ)∗(P). We have thus a morphism:

U∗+ � (q × ϕ)∗(P) α�1−−−→ E � (q × ϕ)∗(P).

We define the universal sheaf F as the cokernel of the map (p × 1)∗(α � 1).
Let us verify that F has the desired properties. So choose a closed point z ∈
Ω(d) ⊂ M(d), and consider the corresponding sheaf Fz on X and the vector bundle
Pϕ(z)

∼= Φ!(Fz) on Γ. Notice that the sheaf (q × ϕ)∗(Pϕ(z)) is just q∗(Φ!(Fz)).
Then, evaluating at the point z the map (p× 1)∗(α� 1) we obtain the map:

H0(Γ,Φ!(Fz))⊗U∗+ → Φ(Φ!(Fz)).

Recall the natural isomorphism H0(Γ,Φ!(Fz)) ∼= Ext2X(Fz,U+)∗, and note that,
by functoriality, this map must agree with the map ζFz

given by the resolution
(5.8). Thus its cokernel is isomorphic to Fz. �

5.5. The moduli space MX(2, 1, 6). Here we focus on the moduli space
MX(2, 1, 6), and we prove that it is isomorphic to the Brill-Noether locus W 1

1,6

on the homologically projectively dual curve Γ. This makes more precise a result
of Iliev-Markushevich, [IM07c]. Then we investigate the subvariety of MX(2, 1, 6)
consisting of vector bundles which are not globally generated. We will see that these
bundles are in one-to-one correspondence with non-reflexive sheaves in MX(2, 1, 6).
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Finally we will see that these two subsets are interchanged by a natural involution
of MX(2, 1, 6). Here is our result.

Theorem 5.10. Let X be a smooth prime Fano threefold of genus 7.
A) The map ϕ : F 7→ Φ!(F ) gives an isomorphism of the moduli space MX(2, 1, 6)

onto the Brill-Noether variety W 1
1,6. In particular, MX(2, 1, 6) is a connected

threefold. Moreover it is a fine moduli space.
B) If X is not exotic, then MX(2, 1, 6) has at most finitely many singular points.

If X is general, then MX(2, 1, 6) is smooth and irreducible.

We prove now the first part of the theorem, while we postpone the second part
to the end of the subsection.

Proof of Theorem 5.10, part A. First of all the map ϕ : F 7→ Φ!(F ) is well-defined.
Indeed, let F be any sheaf in MX(2, 1, 6). By Proposition 3.7, we know that F
satisfies the hypothesis (5.1). Then by Proposition 5.4, Φ!(F ) is a line bundle of
degree 6 on Γ. Set L = Φ!(F ). We have to prove that L admits at least two
independent global sections. If F is locally free, by Lemma 5.7 we have that L is
globally generated. Moreover the exact sequence (5.12), implies h0(Γ,L) ≥ 2, since
h0(Γ,L∗) = 0. It follows that Φ!(F ) lies in W 1

1,6. If F is not locally free, then it fits
in the exact sequence (3.9). Recall that by Lemma 4.1 we know that Φ!(OL)[−1]
is a line bundle M contained in W 1

1,5. Hence, applying Φ! to the exact sequence
(3.9), we obtain:

(5.14) 0 →M→ L→ Oy → 0,

where y is a point of Γ. Therefore we have again h0(Γ,L) ≥ h0(Γ,M) ≥ 2, and
Φ!(F ) lies in W 1

1,6. Note that in this case the open subset Ω(6) coincides in fact
with all of MX(2, 1, 6). Then, with the same proof of Theorem 5.9 one can show
that the moduli space MX(2, 1, 6) is fine.

We prove now that the map ϕ is injective. Note that the equality h0(Γ,L) = 2
must be attained for all L, since W 2

1,6 is empty in view of Mukai’s result (see
[Muk95a, Table 1]). Then by the spectral sequence:

HomX(U∗+, F )⊕ Ext1X(U+(1), F ) ⇒ HomΓ(OΓ,L)

we obtain HomX(U∗+, F ) = 0. The same conclusion of Lemma 5.5 follows for d = 6.
Therefore, the map ζF appearing in the resolution (5.8) provided by Proposition
5.4 is uniquely determined for any element L lying in the image of ϕ. In particular
cok(ζF ) ∼= F is the unique preimage of L.

Since χ(F, F ) = −2, and clearly Ext3X(F, F ) = 0, by [HL97, Chapter 4.5], the
space MX(2, 1, 6) is a proper scheme of dimension at least 3. The dimension of
MX(2, 1, 6) follows, together with connectedness, for the variety MX(2, 1, 6) embeds
in W 1

1,6 which is a connected threefold (see for instance [ACGH85, IV, Theorem 5.1
and V, Theorem 1.4]).

We will now provide an inverse map of ϕ. Take a line bundle L in W 1
1,6, and

denote by eL = eOΓ,L : H0(Γ,L)⊗OΓ → L the natural evaluation map. We
distinguish two cases according to whether L is globally generated or not. In the
former, we have an exact sequence:

(5.15) 0 → L∗ → H0(Γ,L)⊗OΓ
eL−→ L → 0.

Since, for any x ∈ X the vector bundle Ex is stable, we have H0(Γ,Ex⊗L∗) =
H1(Γ,Ex⊗L) = 0. Therefore, applying the functor Φ to (5.15), and using the
duality formula (2.28), we obtain an exact sequence:

0 → H0(Γ,L)⊗U∗+ → Φ(L) → Φ(L)∗(1) → H0(Γ,L)∗⊗U+(1) → 0.
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It is easy to see that the image of the middle map in the above sequence is a
reflexive sheaf F (by [Har80, Proposition 1.1]) of rank 2 with c1(F ) = 1, c2(F ) = 6,
c3(F ) = 0, sitting in the following exact sequence:

(5.16) 0 → H0(Γ,L)⊗U∗+
H0(Φ(eL))−−−−−−−→ Φ(L) → F → 0.

Note that F is locally free, so it is also stable, once we prove HomX(OX(1), F ) = 0.
Recall that Extk

X(OX(1),U∗+) = 0 for any integer k. Further, it is easy to see that
Φ∗(OX(1)) = 0. Then, applying the functor HomX(OX(1),−) to (5.16), we have:

HomX(OX(1), F ) ∼= HomX(OX(1),Φ(L)) ∼= HomΓ(Φ∗(OX(1)),L) = 0,

and so F ∈ MX(2, 1, 6). Thus we can define ω(L) = cok(H0(Φ(eL))). Applying the
functor Φ! to (5.16), we find Φ!(F ) ∼= L, so ϕ(ω(L)) = L.

It remains to find an inverse image via ϕ of a non-globally generated sheaf L.
In this case, the image M ⊂ L of eL must be a line bundle, with h0(Γ,M) =
h0(Γ,L) = 2. Then M must lie in W 1

1,5, since Γ has no g1
4 by [Muk95a]. We have

an exact sequence of the form (5.14), for some y ∈ Γ. Applying the functor Φ to
this sequence, by Lemma 4.1 and formula (4.3), we obtain:

0 → AL⊗U∗+
H0(Φ(eL))−−−−−−−→ Φ(L) → Ey → OL → 0,

where L is the line contained in X such that M ∼= Φ!(OL)[−1] and AL =
H0(Γ,M) ∼= H0(Γ,L). It is easy to see that the image of the middle map in the exact
sequence above is a sheaf F ∈ MX(2, 1, 6). We define again ω(L) = cok(H0(Φ(eL)))
and since Φ!(F ) ∼= L, it follows ϕ(ω(L)) = L.

By the proof of Theorem 5.8, we also have that ω◦ϕ is the identity on MX(2, 1, 6)
and this completes the proof of part (A). �

Now we will analyze the space MX(2, 1, 6) in greater detail.

Lemma 5.11. Let F be a sheaf in MX(2, 1, 6). Then either F is globally generated,
or there exists an exact sequence:

(5.17) 0 → I → F → OL(−1) → 0,

where L is a line contained in X and I is a sheaf fitting into:

(5.18) 0 → E ∗
y → H0(X,F )⊗OX → I → 0.

Proof. If the sheaf F fits into the exact sequence (5.17), it cannot be globally gener-
ated, since OL(−1) has no global sections. So let us prove the converse implication.

Assume thus that F is not globally generated, let I (respectively, T and K) be
the image (respectively, the cokernel and the kernel) of the natural evaluation map
eO,F : H0(X,F )⊗OX → F . By Proposition 3.7, we have Hk(X,F ) = 0, for each
k 6= 0, and h0(X,F ) = 4.

Note that, by definition of eO,F the sheaf I admits 4 independent global sections.
Then, by stability of OX and F , I must be a torsion-free sheaf of rank 2, with
c1(I) = 1, c2(I) ≥ 6, and I is stable as well. It is easy to see that K is thus a stable
reflexive (by [Har80, Proposition 1.1]) sheaf of rank 2 with c1(K) = −1, c2(K) =
12− c2(I). Then we have c3(K) ≥ 0 and by Lemma 3.1 it follows c2(K) ≥ 5.

Assume first that c2(I) = 7. Then we can apply Proposition 3.5 to the sheaf
K(1) to prove that K is locally free. It follows that K is of the form E ∗

y for
some y by virtue of Theorem 2.3. So, using H0(X,T ) = 0, we obtain that T is
isomorphic to OL(−1) by a Hilbert polynomial computation. This concludes the
proof if c2(I) = 7.

Let us assume now that c2(I) = 6, which implies c2(K) = 6 and c3(K) =
−c3(I) ≥ 0 for the sheaf K is reflexive. In this case Proposition 3.7 implies that
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K is locally free so c3(K) = 0. This implies c3(I) = 0, so T = 0 and F is globally
generated. �

We can consider the closed subvarieties of the Brill-Noether variety W 1
1,6 de-

scribed by the following conditions:

G = {L ∈W 1
1,6 | L is not globally generated}(5.19)

C = {L ∈W 1
1,6 | L is contained in a line bundle lying in W 2

1,7}.(5.20)

Moreover, we have the following involution:

τ : W 1
1,6 →W 1

1,6, L 7→ L∗⊗ωΓ.

Proposition 5.12. The sets C and G are interchanged by the involution τ , and
are both isomorphic to the product Γ×W 1

1,5. The intersection C ∩ G ⊂ W 1
1,6 is an

8-tuple cover of the curve W 1
1,5.

Proof. Given a line bundle L in G, we consider as in the proof of Theorem 5.10, part
(A). the image M ⊂ L of the natural evaluation map eOΓ,L. We have M ∈ W 1

1,5

and an exact sequence of the form (5.14), for some y ∈ Γ. This defines a map
G → Γ ×W 1

1,5, which is injective since Ext1Γ(Oy,M) ∼= C. This map is surjective
too, indeed the unique extension from Oy to M must lie in W 1

1,6, since W 2
1,6 is

empty. Setting N = M∗⊗ωΓ, we have:

h0(Γ,M) = h1(Γ,N ) = 2, h1(Γ,M) = h0(Γ,N ) = 3.

It follows that N lies in W 2
1,7. Dualizing the sequence (5.14) and tensoring by ωΓ,

we obtain the exact sequence:

(5.21) 0 → τ(L) → N → Oy → 0.

So the line bundle τ(L) lies in C. Since this procedure is reversible, we have proved
that the involution τ interchanges the subsets G and C. Note that the map τ : M 7→
M∗⊗ωΓ gives an isomorphism from W 1

1,5 to W 2
1,7.

Let us now describe the intersection C ∩ G ⊂ W 1
1,6. Recall that the map ϕ|N |

associated to a given N ∈W 2
1,7 embeds Γ into P2 as a septic. This septic is smooth

away from 8 double points y1, . . . , y8, see [IM07c, Lemma 2.6]. For each yi we have
a unique Mi ∈ W 1

1,5 given by the projection from the double point yi. On the
other hand any subbundle M∈W 1

1,5 of N must correspond to the projection from
a double point.

Now fix a line bundle N in W 2
1,7
∼= W 1

1,5. A subbundle L ∈ C of N corresponds to
the projection from a smooth point y as soon as L is globally generated. Therefore,
L lies in C ∩ G if and only if we have:

Mi ⊂ L ⊂ N , for some i = 1, . . . , 8.

For each Mi there is a unique Li satisfying the above condition. Thus we have
realized C ∩ G as an 8-tuple cover of W 1

1,5. �

We consider now the pull-back θ of τ to MX(2, 1, 6), i.e. we set:

θ : MX(2, 1, 6) → MX(2, 1, 6), θ = ϕ−1 ◦ τ ◦ ϕ.

We will next show that θ can be seen on MX(2, 1, 6) in terms of the functor T of
Corollary 2.9.

Proposition 5.13. Let F be an element of MX(2, 1, 6). Then we have:
i) the sheaf F is not locally free if and only if Φ!(F ) lies in G.
ii) the sheaf F is not globally generated if and only if Φ!(F ) lies in C.
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Moreover the function θ is an involution which interchanges the two subsets of
sheaves which are not locally free, and not globally generated.

Finally, for each F in MX(2, 1, 6) we have:

(5.22) θ(F ) = ϕ−1(T (F )) = ϕ−1Φ!(RH omX(F,OX))[1].

Proof. We have already proved the implication “⇐” of (i) in Lemma 5.7. To prove
the converse, we consider a sheaf F which is not locally free. Then F fits into
an exact sequence of the form (3.9). Applying the functor Φ! to this sequence
and setting L = Φ!(F ) we obtain an exact sequence of the form (5.14) for some
M in W 1

1,5 (see Lemma 4.1). Since H0(Γ,M) ∼= H0(Γ,L), the evaluation map
H0(Γ,L)⊗OΓ → L cannot be surjective, so L lies in G.

To prove (ii), in view of Lemma 5.11, we have to show that the line bundle
Φ!(F ) lies in C if and only if the sheaf F fits into (5.17), for some I fitting in (5.18).
To show “⇒” of (ii), we let F be any such sheaf, and recall by Lemma 4.1 that
N = Φ!(OL(−1)) lies in W 2

1,7. Since Φ!(OX) = 0, by the exact sequence (5.18) we
have:

Φ!(I)[1] ∼= Φ!(Ey) ∼= Oy.

Thus applying the functor Φ! to (5.17) we obtain an exact sequence:

0 → Φ!(F ) → N → Oy → 0,

and Φ!(F ) lies in C.
To prove the converse implication, we consider a globally generated sheaf F and

the exact sequence:

(5.23) 0 → K → H0(X,F )⊗OX → F → 0.

Remark that K is a locally free sheaf and K∗ lies in MX(2, 1, 6) as well. We note
that, applying (2.29), we get the natural isomorphism:

Φ!(K) ∼= Φ!(K∗)∗⊗ωΓ[−1].

On the other hand, by (5.23) we get Φ!(K) ∼= Φ!(F )[−1]. Then we have:

Φ!(F ) ∼= τ(Φ!(K∗)).

But Φ!(K∗) is globally generated by Lemma 5.7, hence we are done since τ inter-
changes C and G. We have thus established (i) and (ii).

It follows that θ interchanges the sheaves which are not locally free, and the
sheaves which are not globally generated, and clearly θ is an involution.

To show the expression (5.22) of θ, recall that Φ! ◦ T = τ ◦ Φ! by Corollary
2.9. Therefore, for any F in MX(2, 1, 6) we have θ(F ) = ϕ−1(Φ!(T (F ))). Since
for any object a in Db(X) we have Φ!(Φ(Φ!(a))) ∼= Φ!(a), it follows that θ(F ) =
ϕ−1Φ!(RH omX(F,OX))[1]. �

The following lemma follows a suggestion of Dimitri Markushevich.

Lemma 5.14. The set of singular points [L] of W 1
1,6, such that L is globally gen-

erated, is in bijection with the set of even effective theta-characteristics on Γ. In
particular, this set if finite. Moreover, it is empty if Γ is outside a divisor in the
moduli space of curves of genus 7, and of cardinality 1 if Γ is general in that divisor.

Proof. According to Mukai’s classification in [Muk95a]), the smooth curve section
Γ of the spinor 10-fold satisfies W 2

1,6 = ∅, and a general curve of genus 7 is of this
form. Now recall that a line bundle L lies in the singular locus of W 1

1,6 if and only
if the Petri map:

πL : H0(Γ,L)⊗H0(Γ,L∗⊗ωΓ) → H0(Γ, ωΓ).
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is not injective. Note that the kernel of this map is isomorphic to
H0(Γ,L∗⊗L∗⊗ωΓ). Therefore, the above map is injective unless L⊗L ∼= ωΓ,
which means that L is an even effective theta-characteristic.

By [TiB87, Theorem 2.16] the set of curves of genus 7 admitting an even effective
theta-characteristic form a divisor in the moduli space of curves of genus 7, and the
general curve in this divisor has precisely one even effective theta-characteristic.
This concludes the proof. �

Proof of Theorem 5.10, part B. Let us assume X to be non-exotic, and prove that
MX(2, 1, 6) has at most finitely many singular points. In view of Theorem 5.10,
part A, the space MX(2, 1, 6) is isomorphic to W 1

1,6. The number of singular points
of W 1

1,6 which correspond to globally generated line bundles is finite by Lemma
5.14.

We consider thus a line bundle L ∈ G which is a singular point of W 1
1,6. Since

τ is an isomorphism, we can also assume that τ(L) is not globally generated, i.e.
L ∈ C ∩ G. In particular we must have an exact sequence of the form (5.14),
and there exists N ∈ W 2

1,7 such that M ⊂ L ⊂ N . Applying τ , we also get
τ(N ) ⊂ τ(L) ⊂ τ(M). Now, as in the proof of Lemma 5.14, we note that τ(L) lies
in the singular locus of W 1

1,6 if and only if the Petri map πL is not injective. In this
case the kernel is isomorphic to H0(Γ, τ(N )∗⊗L). Since we assume that this space
is non-zero, we have an inclusion τ(N ) ⊂ L. It follows that M ∼= τ(N ), since L
contains a unique line bundle lying in W 1

1,5. We have thus an inclusion M⊂ τ(M),
which means H0(Γ,M∗⊗M∗⊗ωΓ) 6= 0, so that M is a singular point of W 1

1,5 (see
Remark 4.2). Since W 1

1,5
∼= H 0

1 (X) by Lemma 4.1, and since X is not exotic, the
number of singular points of this form in W 1

1,6 is finite, and we are done.
Finally, note that if X is general, then the curve Γ is general. Then it is well-

known that W 1
1,6 is smooth and irreducible, see for instance [ACGH85, V, Theorem

1.6]. It follows that MX(2, 1, 6) is a smooth irreducible threefold. �

5.6. The space MX(2, 1, 6) as a subspace of MS(2, 1, 6). In this section we let
X be a general prime Fano threefold of genus 7. Let S be a general hyperplane
section of X. Assume in particular that S is a K3 surface of Picard number 1 and
sectional genus 7. In this paragraph we will show that MX(2, 1, 6) is isomorphic
to a Lagrangian submanifold of MS(2, 1, 6). This provides an instance of a general
remark of Tyurin, [Tyu04].

We want to prove now that given any sheaf F ∈ MX(2, 1, 6), its restriction
FS = F ⊗OS is stable. Assume first that FS is locally free. By Remark 3.11, we
know that H1(X,F (−2)) = 0. Hence, by the exact sequence (3.15) with t = 0, and
by (3.10), it follows that H0(S, FS(−1)) = 0. This implies that FS is stable, by
Hoppe’s criterion. Assume now that FS is not locally free. Then by Proposition 3.7
it fits in the exact sequence (3.9) for some stable vector bundle E ∈ MX(2, 1, 5) and
a line L ⊂ X. Since E is stable and ACM by Proposition 3.5, it easily follows by
the restriction sequence that H0(S,ES(−1)) = 0, hence ES is stable. Then if there
exists a destabilizing subsheaf of FS , it would destabilize also ES , a contradiction.

Hence we define a restriction map:

ρS : MX(2, 1, 6) → MS(2, 1, 6), [F ] 7→ [FS ].

Lemma 5.15 (Tyurin). Let S be a general hyperplane section of X. Then the map
ρS is a closed immersion.

Proof. We prove that the differential d(ρS)[F ] is injective at any point [F ] of
MX(2, 1, 6). Applying the functor HomX(F,−) to (3.15) (with t = 0) we get:

Ext1X(F, F (−1)) → Ext1X(F, F ) δ−→ Ext1X(F, FS).
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Note that the leftmost term in the above sequence vanishes since Ext2X(F, F ) = 0,
indeed MX(2, 1, 6) is a non-singular threefold by Theorem 5.10, part B. So δ is
injective. Recall that Ext1X(F, F ) is naturally isomorphic to T[F ]MX(2, 1, 6), hence
we are done if we prove that Ext1X(F, FS) is naturally isomorphic to T[FS ]MS(2, 1, 6).

Let us prove that Ext1X(F, FS) ∼= Ext1S(FS , FS). Indeed, denoting by ι the
inclusion of the surface S in X, we have

Ext1X(F, FS) ∼= Ext1X(F, ι∗ι∗F ) ∼= Ext1S(ι∗F, ι∗F ) ∼= Ext1S(FS , FS),

where the second isomorphism above holds if Lkι
∗(F ) = 0 for any k > 0. But this

is true by Proposition 3.7, if S does not contain L and we can assume by generality
that S does not contain lines. This concludes the proof. �

Lemma 5.16. Let F be a sheaf in MX(2, 1, 6) and fix a general hyperplane section
S. Then there is at most one sheaf F ′ 6∼= F in MX(2, 1, 6) such that FS

∼= F ′S.
Moreover, the set of sheaves F admitting a sheaf F ′ satisfying the above condition

is finite.

Proof. Assume that the sheaf FS is isomorphic to F ′S . It is easy to see that this
isomorphism lifts to an isomorphisms F ∼= F ′ if Ext1(F, F ′(−1)) = 0. We assume
thus that this group is non-trivial.

We assume first that F is globally generated. We have an exact sequence of the
form:

(5.24) 0 → K → H0(X,F )⊗OX → F → 0,

and K is a reflexive sheaf by [Har80, Proposition 1.1], hence K(1) is a locally
free sheaf in MX(2, 1, 6). Applying HomX(−, F ′(−1)) to (5.24), one obtains
HomX(K,F ′(−1)) 6= 0, so F ′ ∼= K(1). This implies the first statement.

Let us now turn to the second one. Note that F ′ is locally free. We consider the
symmetric square of (5.24):

0 → Sym2(F ′)∗ → H0(X,F )⊗(F ′)∗ → ∧2 H0(X,F )⊗OX → OX(1) → 0,

and we take global sections. Since H0(X, (F ′)∗) = 0, ∧2(F ′)∗ ∼= OX(−1) and
H1(X,Sym2(F ′)∗) ∼= H1(X, (F ′)∗⊗(F ′)∗) ∼= Ext2X(F ′, F ′)∗ = 0, we obtain an in-
jection ιF : ∧2 H0(X,F ) ↪→ H0(X,OX(1)). Note that dim(cok(ιF )) = 3, hence
setting ΛF = P(cok(ιF )) ⊂ P8 = P(H0(X,OX(1))), we define a correspondence:

Λ : MX(2, 1, 6) → G(2, 8), Λ : F 7→ ΛF .

Clearly we have dim(Im(Λ)) ≤ 3.
Now we fix a general hyperplane section S. Taking global sections of the restric-

tion of the symmetric square of (5.24), we obtain an exact commutative diagram:

(5.25) 0 //

��

∧2 H0(X,F )
ιF // H0(X,OX(1))

��

0 // H1(S,Sym2 F ∗S) // ∧2 H0(S, FS) // H0(S,OS(1)).

Note that H1(S,Sym2 F ∗S) 6= 0. Indeed since KS
∼= F ∗S , then the exact se-

quence (5.24) (restricted to S) provides a non-trivial element in Ext1S(FS , F
∗
S) ∼=

H1(S, F ∗S ⊗F ∗S) ∼= H1(S,Sym2 F ∗S), where we use ∧2F ∗S
∼= OS(−1).

Then the diagram (5.25) induces a projection H0(S,OS(1)) → cok(ιF ) and so
the hyperplane defining the surface S must contain ΛF . We denote by GS the set
of planes of G(2, 8) contained in P(H0(S,OS(1))) = P7. We have proved that if
ρS is not injective at [F ], then ΛF ∈ GS . Clearly GS ⊂ G(2, 8) is a subvariety of
codimension 3 and corresponds to the choice of a general global section of the rank
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3 universal bundle on G(2, 8), which is globally generated. Hence, the set of planes
contained in Im(Λ) ∩GS must be finite. This proves the second statement.

It remains to prove the claim when F is not globally generated (say over a line
L′ ⊂ X, see Lemma 5.11). The sheaf FS thus fails to be globally generated over
the point x = L′ ∩ S. In turn, the sheaf F ′ is not globally generated, say over a
line L ⊂ X, and we must have either L = L′, or L ∩ L′ = x.

In the first case, we will prove that F ∼= F ′. Indeed by Lemma 5.11 we know
that F and F ′ fit in (5.17), (5.18), and

0 → I ′ → F ′ → OL(−1) → 0,(5.26)

0 → E ∗
y′ → H0(X,F ′)⊗OX → I ′ → 0.(5.27)

Restricting the sequences (5.17) and (5.26) to S, we get IS ∼= I ′S . Note that
the bundle E ∗

y′ is ACM by Remark 3.6, hence H1(S,E ∗
y′) = 0. Then from the

sequences (5.18) and (5.27), we deduce that (E ∗
y )S

∼= (E ∗
y′)S . But this implies the

isomorphism Ey
∼= Ey′ , and thus the isomorphism F ∼= F ′. Indeed the restriction

map from MS(2, 1, 5) → MX(2, 1, 5) is known to be injective, because it corresponds
to the embedding of Γ as linear section of MX(2, 1, 5).

Then we may assume L ∩ L′ = x. Using (5.17) and (5.18), it is easy to see that
Ext1X(F, F ′(−1)) = 0 unless F is not locally free over the line L. Set E = F ∗∗, and
recall that E belongs to M(2, 1, 5). Then we have (F ′S)∗∗ ∼= ES , hence (F ′)∗∗ ∼= E.
Hence F ′ is not locally free either, and in turn its non-locally free locus must be
L′. We have:

(5.28) 0 → F ′ → E → OL′ → 0.

This proves the first statement. The set of pairs (F, F ′), with FS
∼= F ′S , and F

not globally generated, is in natural bijection with the set of pairs of lines (L,L′)
which meet at a point of S. Since S is general, the curve spanned by the intersection
points of lines in H 0

1 (X) meets S at a finite number of points. �

Lemma 5.17. Let F be a sheaf fitting into (3.9) and F ′ fitting in (5.28). Fix a
general hyperplane section S and assume that L∩ S = L′ ∩ S = x. Then FS

∼= F ′S.

Proof. Note that the sequences (3.9) and (5.28) induce two inclusions of H0(X,F )
and H0(X,F ′) as subspaces of H0(X,E). The intersection of these two subspaces is
not empty. Let s be a non-zero global section of E which belongs to such intersec-
tion. Clearly s vanishes on a curve C which meets both L and L′. The zero locus
of s as an element of H0(X,F ) (respectively, of H0(X,F ′)) is the curve D = C ∪L
(respectively, D′ = C∪L′), where C is the zero locus of s as an element of H0(X,E).
Thus Z = D ∩ S (resp. Z ′ = D′ ∩ S) is the vanishing locus of s as a global section
of FS (resp. of F ′S) and we have the two exact sequences

0 → OS → FS → IZ(1) → 0, 0 → OS → F ′S → I ′Z(1) → 0.(5.29)

But since L ∩ L′ = x ∈ S, we have Z = Z ′. Moreover by Lemma 3.4, we have
h1(S, IZ(1)) ≤ 1. So since H1(S, IZ(1)) ∼= Ext1S(IZ(1),OS)∗ by Serre duality, the
two extensions in (5.29) are equivalent, and we obtain FS

∼= F ′S . �

Recall that MS(2, 1, 6) is a holomorphic symplectic manifold with respect to the
Mukai form, see [Muk84].

Theorem 5.18. Let X be a general prime Fano threefold of genus 7, S be a general
hyperplane section of X, and let ρS be the restriction map from MX(2, 1, 6) to
MS(2, 1, 6).

The image ρS(MX(2, 1, 6)) is a Lagrangian subvariety of MS(2, 1, 6). The sin-
gular locus of ρS(MX(2, 1, 6)) is non-empty and consists of finitely many double
points.
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Proof. Recall that since X is general, then MX(2, 1, 6) is smooth, by Theorem 5.10,
part B. We have seen in Lemmas 5.15 and 5.16 that ρS is a closed embedding outside
a finite subset R of MX(2, 1, 6). Lemma 5.17 implies that this set is non-empty.

By the proof of Lemmas 5.16 and 5.17, we have that the preimage of a singular
point of ρS(MX(2, 1, 6)) consists of precisely two points of MX(2, 1, 6), hence the
singular locus consists of double points.

The image ρS(MX(2, 1, 6)\R) is a Lagrangian submanifold by a remark of Tyurin,
see [Tyu04, Proposition 2.2]. �
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[Mŏı67] Boris G. Mŏı̌sezon, Algebraic homology classes on algebraic varieties, Izv. Akad.
Nauk SSSR Ser. Mat. 31 (1967), 225–268.



BUNDLES ON FANO THREEFOLDS OF GENUS 7 35

[Muk84] Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or

K3 surface, Invent. Math. 77 (1984), no. 1, 101–116.

[Muk88] , Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, Algebraic geometry
and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 357–377.

[Muk89] , Biregular classification of Fano 3-folds and Fano manifolds of coindex 3,
Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 9, 3000–3002.

[Muk92] , Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992),

no. 1, 7–10.
[Muk95a] , Curves and symmetric spaces. I, Amer. J. Math. 117 (1995), no. 6, 1627–

1644.

[Muk95b] , Vector bundles and Brill-Noether theory, Current topics in complex algebraic
geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, Cambridge

Univ. Press, Cambridge, 1995, pp. 145–158.

[Muk01] , Non-abelian Brill-Noether theory and Fano 3-folds [translation of Sūgaku 49
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